
Kendo UI® Builder by
Progress®:
Modernizing OpenEdge Applications

Notices

© 2016 Progress Software Corporation and/or one of its subsidiaries or affiliates. All rights reserved.
These materials and all Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. The information in these materials is subject

to change without notice, and Progress Software Corporation assumes no responsibility for any errors that may appear therein. The references in these materials to specific

platforms supported are subject to change.

Business Making Progress, Corticon, DataDirect (and design), DataDirect Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery,

Deliver More Than Expected, Icenium, Kendo UI, Making Software Work Together, NativeScript, OpenEdge, Powered by Progress, Progress, Progress Software Developers

Network, Rollbase, RulesCloud, RulesWorld, SequeLink, Sitefinity (and Design), SpeedScript, Stylus Studio, TeamPulse, Telerik, Telerik (and Design), Test Studio, and

WebSpeed are registered trademarks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Analytics360,

AppsAlive, AppServer, Arcade, BravePoint, BusinessEdge, DataDirect Spy, DataDirect SupportLink, DevCraft, DigitalFactory, Fiddler, Future Proof, High Performance Integration,

JustCode, JustDecompile, JustMock, JustTrace, OpenAccess, ProDataSet, Progress Arcade, Progress Profiles, Progress Results, Progress RFID, Progress Software, ProVision,

PSE Pro, SectorAlliance, Sitefinity, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame,

SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, WebClient, Who Makes Progress, and Xervo are trademarks or service marks of Progress Software

Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its affiliates. Any other marks contained herein

may be trademarks of their respective owners.

Please refer to the Release Notes applicable to the particular Progress product release for any third-party acknowledgements required to be provided in the documentation

associated with the Progress product.

September 2016

Last updated with new content: Version 1.0

3Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.04

Notices

Table of Contents

Chapter 1: Overview and Architecture...7
Steps to modernize an OpenEdge application..7
Architecture and components...9

Chapter 2: Kendo UI Designer Overview...11
App layout and components...12
Creating and designing an app...14
Data providers and data sources..19

Adding and editing a data provider..20
Adding and editing a data source...22
Editor and semantic types..25

Modules and views...30
Editing the login view...31
Adding and editing a Data-Grid view..34
Adding and editing a Data-Grid-Form view..39
Adding and editing a Data-Grid-Separate-Form view..46

App generation and deployment...53

Chapter 3: Extension Points and Source Code Customization...............55
Static files..56

Custom assets...57
HTML code...57
JavaScript code..57

Company logo...58
Customize the view templates..58
Custom semantic types...59

OpenEdge Data Object Services...59
Kendo UI Builder..59

Custom UI editor types...60
General view events...60
View-specific events..62
Custom HTML sections...64
Row templates..65

Row template format..65
Row template ID...66
Row template function..66

Column templates...67

5Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Contents

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.06

Contents

1
Overview and Architecture

The Kendo UI® Builder by Progress® facilitates the modernization of existing Progress® OpenEdge® desktop
business applications by moving the application user interface (UI) to the web using Kendo UI. These OpenEdge
applications can be simple to more complex applications containing multiple, feature-specific modules.
Applications that already conform to the OpenEdge Reference Architecture (OERA) are especially well suited
for modernization using the Kendo UI Builder. However, you can modernize any OpenEdge application with
its UI separated from its business logic running on an OpenEdge application server, which can be either an
instance of Progress Application Server for OpenEdge or the classic OpenEdge® AppServer®.

Kendo UI Builder tooling supports the design and development of a modern and responsive web UI in the form
of a deployable OpenEdge web app that accesses one or more ABL application services implemented as
OpenEdge Data Object Services. This tooling supports UI upgrades for future versions of the initial web app
over time, with little or no additional coding, using customizable templates and meta-data from which the
deployable web app is generated.

For details, see the following topics:

• Steps to modernize an OpenEdge application

• Architecture and components

Steps to modernize an OpenEdge application
For OpenEdge, the Kendo UI Builder includes components from several Progress products that you use in an
iterative fashion to modernize an OpenEdge application as follows:

1. Ensure that your application UI is separate from its business logic, with the ABL business logic tailored to
run on an OpenEdge application server. The OpenEdge Reference Architecture provides a methodology

7Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

for accomplishing this. For more information on the OERA, see OpenEdge Getting Started: Guide for New
Developers.

For more information on tailoring ABL business logic to run on your choice of OpenEdge application server,
see the overview and application development documentation for:

• Progress Application Server for OpenEdge— Progress Application Server for OpenEdge: Introducing
PAS for OpenEdge and Progress Application Server for OpenEdge: Application Migration and
Development Guide

• OpenEdgeAppServer—OpenEdgeGetting Started: Application and Integration Services andOpenEdge
Application Server: Developing AppServer Applications

You can then deploy and run your ABL application with its UI running in a separate ABL client that accesses
its business logic as an ABL application service.

2. Implement a new service interface for your business logic in the form of an OpenEdge Data Object Service.
An OpenEdge Data Object Service provides web access to your ABL business logic through one or more
OpenEdge Data Objects implemented as ABL Business Entities. ABL Business Entities are annotated ABL
class or procedure-based objects that provide a standard web interface to your data and business logic.
An OpenEdge web app can then access this standard interface using a JavaScript Data Object (JSDO)
that hides the underlying details of the network request and response protocol from the app. A Data Object
Service then manages all web access between an instance of the JSDO in the web app and a given Data
Object running on the OpenEdge application server.

For an overview of OpenEdge Data Object Services and how to implement ABL Business Entities as Data
Objects, see the information on Data Object Services in OpenEdge Development: Web Services.

For information on creating, editing, testing, and deploying Data Object Services for both PAS for OpenEdge
and the classic OpenEdge AppServer, see the Progress Developer Studio for OpenEdge Online Help and
the administration documentation for each OpenEdge application server.

Note: Also see the New Information documentation for recent service packs of your OpenEdge Release
11.6 (starting with Service Pack 11.6.3).

For information on the JSDO and how it can be used in web apps to access Data Object Services, see the
Progress Data Objects: Guide and Reference

3. Design and build the OpenEdge web app that contains the web UI for your OpenEdge application using the
Kendo UI Designer. This is a Node.js-based, Kendo UI Builder tool that can install into your OpenEdge
environment. The Kendo UI Designer is thus an on-premise, visual design tool that accelerates web app
development based on selected Data Object Service meta-data and UI templates for supported Kendo UI
components.

The initial result is a set of UI meta-data that you can customize in a prescribed fashion. You can then invoke
the integrated Kendo UI Generator to build and preview the web app from this meta-data, allowing you to
test the UI and its data access from within the Kendo UI Designer itself.

The present documentation provides an overview of the Kendo UI Designer and how to work with it to build
and test a web app with access to OpenEdge data and business logic. For more detailed information on
using the options of the Kendo UI Designer, see Kendo UI Builder by Progress: Using the Kendo UI Designer.

4. Optionally, use Progress Developer Studio for OpenEdge to deploy each stage of completion for both Data
Object Services and the client OpenEdge web app. In Kendo UI Designer, you can configure the web app
location so the Kendo UI Generator automatically builds the web app within a Web UI project of Developer
Studio. From this project, you can deploy the app to a development instance of PAS for OpenEdge to test
general web access. Ultimately, you can deploy the completed web app for release on any production web
server of your choice.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.08

Chapter 1: Overview and Architecture

https://documentation.progress.com/output/pdo/
http://documentation.progress.com/output/kuib/des/

For a brief walk-through of building an OpenEdge application, end-to-end, with the modern web UI provided
by an OpenEdge web app, see Kendo UI Builder by Progress: Sample Workflow.

Architecture and components
The following figure shows the overall architecture of the Kendo UI Builder components and their relationship
for modernizing OpenEdge applications:

Figure 1: Kendo UI Builder components

Refer to the numbered call outs in the following description:

9Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Architecture and components

https://documentation.progress.com/output/kuib/wflow

1. Use an appropriate project in Progress Developer Studio for OpenEdge to develop Data Objects from
Business Entities that you create and package together as one or more Data Object Services for deployment
to an OpenEdge Application Server. Use an ABL Web App project to build and deploy Data Object
Services to an instance of the Progress Application Server for OpenEdge. Use a Data Object project to
build and deploy Data Object Services to the classic OpenEdge AppServer.

2. The deployment of Data Object Services includes Data Service Catalogs. Each Data Object Service is
defined by an associated Data Service Catalog. This Catalog is a JSON file that contains meta-data describing
the schema and operations supported by each Data Object managed by the Data Object Service. The
JavaScript Data Objects (JSDOs) that the Kendo UI Designer and its generated web apps create to access
Data Object resources rely on the Catalog for each Data Object Service that provides these resources to
manage access to the data across the network.

3. The Kendo UI Designer runs as a Node.js application installed on your local system using your supported
default browser (for example, Chrome or Firefox) to display its UI. Use the Designer to create an OpenEdge
web app, for which you specify a name and folder location for the files. An OpenEdge web app in the Kendo
UI Builder is built from a template that consists of one or modules with access to table resources provided
by one or more Data Object Services. You create each module from one or more views that you specify
using selected UI Templates with a predefined Kendo UI configuration, such as a grid and form. You bind
data to each view by associating a Data Object resource table as a data source. You can define app function
and presentation by setting properties on the app, each module, and its views, then preview the result with
real data from the data sources that are bound to the views. At any point in your design, you can save the
current state of the web app to JSON UI Meta-Data that, together with the selected UI Templates, define
the UI and behavior of the app. Note that the UI meta-data is itself independent of the Kendo UI
implementation, and is used to generate a Kendo UI-based web app based on the UI Templates that you
select.

4. At any stage that you are ready to preview and test the app, you can build the app by invoking the Kendo
UI Generator. This is a Yeoman-based code generator that takes the saved JSON UI Meta-Data and
referenced UI Templates as input, and generates a deployable OpenEdge web app containing the
functionality you have designed. In addition, the Generator builds your web app in the context of Bootstrap
and AngularJS, which provides a responsive UI for your app. The generated HTML5/CSS and JavaScript
files are then saved to the app location you have specified, which can be aWeb UI Project of Progress
Developer Studio for OpenEdge.

5. By creating aWebUI Project in Developer Studio, you can save your generatedWebApp for Deployment
either as a development build for round trip testing on a development instance of PAS for OpenEdge or as
a release build for delivery on a production instance of PAS for OpenEdge. In addition, you can export the
Web UI Project as aWeb UI Application, which creates a WAR file for your web app that you can deploy
to any compatible web server of your choice.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.010

Chapter 1: Overview and Architecture

2
Kendo UI Designer Overview

The Kendo UI Designer allows you to visually design, build, and preview OpenEdge web apps with a responsive
UI based on Kendo UI, Bootstrap, and AngularJS and with access to OpenEdge Data Object Services. These
are one-page apps that you design with the app and data definition stored in JSON meta-data that is separate
from the Kendo UI implementation.

This meta-data is then used by the integrated Kendo UI Generator to generate the HTML5/CSS and JavaScript
files that you build for an app. The app generation also allows you to immediately preview the app in the
Designer using live data. You can then eventually deploy the app to separate web servers, including OpenEdge
application servers, for further development testing and production.

You design a web app from inputs that include a set of Kendo UI templates organized into functional views
that you select to construct one or more app modules. Each module can contain one or more views, and each
view can be bound to one data source table that you select for the view. You select each data source from a
data provider that you define for one or more OpenEdge Data Object Services. You can have multiple data
providers defined, but only one data provider can be selected for each view to then select its data source.

Modules and their views, data providers and their data sources, can all be configured with corresponding
properties. These property settings then help to define the meta-data for your app, which is saved separately
for each module and data provider that you define.

Finally, you can customize each view with custom code for both view event handlers and custom sections that
are available to include in the layout of every view. There are also additional extension points available for
customization for both basic and more advanced app development.

11Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

The following topics further describe these components of an OpenEdge web app and how you can use them
in the Kendo UI Designer to design and build the app. For more information on options for using the individual
wizards and dialog boxes that are provided to complete this work in the Designer, see Kendo UI Builder by
Progress: Using the Kendo UI Designer. For more information on the extension points available for customization,
see Extension Points and Source Code Customization on page 55 in this document.

For details, see the following topics:

• App layout and components

• Creating and designing an app

• Data providers and data sources

• Modules and views

• App generation and deployment

App layout and components
At run time, each OpenEdge web app has the basic layout shown in these example screens, starting with the
app landing page:

Figure 2: App layout example—landing page

The app landing page displays when you first open the web app and contains the following components:

• Header— Showing the default logo in the example:

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.012

Chapter 2: Kendo UI Designer Overview

http://documentation.progress.com/output/kuib/des/
http://documentation.progress.com/output/kuib/des/

You can specify your own company logo using web app settings (described later).•

• This header can also provide a drop-down menu on the right (not shown) that includes a Logout option.
This drop-down menu is hidden if no login was required to open the most recently displayed view.

• Module icon list— Showing selectable icons for the user-defined modules available in the app. If you
select a module, its first available view is displayed in the views page (see below) after any required login.
If this view requires a login for access, a login view displays (described later) prompting for credentials to
authenticate in order to open the view. If no login is required or the login succeeds, the app views page
opens displaying the view. For more information on the login view, see .

Note: The landing page displays a predefined landing-page view that every Designer-generated web app
contains (along with a login view, as required). Optionally, this landing-page view can also have two custom
HTML sections, one above and one below the module icon list. For more information on creating modules and
views for an app, see Creating and designing an app on page 14.

This is an example app views page that might display if you select the OrderEntry module in the example
landing page above:

Figure 3: App layout example—views page

The app views page opens with the following components

• Header— Displays with the same elements as the landing page header described previously. If, at any
time, you select the logo in the header, the app returns to the landing page.

• Module/view list— On the left, showing a list of the user-defined modules available in the app, each with
its own drop-down list of views that it provides. The example shows the following modules:

• OrderEntry— After being selected in the app landing page, the views page is opened for this module,
with its drop-down list shown preselecting and displaying the first listed view in the module. You can
then select another view name in the list to display a different view in the module.

• Sports— An additional user-defined module, with its drop-down list yet to be selected.

13Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

App layout and components

Note: As shown for OrderEntry, any module selected in the landing page has its initial view displayed
along with the module description in an overlaying caption, in this case "Example user-defined module."
The caption disappears with the next selection on the page.

• View display area—On the right, showing a single view from amodule (initially, the first view in the module
selected on the landing page). When you select a view in any available module, the opened view is then
displayed, and replaces any previously displayed view in the view display area. If the selected view requires
a login, the login view is displayed to enter and authenticate credentials before displaying the view.

Note: A web app built in the Kendo UI Designer is built with only a single HTML page. The app landing page
and views page are not separate HTML pages, but represent the same HTML page displaying different types
of views: 1) the landing page, which displays the predefined landing-page view, and 2) the views page, which
displays the single user-defined view that is selected in a module.

Creating and designing an app
When you first start the Kendo UI Builder, it opens the Kendo UI Designer start page in your default browser
similar to this:

Figure 4: Kendo UI Designer start page

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.014

Chapter 2: Kendo UI Designer Overview

To create an app, click Create App. This immediately takes you to the Create App dialog box to create a web
app, as in this example:

Figure 5: Create App dialog box

The value you choose for App Name becomes the name of the folder where your app is created, and the
Location is where the app folder is created. You can optionally enter a Description, which appears along with
the App Name on the start page after you create the web app.

If you want your app development testing and production deployment to be managed from within a Web UI
project of Progress Developer Studio for OpenEdge, specify App Name with the same name as the Web UI
project, and specify Location as the folder of the Developer Studio workspace where you create the project
as shown in the example. Note also that you can create the Web UI project in Developer Studio to manage
the web app either before or after you have created and built the app in the Kendo UI Designer as long as both
project and app names and locations are the same.

After filling in the fields, you can create the app by clicking the Create App button, which immediately opens
the app design page, where you can design, build, and preview the app, as shown later in this topic.

When at any point after creating the app you return to the Kendo UI Designer start page by clicking the Progress
logo in the header, a card or list item is displayed for the app by selecting Cards (the default) or List in the
toolbar of the page.

15Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Creating and designing an app

This is an example card for the OrderEntryWebApp app, as created in the previous Create App example:

Figure 6: Start page with created app card

Note that to help locate one of many apps you might create, you can sort the apps or search for a given app
card or list item using Sort or the search box, respectively. Note also, anywhere in the Designer where you
see Need Help?, you can click to open a help topic for that page or dialog box in the Designer.

Clicking the gear control in the app card (or list item), provides the option of either opening the Edit App dialog
box (Edit), which allows you to edit certain properties of the app, or deleting the app from the Designer (Delete,
with confirmation) and from any Web UI project you have created for it in Progress Developer Studio for
OpenEdge.

If you open the Edit App dialog box, it displays similar to this example for OrderEntryWebApp:
Figure 7: Edit App dialog box

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.016

Chapter 2: Kendo UI Designer Overview

For the App Logo property, you can replace the default logo_default.png image file with your company
logo or other image file. (For information on where to save your own image file for access using this property,
see Company logo on page 58 in this document.) The displayed image (shown beside the property setting)
appears in the header of your web app at run time (see App layout and components on page 12). The
Description property allows you to enter or edit any description you want to display for the app. The other
properties are read-only and can only be set when you first create the app using the Create App dialog box
(previously shown). Click Save to save any changes.

At this point, you can click the app card or list item to return to the app design page, which might appear similar
to this example for OrderEntryWebApp showing app development already in progress:

Figure 8: App design page

The app design page is where all design, build, and preview activities are initiated for an app. This particular
example shows some components of ourOrderEntryWebApp, including modules and data providers, already
designed to some extent.

The app design page contains the following elements, from top to bottom:

17Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Creating and designing an app

• Header— Similar to the header for the Kendo UI Designer start page, with the addition of breadcrumbs
that track your path in the Designer. In the example, the design page is displayed at the top-level of its
parent app.

• App Title—The name you gave the app when you created it, followed by a pencil control for editing certain
properties of the app after it is created. Clicking this control opens the same Edit App dialog box previously
described using the gear control for the app card on the Designer start page. Below this App Title is any
description you enter for the app, either when you first create it or using this Edit App dialog box.

• Toolbar— Provides the following tools:

• Preview—Provides the option to either invoke the Kendo UI Generator to build and immediately preview
the current state of the app or to preview the most recent build (if one exists). The preview opens in a
separate browser tab using live data from the mapped data sources.

• Build— Invokes the Kendo UI Generator to build the current state of the app without running a preview.

For more information on app builds, see App generation and deployment on page 53.

• Modules— A module is basically a container for one or more views. Every app is initially created with an
Application module, as shown in the example. You can also create user-defined modules by clicking Add
Module. In the example, two user-defined modules are created, OrderEntry and Sports.

You can edit some identifying features of every created module by clicking its pencil control. You can add
or edit the definitions of views in a user-defined module by clicking its Edit control, and you can delete a
user-defined module (with confirmation) by clicking its trash control.

The Application module can never be deleted and is created with the following predefined views, which
also can never be deleted:

• login—Prompts the user for credentials and authenticates access to data providers that require it. This
view only appears in the app at run time if one or more data providers require access using an
authentication model other than Anonymous. For more information, see Data providers and data sources
on page 19.

• landing-page— This is the first view to open for an app, and provides a page displaying a labeled icon
for every user-defined module in the app. You can then select any icon to continue app execution with
the selected module (see App layout and components on page 12).

Note: At run time, the Application module itself never appears in the web app. Only its views appear
according to your definition of the user-defined modules and views and their behavior in the app. The
Application module serves only as a design-time container for these predefined views.

For more information, see Modules and views on page 30.

• Data Providers— Data providers define data services and their data sources for binding data to views.
Each data provider can define one data service, the authentication model required to access that data
service, and one or more data sources from that data service. Each data source represents a single table
from its data service. You can create a new data provider by clicking Add Data Provider. In the example,
three data providers are created, OrderEntryService, SportsCorpServices, and SportsService.

You can define data sources for a data provider either when you first create the data provider or by clicking
its Edit control after you create it, which also allows you to change other properties of the data provider
definition. You can delete a data provider (with confirmation) by clicking its trash control.

For more information, see Data providers and data sources on page 19.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.018

Chapter 2: Kendo UI Designer Overview

Using the controls on this page, you can create and update most components of a web app, except those that
require extension point and source code customization, such as event handlers. Most of the remaining topics
provide more information on working with these components. For more information on code customization for
a web app, see Extension Points and Source Code Customization on page 55.

Data providers and data sources
A data provider defines a single data service and one or more data sources that represent tables from that
data service, which you can bind to views. This data service can be a Progress Data Service that represents
a single point of authentication for one or more OpenEdge Data Object Services. This single point of
authentication is the URI of a server web application that supports the specified Data Object Service or Services.
Each Data Object Service provides access to one or more Data Object resources that provide the tables you
can specify to define data sources for the data provider. Each Data Object Service is defined by a Data Service
Catalog, which is a JSON file on the web server that you can specify using its URI. The data provider definition
also identifies the authentication model required to access the data server (web application) that it supports,
which you can specify from the following options:

• Anonymous

• Basic

• Form

You can create and define data sources that you want the data provider to provide, both automatically, when
you first create the data provider, or manually, by adding data sources to the data provider after you create it.

You can also create multiple data providers, especially if you need to access Data Object Services hosted by
multiple web applications.

For details, see the following topics:

• Adding and editing a data provider on page 20

• Adding and editing a data source on page 22

• Editor and semantic types on page 25

19Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Data providers and data sources

Adding and editing a data provider
When you create a data provider, by clicking Add Data Provider on the app design page, the Add Data
Provider dialog box displays for you to enter its initial definition, as shown in the following example:
Figure 9: Add Data Provider dialog box

In this example, the data provider is defined as a Progress Data Service, with OrderEntryService entered
as its Name, with the OrderEntry web application URI specified as its Service URI, and the Catalog URI for
the single Data Object Service, OrderEntryService, specified in the Catalog URI field. Once the Add Data
Provider button is clicked, the specified data provider is created with all top-level table resources automatically
created as data sources, and the Authentication Model for the data provider specified as Anonymous.

Note: The Service URI field always specifies the URI of the single server component that provides a connection
to the Data Object Service whose Catalog URI is specified in the Catalog URI field, and that server component
is always a single web application running on the web server for an OpenEdge application server. Note also
that the authentication model specified in theAuthenticationModel field must be the same as the authentication
model configured for the specified web application.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.020

Chapter 2: Kendo UI Designer Overview

Once you create the data provider, its name appears in the Data Providers list as shown on the example app
design page (see Creating and designing an app on page 14).

Note: Once you create a data provider, you cannot change its specified Name, Service URI, or Catalog URI
settings in the Designer. For production deployment andmaintenance of your development andQA environments,
you can update the specified web application and Data Service Catalog (or Catalogs) by changing appropriate
settings in a JavaScript file generated for every generated app build before you access or deploy the web app
in a given environment. For more information, see App generation and deployment on page 53.

At this point, you might want to review and edit the data sources created for this data provider by clicking the
data provider's Edit control. For the OrderEntryService data provider just created, this displays an edit data
provider page similar to this example:

Figure 10: Edit data provider page

Here, you can update the Authentication Model for the data provider definition, and create any additional
data sources or edit data sources that have already been created.

Any data sources initially created for the data provider when you first create it appear in a list under Data
Sources. In the example, there is only one data source created with the name, CustomerBE. For an auto-created
data source like this, this is the name of a table provided by the associated Data Object resource.

21Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Data providers and data sources

If the Data Object Service specified for Catalog URI supports additional Data Object resource tables, you can
manually create new data sources for them by clicking Add Data Source. For more information, see Adding
and editing a data source on page 22.

Adding and editing a data source
When you click Add Data Source in the edit data provider page (see Adding and editing a data provider on
page 20), the Add Data Source dialog box appears (not shown, but similar to the Edit Data Source dialog
box shown below). In this dialog box, unlike when auto-creating data sources, you can select a resource table
from the Data Object Service and define your own name for the new data source that is different from the name
of the resource table that it represents. You can also set other options similar the Edit Data Source dialog
box, with some differences as shown and explained, below.

After a data source is created, you can review and modify its definition by clicking the Edit control associated
with the data source on the edit data provider page. This displays the Edit Data Source dialog box, as shown
for the auto-created CustomerBE data source in this example:

Figure 11: Edit Data Source dialog box

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.022

Chapter 2: Kendo UI Designer Overview

In the search box, the Edit Data Source dialog box highlights the resource table for which the data source is
already created; in the Add Data Source dialog box, this same search box allows you to search through the
available Data Object resource tables to select one for which to create the new data source. However, unlike
in the Add Data Source dialog box, you cannot change the value specified for Name that has already been
created for a data source in the Edit Data Source dialog box.

The Excluded Fields and Included Fields of the field list allow you to exclude or include all fields, and to
drag-and-drop individual fields for exclusion from or inclusion in the fields that are initially available to populate
views from this data source.

Note: Similar field list settings can also be changed for the individual UI components of a view (see Modules
and views on page 30).

If Client-side Processing is selected (the default), all filtering, paging, sorting, and grouping of fields in a view
is managed by the Kendo UI widgets using data that is already retrieved in the client web app. If this check
box is cleared, all filtering, paging, and sorting (but not grouping) is managed by the Data Object resource on
the server as it responds to read requests from the client.

23Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Data providers and data sources

When you clear Client-side Processing, one additional field is displayed that requires a value, as shown in
this example:

Figure 12: Setting the data source for filtering, sorting, and paging on the server

In Count Function, you must enter the name of an OpenEdge ABL routine in the corresponding Business
Entity on the server that implements the Data Object resource. This routine (typically, an ABL class method)
returns the total number of records returned by the resource Read operation when server paging is enabled.
The data source must know this value in order to manage the paging of records in the client according to the
page size of any grid view that is bound to the data source (see Modules and views on page 30). For more
information on this routine, see the sections on "updating Business Entities for access by Telerik DataSources
and Rollbase external objects" in OpenEdge Development: Web Services and in OpenEdge Service Pack
11.6.3: New Information.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.024

Chapter 2: Kendo UI Designer Overview

The Properties of the data source include the ability to define a label (using Label) for each field that is different
from its field name shown in the Included Fields list, as shown for the entered Customer label defined for
the selected CustNum field in the example. UsingEditor Type, you can also select a UI-independent visualization
for each field that is different from the initially displayed default, which for the selected CustNum field is changed
from integer-input to plain-text. The options for selecting an editor type depend on the field's semantic
type shown in parentheses beside each field name in the list. For more information on editor types and semantic
types, see Editor and semantic types on page 25.

When you have completed creating or updating a data source definition, you must click Save to save the
changes and close the dialog box, then click Save on the edit data provider page to accept and save the
changes to its parent data provider.

Editor and semantic types
A key feature of a data source is that it allows you to specify meta-data to represent each individual field, which
defines its UI-independent function and visualization for update or read-only display. This meta-data includes
an editor type, which identifies the visualization. The options for specifying an editor type depend on a field's
semantic type, which also appears in the data source meta-data and is provided by the field's resource definition
in the Data Service Catalog. The specified editor type for a field is then used by the Kendo UI Generator to
identify the Kendo UI implementation to generate as the field's Kendo UI visualization in view forms (see
Modules and views on page 30).

A semantic type specifies the functional usage for a field, such as to store currency or date and time values.
In the Add Data Source or Edit Data Source dialog boxes (see Adding and editing a data source on page
22), the semantic type appears in parentheses next to its field name in the data source field list, such as
Integer in CustNum(Integer) or Text in Name(Text), as shown in the example.

For an OpenEdge Data Object resource (Business Entity), a semantic type is specified for each temp-table
field as part of defining the service interface for the Data Object. This includes a default semantic type that is
associated with each supported ABL field data type, if none other is specified. For more information, see the
documentation on defining Data Object service interfaces in the Progress Developer Studio for OpenEdge
Online Help and the New Information documentation for recent service packs of your OpenEdge Release 11.6
(starting with Service Pack 11.6.3).

The following table lists each supported editor type and its UI behavior, including the Kendo UI visualization
created for it in forms by the Kendo UI Generator:

Table 1: Supported editor types and Kendo UI implementations

Kendo UI visualizationBehaviorEditor type

Two-option Radio SetDescribes the visualization and
behavior of a boolean field using a
choice between two selectable
elements.

bool-radio-set

CalendarDescribes the visualization and
behavior of a date field as a
calendar control used to select its
ISO-8601 value.

calendar

Check BoxDescribes the visualization and
behavior of a boolean field using a
single element to reflect two
different choices.

check-box

25Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Data providers and data sources

Kendo UI visualizationBehaviorEditor type

Numeric InputDescribes the visualization and
behavior of a numeric field that
represents currency data.

currency-input

Date PickerDescribes the visualization and
behavior of a date field with an
ISO-8601 value.

date-input

DateTime PickerDescribes the visualization and
behavior of a date and time field
with an ISO-8601 value.

date-time-input

EditorDescribes the visualization and
behavior of a multi-line text field.

editor

Email InputDescribes the visualization of a text
field that accepts well-formed email
addresses.

email-input

Numeric InputDescribes the visualization and
behavior of an integer field.

integer-input

Numeric InputDescribes the visualization and
behavior of a numeric field for all
supported numeric domains and
formats.

numeric-input

SliderDescribes the visualization and
behavior of a numeric field for all
supported numeric domains and
formats entered using a graphic
control.

numeric-slider

Password InputDescribes the visualization and
behavior of a text field that accepts
a password with masking support.

password-input

Numeric InputDescribes the visualization and
behavior of a numeric field that
represents a percentage value,
where the percentage value is the
field's value times 100 (e.g., 0.25
* 100).

percent-input

Numeric InputDescribes the visualization and
behavior of a numeric field that
represents a percentage value,
where the percentage value is the
field's actual value (e.g., 25.0).

percent-value-input

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.026

Chapter 2: Kendo UI Designer Overview

Kendo UI visualizationBehaviorEditor type

Masked InputDescribes the visualization and
behavior of a text field that
represents a phone number.

phone-number-input

HTML5 text element (read-only)Provides the ability to display any
semantic type as a read-only value.

plain-text

Text InputDescribes the visualization and
behavior of a single-line text field.

text-input

Text InputDescribes the visualization and
behavior of a text field that accepts
well-formed URL values.

url-input

The following table lists each semantic type, its designed behavior, and the available editor types that can
represent it, including both the default editor type and compatible alternative editor types that you can select,
if any:

Table 2: Default and compatible editor types available for each semantic type

Compatible editor typesDefault editor typeFunctionSemantic type

bool-radio-setcheck-boxTwo (2) valuesBoolean

plain-text

text-input

numeric-slider

currency-inputDecimal with currency
symbol

With localization override

Currency

plain-text

text-input

calendar

date-input (date only)Date with no time

With localization override

Date

plain-text

text-input

calendar

date-time-input (with
time)

Date and time with
timezone support

With localization override

Datetime

plain-text

text-input

email-inputText with single @
character delimiter

Email

plain-text

text-input

numeric-slider

integer-inputInteger value

With localization override

Integer

——Fields marked as internal
are not displayed to the
user

Internal

27Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Data providers and data sources

Compatible editor typesDefault editor typeFunctionSemantic type

plain-text

text-input

numeric-slider

numeric-inputDecimal with formatting
options (separator,
decimal points, etc.)

With localization override

Number

plain-text

text-input

password-inputText displayed as hidden
characters

Password

plain-text

text-input

numeric-slider

percent-inputDecimal x 100 (with %
sign)

Example: value in
database = 0.255,
represented as 25.5%

Percent

plain-text

text-input

numeric-slider

percent-value-inputDecimal (with % sign)

Example: value in
database = 25.5,
represented as 25.5%

PercentValue

plain-text

text-input

phone-number-inputNumbers, alpha
characters, parentheses,
and dashes

With localization override

PhoneNumber

plain-text

text-input

editorMulti-line, formatted textRichText

plain-text
text-inputSingle line of text

Note: Data Object
Services use UTF-8 as
the content type.

Text

plain-text

text-input

url-inputClick through hyperlink
with alternate text

URL

For OpenEdge Data Object resources, the following table shows the semantic and editor type defaults for each
supported OpenEdge ABL field data type:

Table 3: Default semantic and editor types for each ABL field data type

Editor type defaultSemantic type defaultABL field data type

text-inputTextCHARACTER

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.028

Chapter 2: Kendo UI Designer Overview

Editor type defaultSemantic type defaultABL field data type

editorRichTextCLOB

numeric-inputNumberCOM-HANDLE

date-inputDateDATE

date-time-inputDateTimeDATETIME or DATETIME-TZ

numeric-inputNumberDECIMAL

numeric-inputNumberHANDLE

integer-inputIntegerINT64 or INTEGER

check-boxBooleanLOGICAL

text-inputTextROWID

Note: For more information the support for ABL field data types in Data Object resources, see the information
on data type mapping in the Progress Data Objects: Guide and Reference.

Note that OpenEdge allows a table field to be defined as a one-dimensional array values with the specified
ABL data type, which can be any primitive field data type, exception CLOB. The data source created for an
OpenEdge resource table with an array field contains a separate individual data source field for each item in
the original ABL array, where each data source field has the same semantic type as defined for the ABL array.
This means that in the Edit Data Source dialog box, you can set a different compatible editor type for each
data source array field, based on its semantic type.

The field name that displays in the data source definition for each data source array field conforms to the
following convention:

Syntax:

ABLFieldName_idx

Where:

ABLFieldName

Specifies the name of the ABL array field from which each data source array field is derived.

idx

Specifies an integer that is the 1-based index of the ABL array item that this data source array field
represents.

Note: This corresponds to OpenEdge ABL array indexes, which are always 1-based.

29Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Data providers and data sources

https://documentation.progress.com/output/pdo/

As with any data source field, you can specify a more useful label for each data source array field than the
original ABL field name and idx value represent. For example, for a field named Prize_1, you might specify
the label, First Prize.

When the Kendo UI Designer generates the UI for data source array fields, it then displays each field derived
from the ABL array as a separate field in any view. This means that it creates a separate column in any grid
for each array field, and creates a separate UI component for each array field in any editable form according
to the individual array field's editor type. This means, for example, that an array of semantic Text fields can
have all odd-numbered fields display as editable (text-input editor type) and all even-numbered fields
display as read-only (plain-text editor type).

Modules and views
In a Kendo UI Designer web app, themodule is the basic unit of application functionality. Each module contains
one or more views that provide the functionality, typically for a common set of features. Therefore, a view
provides the UI for single application function or feature within a module.

As described in Creating and designing an app on page 14, when you first create a web app in the Designer,
it creates one predefined Application module. You can then create as many additional user-defined modules
as you require to organize the features of your app.

The Designer supports the following module and view configurations:

• Application module— Created with two predefined views, the login and the landing-page view (see
Creating and designing an app on page 14).

At design time, you can edit properties of the login view. However, the landing-page view has editable
properties only for changing the default names of general event handler functions, which can also be changed
for all views (see General view events on page 60). Otherwise, the run-time behavior of the landing-page
view largely depends on the user-definedmodules that you create for an app (see App layout and components
on page 12).

• User-defined modules—Created with no default views, you can create as many views as you need from
a set of supported view templates. The main requirement for using a user-defined view in your app is that
you specify one data resource from any available data provider in order to bind data to the view. Currently,
you can create views from three types of view templates in a user-defined module:

• Data-Grid— This is a simple read-only grid that displays rows of records from the bound data source
on the app views page.

• Data-Grid-Form— This is a read-only grid that offers a design-time choice of two edit modes using a
form: a read-only or read-only-to-edit form that displays with the grid in a single split screen on the app
views page.

• Data-Grid-Separate-Form—This is a read-only grid that offers a design-time choice of three edit modes
using a form a read-only, directly editable, or read-only-to-edit form that overlays the grid in a separate
screen on the app views page.

The design-time properties available to customize these views are all very similar from one view template
to the next, with additional properties added for the more complex views with forms. In addition, for those
views with both a grid and form, only one design-time property setting is required to change from one
supported edit mode to another.

The following topics provide a more detailed overview of both the predefined login view and the user-defined
views and their templates. The description of each view builds on the next to provide a comparative overview
of their capabilities.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.030

Chapter 2: Kendo UI Designer Overview

For details, see the following topics:

• Editing the login view on page 31

• Adding and editing a Data-Grid view on page 34

• Adding and editing a Data-Grid-Form view on page 39

• Adding and editing a Data-Grid-Separate-Form view on page 46

Editing the login view
After running a web app that you create in the Kendo UI Designer, if any views you select are bound to a data
provider that requires an authentication model other than Anonymous, the predefined login view in the
Application module prompts the user to enter credentials, like this customized OrderEntry example:
Figure 13: Login view running in app

After entering your credentials and clicking Login, the app authenticates the data provider bound to the view
you have selected and provides access to the selected view only if authentication succeeds.

31Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

Like any view, you can customize several of its features by modifying properties in the Kendo UI Designer. To
customize the login view, edit the Application module. The view design page for the predefined login view
opens similar to this example (with some properties already set):

Figure 14: Login view design page

The login view design page shows certain features common to all view design pages, top-to-bottom and
left-to-right:

• Header— Similar to the header for the app design page, with the addition of breadcrumbs that track your
path in the Designer to the current view design page.

• Toolbar— Provides the following tools:

• Save— Saves any unsaved changes in the current view definition to the UI meta-data.

• Revert— Cancels any unsaved changes and returns the current view definition to its state as of the
most recent Save.

• Preview—Provides the option to either invoke the Kendo UI Generator to build and immediately preview
a generated app in its currently saved state or to preview the most recent build (if one exists). The preview
opens in a separate browser tab using live data from the mapped data sources.

• Build— Invokes the Kendo UI Generator to build a generated app in its current state without running a
preview.

For more information on app builds, see App generation and deployment on page 53.

• VIEWS pane (on the left) — Lists the views in the current module, which for the Applicationmodule include
the predefined login and landing-page views. (Note: For a user-defined module, there is also an Add
button for creating additional user-defined views, as shown in following topics.)

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.032

Chapter 2: Kendo UI Designer Overview

• View panel (in the middle)— Shows a design simulation of the view, bounded on the left and top with a
vertical and horizontal ruler. The view panel contains the following elements that are common to all views,
but which might contain different content for each view type:

• Custom top html section— Initially not implemented, this custom section appears in the view when
you code the content of an HTML <div> element that displays at the top of the view.

• Header section— In this case, an identifying title for the view (Header title property) set to OrderEntry
and a graphic image file (Logo property) set to the default, logo_default.png.

Note: In the running example of this login view (shown above), no Logo image seems to appear because
the graphic in the logo_default.png file is white in order to stand out in the black page header of the
running web app (see App layout and components on page 12).

• Custommiddle html section— Initially not implemented, this custom section appears in the view when
you code the content of an HTML <div> element that displays in the middle, between the header and
data sections of the view.

• Data section— A form containing username and password input fields with labels (Username Label
and Password Label settings) that you can customize, and a Login button that the user must press to
authenticate and login to the data provider bound to the selected view.

• Custom bottom html section— Initially not implemented, this custom section appears in the view
when you code the content of an HTML <div> element that displays at the bottom of the view.

For more information on coding custom HTML sections, see Custom HTML sections on page 64 in this
document.

The design simulation in a view panel changes as you modify some of the view properties that affect its
appearance. For example, the login view title is set to OrderEntry using the Header Title property (see
the PROPERTIES pane, described further as follows).

• PROPERTIES pane (on the right)—Contains all the properties that you can set that change the design-time
appearance and content of the view, as well as some settings that can affect view behavior, such as
view-specific event handler settings.

Additional properties of note include:

• Events— Provides one or more properties to change the default name of the event handler function
defined for each login view-specific event:

• Login Event Function— Default value: onLogin. Executes for the Login event, which fires when
the Login button is pressed.

Note: You can also use properties in the Edit View dialog box to change the default names of event
handler functions for general events that apply to all views. You can access this dialog by clicking the
gear drop-down menu for each view (as shown for the example login view listed in the VIEWS pane),
then clicking the Edit option.

Caution: You must ensure that any change to the default name of an event handler function that you
make using its view property, you must also make to the name of the actual JavaScript function in source
code.

33Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

You must add custom code to each event handler function in order to implement any useful behavior
for it. The default behavior of these functions has no functional effect. Typically, you do not need to
change the default names of event handler functions. However, the view properties exist to allow this
name change if you have the need (for example, to avoid a naming conflict with existing JavaScript code
you are using elsewhere in the app). For more information on coding both view-specific and general
event handler functions (and changing their names in the source), see General view events on page 60
and View-specific events on page 62 in this document.

Adding and editing a Data-Grid view
The Data-Grid view is a simple read-only grid that displays rows of records from the bound data source on the
app views page.

At run time, the grid initially displays by itself with no records selected. (Row selection in this grid has no built-in
function except to highlight the selected row.) You can then navigate the rows of the grid a page at a time using
a page selection control at the bottom of the grid.

At design time, you can customize what columns are displayed from the fields of the data source, as well as
other properties that affect the display of the grid and its data. For example, you can enable design-time options
to select the data source fields to display in grid columns, modify the grid page size, filter the rows by column
at run time, and sort the rows by column at run time.

This grid view provides the same basic capabilities that appear in grids displayed for other grid views with
forms, with the addition of an appropriate built-in behavior for displaying data in a form when you select a row.

When you select a Data-Grid view in a module at run time, the app displays a page similar to theCustomer_List
view in this example:

Figure 15: Data-Grid view running in app

This view displays read-only rows of records from its bound data source in a tabular list, showing field values
for selected columns of each record. The rows are displayed in pages with a design-time specified size. You
can navigate through the pages of the grid view by selecting the first, previous, specific, next or last page
control. Selecting any single row highlights the row, but has no other default function.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.034

Chapter 2: Kendo UI Designer Overview

To add a Data-Grid view to a user-defined module, edit the module, which opens a view design page in the
module, then click Add at the top of the VIEWS pane (see Figure 17: Data-Grid view design page on page 36
for an example).

This opens an Add View dialog box, similar to this example:

Figure 16: Add View dialog box creating a Data-Grid view

In this example, the dialog box has Customer_List entered as the value of the view Name and DATA-GRID
selected as the view type. The view types listed in this dialog box (shown with a corresponding icon) identify
the available view templates you can use to create a user-defined view.

35Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

After specifying the name and view type, clickAdd View to create the specified view and display its view design
page for editing, as shown for the Customer_List Data-Grid view in this example:

Figure 17: Data-Grid view design page

The Data-Grid view design page shows certain features common to all user-defined view design pages,
top-to-bottom and left-to-right:

• Header— Similar to the header for the app design page, with the addition of breadcrumbs that track your
path in the Designer to the current view design page.

• Toolbar— Provides the following tools:

• Save— Saves any unsaved changes in the current view definition to the UI meta-data.

• Revert— Cancels any unsaved changes and returns the current view definition to its state as of the
most recent Save.

• Preview—Provides the option to either invoke the Kendo UI Generator to build and immediately preview
a generated app in its currently saved state or to preview the most recent build (if one exists). The preview
opens in a separate browser tab using live data from the mapped data sources.

• Build— Invokes the Kendo UI Generator to build a generated app in its current state without running a
preview.

For more information on app builds, see App generation and deployment on page 53.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.036

Chapter 2: Kendo UI Designer Overview

• VIEWS pane (on the left)— Lists the views in the current module, including the example Customer_List
view. There is also an Add button (used to create this view) for creating additional views and a search box
for locating a view in a long list of views in a module.

• View panel (in the middle)— Shows a design simulation of the view, bounded on the left and top with a
vertical and horizontal ruler. The view panel contains the following elements that are common to all views,
but which might contain different content for each view type:

• Custom top html section— Initially not implemented, this custom section appears in the view when
you code the content of an HTML <div> element that displays at the top of the view.

• Header section— In this case, an identifying title for the view (Grid Title setting).

• Custommiddle html section— Initially not implemented, this custom section appears in the view when
you code the content of an HTML <div> element that displays in the middle, between the header and
data sections of the view.

• Data section— In this case, showing a design simulation of the grid as currently configured in the
example Data-Grid view instance for display.

• Custom bottom html section— Initially not implemented, this custom section appears in the view
when you code the content of an HTML <div> element that displays at the bottom of the view.

For more information on coding custom HTML sections, see Custom HTML sections on page 64 in this
document.

The design simulation in a view panel changes as you modify some of the view properties that affect its
appearance, and even as you click around in the simulated view panel, depending on these property settings.
For example, the Customer_List view grid title is set to Customer List using the Grid Title property
and there are ten (10.00) rows on each page of the grid as set for the Page Size property (see the
PROPERTIES pane description, below, for more information).

• PROPERTIES pane (on the right)—Contains all the properties that you can set that change the design-time
appearance and content of the view, as well as some settings that can affect view behavior, such as
view-specific event handler settings.

Additional properties and values of note include:

• Data Provider and Data Source— Allow you to select an available data provider and data source to
bind to the view. For more information, see Data providers and data sources on page 19.

• Grid Columns—Clicking Edit for this property opens a dialog box that allows you to specify what data
source fields appear as columns in the grid, and some features affecting how each field is displayed in

37Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

the grid, as shown in this example for the three data source fields specified as Included Columns,
CustNum, Name, and State:

Figure 18: Grid Columns dialog box

The specified Properties apply to each field that you select in the Included Columns list, as shown for
the CustNum field. The Template property allows you to customize the display of a given column using
a Kendo UI column template that you can specify. For more information, see Column templates on page
67 in this document.

• Page Size— Specifies the number of rows to display in each page of the grid. (The last page can have
fewer rows, depending on the total number of records in the data source.)

• Row Template Function or Row Template Id— Specifies custom behavior for the display of every
grid row. You can use one of these options to specify the behavior, but Row Template Id takes
precedence if you specify both. You must write additional code to implement either one. Otherwise, the
bound data source definition and the Grid Columns settings determine how each row is displayed.

Row Template Function specifies a JavaScript function that you write to return template-formatted
results to display for each row; Row Template Id specifies the id of a <script> tag that contains the
actual HTML code for the row template to use to display each row. For more information, see Row
templates on page 65 in this document.

• Enable *— Together with Page Size, these properties control the general presentation of data in the
rows and columns of the grid, such as selecting a subset of the the available data (Enable Column
Filtering) and changing the order of rows (Enable Sorting) and columns (Enable Column Reordering).

Note: The Page Size, Enable Column Filtering, and Enable Sorting property values can be managed
either by Kendo UI in the client web app or by the Data Object resource that implements the bound data
source on the server. The choice of what data management facility responds to these property settings
depends on the capabilities of the Data Object resource and whether you select the Client-side
Processing option as part of the definition for the bound data source. For more information on the
Client-side Processing option, see Adding and editing a data source on page 22.

• Grid Events—Provides one or more properties to change the default name of the event handler function
defined for each Data-Grid view-specific event:

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.038

Chapter 2: Kendo UI Designer Overview

• Row Select Event Function—Default value: onRowSelect. Executes for the Row Select event,
which fires when the selected row changes in the grid.

Note: You can also use properties in the Edit View dialog box to change the default names of event
handler functions for general events that apply to all views. You can access this dialog by clicking the
gear drop-downmenu for each view (as shown for the exampleCustomer_List view listed in the VIEWS
pane), then clicking the Edit option.

Caution: You must ensure that any change to the default name of an event handler function that you
make using its view property, you must also make to the name of the actual JavaScript function in source
code.

You must add custom code to each event handler function in order to implement any useful behavior
for it. The default behavior of these functions has no functional effect. Typically, you do not need to
change the default names of event handler functions. However, the view properties exist to allow this
name change if you have the need (for example, to avoid a naming conflict with existing JavaScript code
you are using elsewhere in the app). For more information on coding both view-specific and general
event handler functions (and changing their names in the source), see General view events on page 60
and View-specific events on page 62 in this document.

Adding and editing a Data-Grid-Form view
The Data-Grid-Form view is a read-only grid that offers a design-time choice of two edit modes using a form:
a read-only or read-only-to-edit form that displays with the grid in a single split screen on the app views page.

At run time, the grid initially displays with the first row selected and a read-only form displayed wherever it fits
on the page (to the right or below the grid). Fields from the selected record are displayed in the read-only form
as read-only, plain text. You can then navigate the rows of the grid and select any other record, and the read-only
form displays the selected record fields accordingly.

The same is true for a read-only-to-edit form, but you also have the option to edit the selected record or to add
a new record to the bound data source. If you choose to edit the selected record, the view overlays the read-only
form with a form that displays the record fields for editing according to the editor types selected for the fields
in the data source. This editable form also provides options to save or cancel the changes you make, or to
delete the record from the data source that is displayed in the editable form.

If you select the option to add a new record, the view overlays the read-only form with a similarly editable form
that displays the fields for a new record with initial values that you can change before adding the record to the
data source. For any editable form, you can either save the changes or cancel the changes and return to the
grid with the row selected with the most recently edited or added record, or with the first row selected in the
current grid page after canceling a new record add.

At design time, you can separately customize what columns are displayed in the grid and what fields are
displayed on the form, as well as other properties that affect the display of the grid, the form, and its data.

39Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

When you select a Data-Grid-Form view in a module at run time, the app displays a page similar to the
Edit_Customer view in this read-only-to-edit mode example:

Figure 19: Data-Grid-Form view running in app with read-only form

The view opens with a read-only grid similar to the previous Customer_List Data-Grid view example (see
Adding and editing a Data-Grid view on page 34) in a split screen with the read-only form containing four fields.
These form fields are displayed from the record (initially) from the first row on the first page of the grid, then
from any grid row that you select.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.040

Chapter 2: Kendo UI Designer Overview

Clicking Edit above or below the form disables the grid and overlays the read-only form with an editable form,
as in this example (a similar editable form displays to add a new record to the bound data source by clicking
New):

Figure 20: Data-Grid-Form view running in app with editable form overlaying read-only form

Each field in the editable form is displayed according to the editor type that has been defined for it in the bound
data source (see Adding and editing a data source on page 22). From here, the edited record can be saved
(by clicking Save), deleted (by clicking Delete), or the edit canceled (by clicking Cancel), all of which return to
the read-only form displaying fields from an appropriate record, with the grid enabled.

To add a Data-Grid-Form view to a user-defined module, edit the module, which opens a view design page in
the module, then click Add at the top of the VIEWS pane (see Figure 22: Data-Grid-Form view design page
on page 43 for an example).

41Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

This opens an Add View dialog box, similar to this example:

Figure 21: Add View dialog box creating a Data-Grid-Form view

In this example, the dialog box has Edit_Customer entered as the value of the view Name and
DATA-GRID-FORM selected as the view type. The view types listed in this dialog box (shown with a
corresponding icon) identify the available view templates you can use to create a user-defined view.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.042

Chapter 2: Kendo UI Designer Overview

After specifying the name and view type, clickAdd View to create the specified view and display its view design
page for editing, as shown for the Edit_Customer Data-Grid-Form view in this example:

Figure 22: Data-Grid-Form view design page

The Data-Grid-Form view design page shows certain features common to all user-defined view design pages,
top-to-bottom and left-to-right:

• Header— Similar to the header for the app design page, with the addition of breadcrumbs that track your
path in the Designer to the current view design page.

• Toolbar— Provides the following tools:

• Save— Saves any unsaved changes in the current view definition to the UI meta-data.

43Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

• Revert— Cancels any unsaved changes and returns the current view definition to its state as of the
most recent Save.

• Preview—Provides the option to either invoke the Kendo UI Generator to build and immediately preview
a generated app in its currently saved state or to preview the most recent build (if one exists). The preview
opens in a separate browser tab using live data from the mapped data sources.

• Build— Invokes the Kendo UI Generator to build a generated app in its current state without running a
preview.

For more information on app builds, see App generation and deployment on page 53.

• VIEWS pane (on the left)— Lists the views in the current module, including the example Edit_Customer
view. There is also an Add button (used to create this view) for creating additional views and a search box
for locating a view in a long list of views in a module.

• View panel (in the middle)— Shows a design simulation of the view, bounded on the left and top with a
vertical and horizontal ruler. The view panel contains the following elements that are common to all views,
but which might contain different content for each view type:

• Custom top html section— Initially not implemented, this custom section appears in the view when
you code the content of an HTML <div> element that displays at the top of the view.

• Header section— In this case, an identifying title for the view (Title setting).

• Custommiddle html section— Initially not implemented, this custom section appears in the view when
you code the content of an HTML <div> element that displays in the middle, between the header and
data sections of the view.

• Data section— In this case, showing a design simulation of the grid and form in split screen as currently
configured in the example Data-Grid-Form view instance for display. Note that this includes a simulation
of the button configuration above and below either a read-only or editable form, depending on the edit
mode selected for the view (each form style has a subset of these buttons at run time).

Note: To fit on the document page with a readable size, the example view panel is horizontally
compressed so that the form appears below the grid with the form buttons above the grid and below the
form instead of above and below the form. Also, the fields on the compressed form appear out of order
compared to their usual arrangement. Typically, at full size, the form in the view design page is to the
right of the grid, as in the run-time view example shown previously.

• Custom bottom html section— Initially not implemented, this custom section appears in the view
when you code the content of an HTML <div> element that displays at the bottom of the view.

For more information on coding custom HTML sections, see Custom HTML sections on page 64 in this
document.

The design simulation in a view panel changes as you modify some of the view properties that affect its
appearance, and even as you click around in the simulated view panel, depending on these property settings.
For example, the Edit_Customer view title is set to Edit Customer using the Title property, there are
five (5.00) rows on each page of the grid as set for the Page Size property, and the buttons available with
the read-only and editable forms are shown for the Read-Only-to-Edit setting of the Edit mode property
(see the PROPERTIES pane description, below, for more information).

• PROPERTIES pane (on the right)—Contains all the properties that you can set that change the design-time
appearance and content of the view, as well as some settings that can affect view behavior, such as
view-specific event handler settings.

Additional properties and values of note include:

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.044

Chapter 2: Kendo UI Designer Overview

• New Title and Edit Title— Allow you to enter separate titles for an editable form displayed for adding
a new record and an editable form displayed for editing an existing record, when clicking New and Edit,
respectively, on the read-only form.

• Data Provider and Data Source— Allow you to select an available data provider and data source to
bind to the view. For more information, see Data providers and data sources on page 19.

• Edit mode— Allows you to select Read-Only or Read-Only-to-Edit. With Read-Only selected, only a
read-only form is displayed with no buttons, since no editable form is available.

• Grid Columns—Clicking Edit for this property opens a dialog box that allows you to specify what data
source fields appear as columns in the grid, and some features affecting how each field is displayed in
the grid, as shown in this example for the three data source fields specified as Included Columns,
CustNum, Name, and State:

Figure 23: Grid Columns dialog box

The specified Properties apply to each field that you select in the Included Columns list, as shown for
the CustNum field. The Template property allows you to customize the display of a given column using
a Kendo UI column template that you can specify. For more information, see Column templates on page
67 in this document.

• Form Fields— Clicking Edit for this property opens a dialog box that allows you to specify what data
source fields appear as fields on a form, in this example, CustNum, Name, Phone, and EmailAddress.
This dialog box is similar to the Grid Columns dialog box with fewer Properties that affect how each
field that you select in the Included Fields list is displayed in the form (Label Text and Format only).

• Page Size— Specifies the number of rows to display in each page of the grid. (The last page can have
fewer rows, depending on the total number of records in the data source.)

• Row Template Function or Row Template Id— Specifies custom behavior for the display of every
grid row. You can use one of these options to specify the behavior, but Row Template Id takes
precedence if you specify both. You must write additional code to implement either one. Otherwise, the
bound data source definition and the Grid Columns settings determine how each row is displayed.

45Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

Row Template Function specifies a JavaScript function that you write to return template-formatted
results to display for each row; Row Template Id specifies the id of a <script> tag that contains the
actual HTML code for the row template to use to display each row. For more information, see Row
templates on page 65 in this document.

• Enable *— Together with Page Size, these properties control the general presentation of data in the
rows and columns of the grid, such as selecting a subset of the the available data (Enable Column
Filtering) and changing the order of rows (Enable Sorting) and columns (Enable Column Reordering).

Note: The Page Size, Enable Column Filtering, and Enable Sorting property values can be managed
either by Kendo UI in the client web app or by the Data Object resource that implements the bound data
source on the server. The choice of what data management facility responds to these property settings
depends on the capabilities of the Data Object resource and whether you select the Client-side
Processing option as part of the definition for the bound data source. For more information on the
Client-side Processing option, see Adding and editing a data source on page 22.

• Grid Events—Provides one or more properties to change the default name of the event handler function
defined for each Data-Grid view-specific event:

• Row Select Event Function—Default value: onRowSelect. Executes for the Row Select event,
which fires when the selected row changes in the grid.

Note: You can also use properties in the Edit View dialog box to change the default names of event
handler functions for general events that apply to all views. You can access this dialog by clicking the
gear drop-downmenu for each view (as shown for the exampleCustomer_List view listed in the VIEWS
pane), then clicking the Edit option.

Caution: You must ensure that any change to the default name of an event handler function that you
make using its view property, you must also make to the name of the actual JavaScript function in source
code.

You must add custom code to each event handler function in order to implement any useful behavior
for it. The default behavior of these functions has no functional effect. Typically, you do not need to
change the default names of event handler functions. However, the view properties exist to allow this
name change if you have the need (for example, to avoid a naming conflict with existing JavaScript code
you are using elsewhere in the app). For more information on coding both view-specific and general
event handler functions (and changing their names in the source), see General view events on page 60
and View-specific events on page 62 in this document.

Adding and editing a Data-Grid-Separate-Form view
Data-Grid-Separate-Form view is a read-only grid that offers a design-time choice of three edit modes using
a form a read-only, directly editable, or read-only-to-edit form that overlays the grid in a separate screen on
the app views page.

At run time, the grid initially displays by itself with no records selected. You can then navigate the rows of the
grid without selecting a record. At any point during row navigation, you have the choice of selecting a row in
the grid, or if the associated form is directly editable or read-only-to-edit, selecting an option to add a new
record to the bound data source.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.046

Chapter 2: Kendo UI Designer Overview

For a read-only or read-only-to-edit form, selecting a grid row automatically overlays the grid with a read-only
form showing fields from the record displayed as read-only, plain text. For a read-only-to-edit form, you also
have the option to edit the record displayed in the read-only form or go back to the grid without making changes.

For a directly editable form, selecting a grid row overlays the grid with a form that displays the record fields for
editing according to the editor types selected for the fields in the data source. For a read-only-to-edit form, an
identical editable form also overlays the initial read-only form when you select the option to edit the displayed
record. This editable form provides options to save or cancel the changes you make, or to delete the record
from the data source that is selected in the grid and displayed in the form.

If you select the grid option to add a new record, the view overlays the grid with a similarly editable form that
displays the fields for a new record with initial values that you can change before adding the record to the data
source.

For any editable form, you can either save the changes or cancel the changes. For a read-only-to-edit form
that is editing an existing record, the screen returns to the read-only form displaying the same record fields,
with an option to go back to the grid. For a directly editable form, the screen goes directly back to the grid. For
either edit mode, when the screen goes back to the grid, it either displays with the row highlighted (but not
selected) for the most recently edited or added record, or displays with the first row highlighted in the current
grid page after canceling a new record add.

At design time, you can separately customize what columns are displayed in the grid and what fields are
displayed on the form, as well as other properties that affect the display of the grid, the form, and its data.

When you select a Data-Grid-Separate-Form view in a module at run time, the app displays a page similar to
the Edit_Customer_Separately view in this read-only-to-edit mode example:

Figure 24: Data-Grid-Separate-Form view running in app

The view opens with a read-only grid similar to the previous Customer_List Data-Grid view example (see
Adding and editing a Data-Grid view on page 34).

Selecting any row, on any page of the grid immediately overlays the grid with a read-only form containing fields
displayed from the bound data source record shown in that row, as in this example:

47Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

Note: Clicking New (above the grid) overlays the grid with an editable form for adding a new record to the
bound data source, which is not shown.

Figure 25: Data-Grid-Separate-Form view running in app with read-only form overlaying the grid

ClickingBack (above the form) returns to the read-only grid with the same row highlighted; clicking Edit (above
or below the form) overlays the read-only form with an editable form, as in the following example:

Figure 26: Data-Grid-Separate-Form view running in app with editable form overlaying the read-only form

Each field in the editable form is displayed according to the editor type that has been defined for it in the bound
data source (see Adding and editing a data source on page 22). From here, the edited record can be saved
(by clicking Save), deleted (by clicking Delete), or the edit canceled (by clicking Cancel), all of which return to
the read-only form displaying fields from an appropriate record.

Note: For a Data-Grid-Separate-Form view running in edit (as opposed to read-only-to-edit) mode, no read-only
form is ever displayed. Instead, only an editable form is displayed for a selected row, and selecting any button
(Save, Delete, or Cancel) completes the specified function and return to the read-only grid with an appropriate
row highlighted.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.048

Chapter 2: Kendo UI Designer Overview

To add a Data-Grid-Separate-Form view to a user-defined module, edit the module, which opens a view design
page in the module, then click Add at the top of the VIEWS pane (see Figure 28: Data-Grid-Separate-Form
view design page on page 50 for an example).

This opens an Add View dialog box, similar to this example:

Figure 27: Add View dialog box creating a Data-Grid-Separate-Form view

In this example, the dialog box has Edit_Customer_Separately entered as the value of the view Name
and DATA-GRID-SEPARATE-FORM selected as the view type. The view types listed in this dialog box (shown
with a corresponding icon) identify the available view templates you can use to create a user-defined view.

49Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

After specifying the name and view type, clickAdd View to create the specified view and display its view design
page for editing, as shown for the Edit_Customer_SeparatelyData-Grid-Separate-Form view in this example:

Figure 28: Data-Grid-Separate-Form view design page

The Data-Grid-Separate-Form view design page shows certain features common to all user-defined view design
pages, top-to-bottom and left-to-right:

• Header— Similar to the header for the app design page, with the addition of breadcrumbs that track your
path in the Designer to the current view design page.

• Toolbar— Provides the following tools:

• Save— Saves any unsaved changes in the current view definition to the UI meta-data.

• Revert— Cancels any unsaved changes and returns the current view definition to its state as of the
most recent Save.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.050

Chapter 2: Kendo UI Designer Overview

• Preview—Provides the option to either invoke the Kendo UI Generator to build and immediately preview
a generated app in its currently saved state or to preview the most recent build (if one exists). The preview
opens in a separate browser tab using live data from the mapped data sources.

• Build— Invokes the Kendo UI Generator to build a generated app in its current state without running a
preview.

For more information on app builds, see App generation and deployment on page 53.

• VIEWS pane (on the left)— Lists the views in the current module, including the example
Edit_Customer_Separately view. There is also an Add button (used to create this view) for creating
additional views and a search box for locating a view in a long list of views in a module.

• View panel (in the middle)— Shows a design simulation of the view, bounded on the left and top with a
vertical and horizontal ruler. The view panel contains the following elements that are common to all views,
but which might contain different content for each view type:

• Custom top html section— Initially not implemented, this custom section appears in the view when
you code the content of an HTML <div> element that displays at the top of the view.

• Header section— In this case, an identifying title for the view (Title setting).

• Custommiddle html section— Initially not implemented, this custom section appears in the view when
you code the content of an HTML <div> element that displays in the middle, between the header and
data sections of the view.

• Data section— In this case, showing a design simulation of the grid and separate form as currently
configured in the example Data-Grid-Separate-Form view instance for display. Note that this includes a
simulation of the button configuration for the view, including the New button above the grid, as well as
the Edit, Save, Cancel, and Delete buttons that appear above and below either a read-only or editable
form, depending on the edit mode selected for the view (each form style has a subset of these buttons
at run time).

Note: To fit on the document page with a readable size, the example view panel is horizontally
compressed so that the form fields appear out of order compared to their usual arrangement.

• Custom bottom html section— Initially not implemented, this custom section appears in the view
when you code the content of an HTML <div> element that displays at the bottom of the view.

For more information on coding custom HTML sections, see Custom HTML sections on page 64 in this
document.

The design simulation in a view panel changes as you modify some of the view properties that affect its
appearance, and even as you click around in the simulated view panel, depending on these property settings.
For example, the Edit_Customer_Separately view title is set to Edit Customer using the Title property,
there are five (5.00) rows on each page of the grid as set for the Page Size property, and the buttons
available with the read-only and editable forms are shown for the Read-Only-to-Edit setting of the Edit
mode property (see the PROPERTIES pane description, below, for more information).

• PROPERTIES pane (on the right)—Contains all the properties that you can set that change the design-time
appearance and content of the view, as well as some settings that can affect view behavior, such as
view-specific event handler settings.

Additional properties and values of note include:

• New Title and Edit Title— Allow you to enter separate titles for an editable form displayed for adding
a new record and an editable form displayed for editing an existing record, when clicking New and Edit,
respectively, above the grid and on the read-only form (depending on the edit mode).

51Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Modules and views

• Data Provider and Data Source— Allow you to select an available data provider and data source to
bind to the view. For more information, see Data providers and data sources on page 19.

• Edit mode— Allows you to select Read-Only, Edit, or Read-Only-to-Edit. With Read-Only selected,
the grid has no New button and only a read-only form is displayed with no Edit button, since no editable
form is available. With Edit selected, the grid has a New button and only an editable form is displayed
with appropriate buttons for editing either an existing selected record (Save, Cancel, Delete) or a new
record (Save, Cancel).

• Grid Columns—Clicking Edit for this property opens a dialog box that allows you to specify what data
source fields appear as columns in the grid, and some features affecting how each field is displayed in
the grid, as shown in this example for the three data source fields specified as Included Columns,
CustNum, Name, and State:

Figure 29: Grid Columns dialog box

The specified Properties apply to each field that you select in the Included Columns list, as shown for
the CustNum field. The Template property allows you to customize the display of a given column using
a Kendo UI column template that you can specify. For more information, see Column templates on page
67 in this document.

• Form Fields— Clicking Edit for this property opens a dialog box that allows you to specify what data
source fields appear as fields on a form, in this example, CustNum, Name, Phone, and EmailAddress.
This dialog box is similar to the Grid Columns dialog box with fewer Properties that affect how each
field that you select in the Included Fields list is displayed in the form (Label Text and Format only).

• Page Size— Specifies the number of rows to display in each page of the grid. (The last page can have
fewer rows, depending on the total number of records in the data source.)

• Row Template Function or Row Template Id— Specifies custom behavior for the display of every
grid row. You can use one of these options to specify the behavior, but Row Template Id takes
precedence if you specify both. You must write additional code to implement either one. Otherwise, the
bound data source definition and the Grid Columns settings determine how each row is displayed.

Row Template Function specifies a JavaScript function that you write to return template-formatted
results to display for each row; Row Template Id specifies the id of a <script> tag that contains the
actual HTML code for the row template to use to display each row. For more information, see Row
templates on page 65 in this document.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.052

Chapter 2: Kendo UI Designer Overview

• Enable *— Together with Page Size, these properties control the general presentation of data in the
rows and columns of the grid, such as selecting a subset of the the available data (Enable Column
Filtering) and changing the order of rows (Enable Sorting) and columns (Enable Column Reordering).

Note: The Page Size, Enable Column Filtering, and Enable Sorting property values can be managed
either by Kendo UI in the client web app or by the Data Object resource that implements the bound data
source on the server. The choice of what data management facility responds to these property settings
depends on the capabilities of the Data Object resource and whether you select the Client-side
Processing option as part of the definition for the bound data source. For more information on the
Client-side Processing option, see Adding and editing a data source on page 22.

• Grid Events—Provides one or more properties to change the default name of the event handler function
defined for each Data-Grid view-specific event:

• Row Select Event Function—Default value: onRowSelect. Executes for the Row Select event,
which fires when the selected row changes in the grid.

Note: You can also use properties in the Edit View dialog box to change the default names of event
handler functions for general events that apply to all views. You can access this dialog by clicking the
gear drop-downmenu for each view (as shown for the exampleCustomer_List view listed in the VIEWS
pane), then clicking the Edit option.

Caution: You must ensure that any change to the default name of an event handler function that you
make using its view property, you must also make to the name of the actual JavaScript function in source
code.

You must add custom code to each event handler function in order to implement any useful behavior
for it. The default behavior of these functions has no functional effect. Typically, you do not need to
change the default names of event handler functions. However, the view properties exist to allow this
name change if you have the need (for example, to avoid a naming conflict with existing JavaScript code
you are using elsewhere in the app). For more information on coding both view-specific and general
event handler functions (and changing their names in the source), see General view events on page 60
and View-specific events on page 62 in this document.

App generation and deployment
When you build or build and preview an app in the Kendo UI Designer, the Kendo UI Generator generates
depoyable HTML5, CSS, and JavaScript files for the app in the following folder:

webAppDir\build-output

WherewebAppDir is the pathname of the root directory of your web app (see also Extension Points and Source
Code Customization on page 55).

53Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

App generation and deployment

When you are ready to deploy the app to a production environment, or possibly to reconfigure your development
and QA environments, the values specified for the Service URI and Catalog URI used to define data providers
for your app may need to change. You can do this without having to rebuild the app by modifying the following
JSON file and changing the corresponding URIs for each data provider as required:

webAppDir\build-output\debug\data-providers.json

Caution: Be sure to make a backup copy of this file before making any changes to it.

You can then use a Web UI project in Progress Developer Studio for OpenEdge that you have created with
the same name as your web app, and that shares the same build-output folder as your web app, to deploy
the web app to other development or production instances of Progress Application Server for OpenEdge, or
to export the web app to other Tomcat-based web servers.

Alternatively, you can use other deployment tools to deploy the web app to a different type of web server, as
its configuration and administration requirements prescribe.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.054

Chapter 2: Kendo UI Designer Overview

3
Extension Points and Source Code
Customization

There are many built in extension points for building and generating a web app with the Kendo UI Builder.
Among some of the more basic of these extension points include some changes to:

• Static files

• Company logo

In addition, there are extension points, some of them in static files, that require advanced knowledge of HTML,
JavaScript, Kendo UI, Extjs, and AngularJS 1.x:

• Customize the view templates

• Custom semantic types

• Custom UI editor types

• General view events

• View-specific events

• Custom HTML sections

• Row templates

55Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

The following topics describe how to access and make changes to these extension points to customize your
web apps. These topics refer to a number of file and folder pathnames that begin with the following root directory
specifications:

• webAppDir— The pathname of the directory where Kendo UI Builder saves all files for a given web app,
including the build folders and files that it generates for app preview and deployment. This directory takes
the name of the web app that you specify in the Kendo UI Designer and can also be the same name as a
Web UI project in Progress Developer Studio for OpenEdge where you also work with and deploy the web
app. For example, the directory C:\OpenEdge\WRK\11.6\workspace\OrderEntryWebApp for the web
app named OrderEntryWebApp.

• KUIBInstalDir— The pathname of the directory where Kendo UI Builder is installed on your system, for
example, C:\Progress\KendoUIBuilder.

For details, see the following topics:

• Static files

• Company logo

• Customize the view templates

• Custom semantic types

• Custom UI editor types

• General view events

• View-specific events

• Custom HTML sections

• Row templates

• Column templates

Static files
The Kendo UI Builder creates a number of static files for any web app that you build with it. You can customize
these files for different purposes, as described in many of the remaining topics on extension points and source
code customization.

For details, see the following topics:

• Custom assets on page 57

• HTML code on page 57

• JavaScript code on page 57

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.056

Chapter 3: Extension Points and Source Code Customization

Custom assets
Every Web app has a folder for static assets to be included with the app. by default these are populated with
the default fonts, images, and styles. You can add your own static files or modify the ones provided. It is
important to update any cross-references within the app to point to the static files. These files are located in
the following directories:

webAppDir\src\assets\fonts
webAppDir\src\assets\images
webAppDir\src\assets\styles

HTML code
Every web app has a folder for custom HTML sections that is automatically populated with corresponding files
for each view created in your web app. These custom section files are created for each view as follows:

webAppDir\src\html\ModuleName-ViewName\customSection.html

Where:

ModuleName

Is the name of the module in which the view is created.

ViewName

Is the name of the view where the custom HTML section appears.

customSection

Is topSection, middleSection or bottomSection, as defined for each view type.

JavaScript code
Every web app has a folder for custom event handlers that is automatically populated for each view created in
your web app. These custom event handlers are all created in the following JavaScript file for every view:

webAppDir\src\scripts\ModuleName-ViewName\view-factory.js

Where:

ModuleName

Is the name of the module in which the view is created.

57Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Static files

ViewName

Is the name of a view where the JavaScript file is created.

Company logo
You can specify the company logo for the web app and login page by specifying the name of an image located
in the following directory:

webAppDir\src\assets\images

Customize the view templates
View templates can be customized for your company.

There are several files that make up the template and all of these files must be edited as a group.

Caution: View templates must be edited with extreme care. Always make a backup copy before editing any
of these files.

You can find the files for each built-in view template at the following locations:

• Data-Grid view:

KUIBInstalDir\schemas\components\data-grid.json
KUIBInstalDir\generator-starnova\generators\app\resources\components\data-grid*

• Data-Grid-Form view:

KUIBInstalDir\schemas\components\data-grid-form.json
KUIBInstalDir\generator-starnova\generators\app\resources\components\data-grid-form*

• Data-Grid-Separate-Form view:

KUIBInstalDir\schemas\components\data-grid-separate-form.json
KUIBInstalDir\generator-starnova\generators\app\resources\components\data-grid-separate-form*

• Landing-Page view:

KUIBInstalDir\schemas\system-components\landing-page.json
KUIBInstalDir\generator-starnova\generators\app\resources\components\landing-page*

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.058

Chapter 3: Extension Points and Source Code Customization

• Login view:

KUIBInstalDir\schemas\system-components\login.json
KUIBInstalDir\generator-starnova\generators\app\resources\components\login*

Custom semantic types
You can create your own custom semantic types in OpenEdge and associate them with the editor types that
are available in the Kendo UI Builder.

For details, see the following topics:

• OpenEdge Data Object Services on page 59

• Kendo UI Builder on page 59

OpenEdge Data Object Services
Semantic types can be added to temp-table schema using source code annotations. A set of built-in semantic
type annotations are supported by Progress Developer Studio for OpenEdge and the definitions for them can
be found in the following file:

OpenEdgeInstalDir\oeide\eclipse\plugins\com.openedge.pdt.text_OEversion\annotation\AnnotationConfig.json

Where:

OpenEdgeInstalDir

Is your OpenEdge installation directory, for example, C:\Progress\OpenEdge.

OEversion

Is your OpenEdge version number, for example, 11.6.3.00.

You can add your own semantic type annotations to this file.

Caution: Always make a backup copy of this file before editing it.

Kendo UI Builder
For your new semantic types defined for OpenEdge, you need to map one or more UI editor types to the
semantic type. You can do this in the following file:

59Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Custom semantic types

Caution: Always make a backup copy of this file before editing it.

KUIBInstalDir\semantic-types-map.json

Custom UI editor types
Editor types define a UI component and general properties for that type of UI component, independent of an
actual rendering, such as using Kendo UI. The actual rendering of the component is done by a component
template.

You can add your own editor types, or edit the built-in editor types, by creating new or editing existing instances
of these files:

Caution: Always make a backup copy of any existing file before editing it.

KUIBInstalDir\schemas\components\editorType.json

Where editorType is the name of the editor type you want to create or edit in the Kendo UI Builder.

General view events
Events allow you to specify the name of a JavaScript function that runs when a specified event fires. General
view events fire based on behaviors that are common to all views. The function that runs for an event must be
defined in the view-factory.js file for the view. This file can be found for each view at the following location,
and initially contains empty function definitions for these events with default names:

webAppDir\src\scripts\ModuleName-ViewName\view-factory.js

For more information on this file and its location, see JavaScript code on page 57.

The following table describes the supported general view events and the default names of the event functions
that run for them when they fire.

Table 4: Default general view event functions

DescriptionDefault functionView event

This event fires when the view is hidden. You can find more
information at
http://docs.telerik.com/kendo-ui/api/javascript/view#events-hide.

onHidehide

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.060

Chapter 3: Extension Points and Source Code Customization

http://docs.telerik.com/kendo-ui/api/javascript/view#events-hide

DescriptionDefault functionView event

This event fires when the view is initialized. You can find more
information at
http://docs.telerik.com/kendo-ui/api/javascript/view#events-init.

onInitinit

This event fires when the view is made visible. You can find more
information at
http://docs.telerik.com/kendo-ui/api/javascript/view#events-show.

onShowshow

You can change the default names of these functions in the view-factory.js file for a view. One reason
to change an event function name is to test alternative event behaviors using different event functions before
deciding on the one you want to implement for the web app. If you do need to change the default name of a
view event function in the view-factory.js file, you must also change the name of the event function as
specified for the same view in the Kendo UI Designer.

For the general view events, these function names are specified in the Edit View dialog box, which you can
access in the Designer as follows:

1. Edit the view by first editing its module in the app design page (see Creating and designing an app on page
14). This displays the view design page for the first view in the module and lists all its remaining views (for
a Data-Grid view, see Adding and editing a Data-Grid view on page 34).

2. Select the name of the view in the list you want to edit, displaying its view design page. This shows a gear
control beside the selected view name, as shown for the Customer_List view:
Figure 30: Editing general view events

3. Click the gear control to display a drop-down menu, then click Edit:
Figure 31: Opening the Edit View dialog box

61Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

General view events

http://docs.telerik.com/kendo-ui/api/javascript/view#events-init
http://docs.telerik.com/kendo-ui/api/javascript/view#events-show

4. This opens the Edit View dialog box, where you can change the name of any general view event function
by editing the field for the event as shown:

Figure 32: Changing the names of general view event functions

5. Click Save to save your changes and close the dialog box.

View-specific events
Built-in views offer context-specific events based on the function of the view. Like general view events,
view-specific events allow you to specify the name of a JavaScript function that runs when the event fires. The
function that runs for a view-specific event must also be defined in the view-factory.js file for the view.
This file can be found for each view at the following location, and initially contains empty function definitions
for any specific events for the view with default names:

webAppDir\src\scripts\ModuleName-ViewName\view-factory.js

For more information on this file and its location, see JavaScript code on page 57.

The following table describes the supported view-specific events for each view and the default names of the
event functions that run for them when they fire.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.062

Chapter 3: Extension Points and Source Code Customization

Table 5: Default view-specific event functions

DescriptionDefault functionEventView

This event fires when the
user clicks Login on the
login view.

onLoginLoginLogin

This event fires when the
selected row changes in
the grid.

onRowSelectRow SelectData-Grid

Data-Grid-Form

Data-Grid-Separate-Form

You can change the default names of these functions in the view-factory.js file for a view just like general
view event functions. One reason to change an event function name is to test alternative event behaviors using
different event functions before deciding on the one you want to implement for the web app. If you do need to
change the default name of a view event function in the view-factory.js file, you must also change the
name of the event function as specified for the same view in the Kendo UI Designer.

For the view-specific events, these function names are specified in the Properties pane on the view design
page, which you can access in the Designer when you edit the module that contains the view. For information
on editing modules, see Creating and designing an app on page 14. For information on editing views, see
Modules and views on page 30.

63Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

View-specific events

This is the Properties pane in the view design page for the example Data-Grid view, Customer_List, showing
the Row Select Event Function property setting under Grid Events (see also Adding and editing a Data-Grid
view on page 34):

Figure 33: Editing view-specific events

Custom HTML sections
Built-in views have places (sections) for you to add your own hand-coded UI. The code must be placed in the
correct file for a given section and must be valid HTML for a <div> section. For more information on <div>
sections see http://www.w3schools.com/tags/tag_div.asp.

The custom section files for a view can be found as follows:

webAppDir\src\html\ModuleName-ViewName\customSection.html

For more information on the names and locations of these custom section files, see HTML code on page 57.

The following table lists each custom section supported for most views and the names of the corresponding
file created for each section:

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.064

Chapter 3: Extension Points and Source Code Customization

http://www.w3schools.com/tags/tag_div.asp

Table 6: Custom sections and corresponding section files

Corresponding fileCustom section

topSection.htmlTop

middleSection.htmlMiddle

bottomSection.htmlBottom

Note: The predefined landing-page view supports only top and bottom custom sections

If a given file for a custom section is empty or contains only comment elements (the default), the corresponding
section does not appear in the view at run time.

Custom sections can also be used to contain row and column templates for grid views. For more information,
see Row templates on page 65 and Column templates on page 67.

Row templates
Kendo UI has support for templates to display data in a certain format. Templates can be used in Kendo UI for
both Grids and Forms. In Kendo UI Builder, this Kendo UI template functionality provides options to specify
templates for the rows of Kendo UI Grids in grid views, such as the Data-Grid view.

A row template can be specified using the following properties in the PROPERTIES pane of any grid view in
the Kendo UI Designer:

• Row Template Id— Specifies the ID of a template defined in an HTML file.

• Row Template Function— Specifies the name of a function in the grid view's view-factory.js file.

Note: If both properties are defined, Row Template Id takes precedence.

For details, see the following topics:

• Row template format on page 65

• Row template ID on page 66

• Row template function on page 66

Row template format
The format of the row template is similar to the definition for an HTML table row.

It uses a combination of <tr></tr> to specify the row and <td></td> to specify the columns (table data).

The data-uid attribute is required to determine the data associated with the row.

You can use #= FieldName # or #: FieldName # for a column element to refer to a field in the data, or
use # JavaScriptCode # to execute JavaScript code.

You can use HTML tags such as or to define how to show the data.

65Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Row templates

The following code shows an example row template:

<tr data-uid="#= uid #">
<td>#= EmpNum #</td>
<td>#= LastName #</td>
<td>#= FirstName #</td>
<td>#= State #</td>

</tr>

For more information on working with row templates in Kendo UI, see
http://docs.telerik.com/kendo-ui/api/javascript/ui/grid#configuration-rowTemplate

Row template ID
The Row Template ID property is used to specify a row template defined in an HTML file.

The row template definition uses the <script> tag with type "text/x-kendo-template".

This code can be added to the same HTML files used for the custom sections (see Custom HTML sections on
page 64).

When the web app code is generated, the Kendo UI Builder places the files into the build-output folder.
For example, for the custom top section file in the Column_List view of the OrderEntry module:

webAppDir\build-output\debug\extensions\html\OrderEntry-Column_List\topSection.html

This means that after changing the template code, you need to rebuild the web app for the new template code
to appear in the corresponding custom view section file.

Following is a sample template definition that can go in one of these files:

<script id="empTemplate" type="text/x-kendo-template">
<tr data-uid="#= uid #">

<td>#= EmpNum #</td>
<td>#= LastName #</td>
<td>#= FirstName #</td>
<td>#= State #</td>

</tr>
</script>

Row template function
TheRow Template Function property allows you to specify a function that processes the template and returns
the result of executing the template for the data.

The code for this function is defined in the view-factory.js file for a given grid view found at the following
location:

webAppDir\src\scripts\ModuleName-ViewName

For more information, see JavaScript code on page 57.

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.066

Chapter 3: Extension Points and Source Code Customization

http://docs.telerik.com/kendo-ui/api/javascript/ui/grid#configuration-rowTemplate

There are three main parts to a row template function:

• The text for the template.

• The template function obtained by calling kendo.template().

• The result of applying the template to the dataItem.

Following is a sample row template function that can be defined in a view-factory.js file:

rowTemplate: function(dataItem) {
var template = kendo.template('<tr data-uid="#= uid #">

<td>#= EmpNum #</td>
<td>#= LastName #</td>
<td>#= FirstName #</td>
<td>#= State #</td></tr>');

return template(dataItem);
}

Column templates
Kendo UI supports different ways to code templates for Grid columns, as descirbed here:
http://docs.telerik.com/kendo-ui/api/javascript/ui/grid#configuration-columns.template. These column templates
are similar to specifying the column elements of a row column template (see Row template format on page
65).

You can specify the code for a column template as the value of the Template property for an included column
selected in the Grid Columns dialog box that you open for editing the columns of a grid view. You can access
this dialog box by clicking Edit for the Grid Columns property in the PROPERTIES pane of a grid view design
page. For more information, see the topics on adding and editing grid views in Modules and views on page
30.

For example, to apply a column template that renders the value of a Name field in bold that appears in the
corresponding column of a grid view, select the included column for that field and enter #: Name # (without
quotes) as the value of the Template property.

Note: You must use the data source field name in a column template, not any label that has been defined for
it. So, if the Name field has Full Name specified as its label, you cannot use Full Name in the column
template.

67Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.0

Column templates

http://docs.telerik.com/kendo-ui/api/javascript/ui/grid#configuration-columns.template

Kendo UI Builder by Progress : Modernizing OpenEdge Applications: Version 1.068

Chapter 3: Extension Points and Source Code Customization

	Table of Contents
	Overview and Architecture
	Steps to modernize an OpenEdge application
	Architecture and components

	Kendo UI Designer Overview
	App layout and components
	Creating and designing an app
	Data providers and data sources
	Adding and editing a data provider
	Adding and editing a data source
	Editor and semantic types

	Modules and views
	Editing the login view
	Adding and editing a Data-Grid view
	Adding and editing a Data-Grid-Form view
	Adding and editing a Data-Grid-Separate-Form view

	App generation and deployment

	Extension Points and Source Code Customization
	Static files
	Custom assets
	HTML code
	JavaScript code

	Company logo
	Customize the view templates
	Custom semantic types
	OpenEdge Data Object Services
	Kendo UI Builder

	Custom UI editor types
	General view events
	View-specific events
	Custom HTML sections
	Row templates
	Row template format
	Row template ID
	Row template function

	Column templates

