
September 2016

Debugging an IP

Progress® DataDirect®

OpenAccessTM SDK 8.1

DEBUGGING A C/C++ IP .. 3

DEBUGGING ON WINDOWS ... 3
Attaching to a Running Service ... 3
Launching an OpenAccess™ SDK Service from the Debugger .. 3
Known Issue When Debugging on Windows.. 4

DEBUGGING ON UNIX .. 4
Attach to an OpenAccess™ SDK Server with the Debugger .. 5

Example Debug Session with dbx on Solaris: .. 5
Example Debug Session with dbx on AIX ... 6
Example Debug Session with GNU gdb on Linux or with HP gdb on HP-UX .. 8

Starting an OpenAccess™ SDK Server from the Debugger ... 9
Debugging steps ... 9
Example Debug Session with dbx on Solaris: .. 9
Example Debug Session with dbx on AIX ... 10

Other Tips .. 12
Viewing Debug Information Sent to stdout .. 12

STOPPING AN OPENACCESS™ SDK SERVER BEING DEBUGGED .. 13
THE OASOA –DEBUG FLAG .. 13
OPENACCESS SDK SERVICE EXIT CODES ... 14

Examples of Common Startup Problems ... 14

DEBUGGING A .NET IP .. 15

DEBUGGING A JAVA IP ... 15

OVERVIEW OF USING ECLIPSE .. 15
DETAILED PROCEDURE FOR USING ECLIPSE ... 16

Loading/Compiling an IP thru Eclipse .. 16
Debugging Using Eclipse .. 21

TIP: USE WINDOWS AUTHENTICATION .. 23

 Debugging an IP

Progress Software Corporation September 2016 3

Debugging a C/C++ IP

Debugging on Windows

There are two methods to debug an IP on Windows:

 Attach to a running OpenAccess SDK service

 Launch the OpenAccess SDK service process from the debugger

The simplest method, which can be used for most of the cases, is to attach to a running

OpenAccess SDK service. You must launch the OpenAccess SDK service from the

debugger if you want to debug OAIP_init. This function is called during server

initialization.

For the Local Client for ODBC, you can attach to the process that will be loading the ODBC

driver or you can run the client application directly from the debugger.

On Windows, a connection from a client to a server that is being debugged may fail.

Simply retry and the next connection will succeed.

Attaching to a Running Service

Assuming that you have stopped all services except the one you want to debug, attach to

the process oasoa.exe from the debugger.

1. Stop the OpenAccessSDK810_C Service.

2. Verify that ServiceIPModule is set to the IP module being debugged.

3. Build the IP module in Debug mode.

4. Start the service from the OpenAccess SDK Management console.

5. From the debugger, attach to the process oasoa.exe.

6. Set a function break at OAIP_connectW/ OAIP_connect, or OAIP_execute.

7. Connect from an OpenAccess SDK client. Your break point at OAIP_connect is

activated.

8. Execute a SQL statement: Breakpoint at OAIP_execute is activated

Launching an OpenAccess™ SDK Service from the Debugger

1. Stop the OpenAccessSDK810_C Service.

2. Verify that ServiceIPModule is set to the IP module being debugged.

3. Build the IP module in Debug mode.

4. Update the project settings to run the service that loads the IP module. Use the

following Debugging settings:

 Command: C:\Program Files\Progress\DataDirect\oaserver81\bin\oasoa.exe

 Command Arguments: -debug -n OpenAccessSDK810_C -d "C:\Program

Files\Progress\DataDirect\oaserver81\cfg\oadm.ini"

5. Start the service using Debug / Start. Breakpoint OAIP_init will be activated. Notice

that the IP module is loaded.

6. Connect from a client. A breakpoint OAIP_connectW/ OAIP_connect is activated.

4 Progress Software Corporation September 2016

7. Execute a SQL statement: A breakpoint at OAIP_execute is activated.

Known Issue When Debugging on Windows

As documented in article Q173260 “PRB: Synchronization Failure When Debugging” in

the Microsoft Knowledge Base, there are problems on Windows with synchronization

while an application is running in a debug environment. Read the whole article at:

http://support.microsoft.com/kb/173260/

Due to this defect, connections to the OpenAccess SDK Server may fail with the

following error in the server log file:
Wed Nov 28 13:21:36 2007:sched.swschd.3581.Internal error, fatal server

error detected.

Wed Nov 28 13:21:36 2007:Thread

Pooler.THRDP_StartTask.2243().4.Internal error.

Wed Nov 28 13:21:36 2007:Thread

Pooler.THRDP_AssignTask2Thread.1971().4.Internal error.

Wed Nov 28 13:21:36 2007:Thread

Pooler.THRDP_Thread_Start.3189().4.Internal error.

Wed Nov 28 13:21:36 2007:State

Synchroniser.STASYNC_WaitForStateChange.511().13.Internal error.

Timeout occurred on a wait operation.

To work around this type of problem while debugging a C/C++/NET IP with the

OpenAccess SDK Server on Windows:

 Start oasoa.exe from the debugger with the –debug flag. When started with this flag

enabled, oasoa.exe puts a Sleep(0) before each PulseEvent() or SetEvent() as

suggested by Microsoft in there article Q173260 “PRB: Synchronization Failure

When Debugging” at http://support.microsoft.com/kb/173260/

 Set ServiceInternalTimeOut to a value between 2000 to 5000 ms. The default value

for this configuration parameter is 60000 ms. By using a lower value than 60000 ms,

oasoa.exe recovers more quickly from any Windows Synchronization failure.

 Use the OpenAccess SDK trace function tm_trace(). Avoid using

OutputDebugString().

 Set a function breakpoint at the IP entry point as OAIP_init, OAIP_connectW,

OAIP_execute,… Avoid stopping execution of oasoa.exe using “Break All”.

Debugging on UNIX

There are two methods to debug an IP on UNIX –

1. Attach to a running OpenAccess SDK service

2. Launch the OpenAccess SDK service process from the debugger

The simplest is to attach to a running OpenAccess SDK service and can be use for most

cases. You must launch the OpenAccess SDK service from the debugger if you need to

debug into OAIP_init. This function is called during server initialization.

http://support.microsoft.com/kb/173260/
http://support.microsoft.com/kb/173260/

 Debugging an IP

Progress Software Corporation September 2016 5

Attach to an OpenAccess™ SDK Server with the Debugger

This method can be used for debugging most IP code.

Debugging steps:

1. Compile and link the IP module for debugging (-g). The setenvd.sh (or .csh) files that

are supplied with the SDK set the correct flags. Make sure to disable any

optimization.

2. Start the server, for example, using the ServiceStart oacla command.

3. Determinate pid of the server -- for example, use grep or pgrep.

4. Attach with dbx to this server.

5. Set a breakpoint in the IP code.

6. Continue execution of the server.

7. Use odbcisql, for example, to connect to the server and execute a SQL-statement to

activate your breakpoint.

Example Debug Session with dbx on Solaris:

start the server

$ /home/carl/oaserver810/admin/oacla.sh -l

DataDirect OpenAccess SDK Manager Version

8.1.0.0010

(c) Copyright 1995-2016 Progress Software Corporation, All rights

reserved

oacla> ServiceStart OpenAccessSDK810_C

oacla> exit

determinate pid of the server

$ ps -ef | grep oasoa

 carl 5190 1 0 17:15:27 ? 0:01

/export/home/carl/oaserver810/bin/oasoa -n OpenAccessSDK810_C -d

/export/home/car

 carl 5225 4260 0 17:16:39 pts/2 0:00 grep oasoa

attach with dbx to this server

$ dbx - 5190

Reading oasoa

Reading ld.so.1

...

Reading oadamipmem.so

Attached to process 5190 with 4 LWPs

t@1 (l@1) stopped in _libc_poll at 0xfee9ae00

0xfee9ae00: _libc_poll+0x0004: ta 8

 # set breakpoint in the ip-code to debug

(dbx) stop in OAIP_connectW

(2) stop in OAIP_connectW

(dbx) stop in OAIP_execute

(3) stop in OAIP_execute

#continue execution of the server

(dbx) cont

6 Progress Software Corporation September 2016

a client connects...

t@7 (l@7) stopped in OAIP_connectW at line 686 in file "mem_drv.c"

 686 char sFunctionName[]="OAIP_connectW";

…

the client executes a query

@7 (l@7) stopped in OAIP_execute at line 917 in file "mem_drv.c"

 917 char sFunctionName[]="OAIP_execute";

…

Example Debug Session with dbx on AIX

start the server

$ /home/carl/oaserver810/admin/oacla.sh -l

DataDirect OpenAccess SDK Manager Version

8.1.0.0010

(c) 1995-2016. Progress Software Corporation. All Rights Reserved.

oacla> ServiceStart OpenAccessSDK810_C

oacla> exit

determinate pid of the server

$ ps -fu carl | grep oasoa

 carl 413906 1 0 14:57:30 - 0:00

/home/carl/oaserver810/bin/oasoa

 -n OpenAccessSDK810_C -d /home/carl/oaserver810/cfg/oadm.ini

 carl 430186 364778 1 14:58:45 pts/1 0:00 grep oasoa

attach with AIX dbx to this server

$ dbx -a 413906

Waiting to attach to process 413906 ...

Successfully attached to oasoa.

warning: Directory containing oasoa could not be determined.

Apply 'use' command to initialize source path.

Type 'help' for help.

reading symbolic information ...

stopped in _event_sleep at 0xd005dec4 ($t4)

0xd005dec4 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

set breakpoint in the ip-code to debug

(dbx) stop in OAIP_connectW

[1] stop in OAIP_connectW

(dbx) stop in OAIP_execute

[2] stop in OAIP_execute

#continue execution of the server

(dbx) cont

a client connects...

[1] stopped in OAIP_connectW at line 710 in file "" ($t8)

 Debugging an IP

Progress Software Corporation September 2016 7

could not read "src/mem_drv.c"

(dbx) use /home/carl/oaserver810/ip/oac/memory

(dbx) list

 710 char sFunctionName[]="OAIP_connectW";

 711 MEM_ENV_DA *pEnvDA = (MEM_ENV_DA *)henv;

 712 MEM_CONN_DA *pConnDA;

 713 OAWCHAR sExpectedDbName[]=OAL_WTEXT("memory");

 714 OAWCHAR sExpectedUserName[]=OAL_WTEXT("pooh");

 715 OAWCHAR sExpectedPassword[]=OAL_WTEXT("bear");

 716 OAWCHAR wsBuf[MEM_WSBUF_LEN];

 717 int iLen;

 718 int iUserAuthentication = 1;

 719 int iRetCode;

(dbx) where

OAIP_connectW(dam_hdbc = 0x20e19eb8, henv = 0x20ad7e68, pMemTree =

0x20b19f48, s

DatasourceName = 0x20e1a54e, sUserName = 0x20e1a0ca, sPassword =

0x20e53308, sCurrentCatalog = 0x20e1a650, sIPProperties = 0x20e1ab54,

sIPCustomProperties = 0x2

0e1fdde, phdbc = 0x20e1b63c), line 710 in "mem_drv.c"

sqldrv_connect() at 0xd5518f1c

OADS_connect() at 0xd5439850

SWANDB_Logon() at 0x101ca0d4

SWANLOGON_Logon() at 0x101ae39c

SWANSRVC_ExecLogon() at 0x1019a9c0

SWANSRVSSP_ExecChain() at 0x10205694

SWANSRVSSPDispatcher() at 0x10209c5c

SWANCONN_DoRPC() at 0x10021f50

SWANCONN_DoRPC() at 0x10021f50

SWANSCHED_DoRPCCB() at 0x10018fc4

SESMGR_Rpc_ServerSession_Callback() at 0x10156134

SESMGR_Rpc_ServerSession_DoRpc() at 0x10153974

SESMGR_DoRPC_137_126() at 0x101692ac

SWANSCHED_DoRPC() at 0x10014b88

ThreadMain() at 0x10216a2c

#dump unicode string sUserName in hex (wchar_t is 2 bytes on AIX 32bit)

 (dbx) &sUserName[0] /8x

0x20e1a0ca: 0070 006f 006f 0068 0000 0000 0000 0000

#continue execution of the server

(dbx) cont

 …

the client executes a query

[2] stopped in OAIP_execute at line 921 in file

"/home/carl/oaserver810/ip/oac/m

mory/src/mem_drv.c" ($t8)

 921 char sFunctionName[]="OAIP_execute";

8 Progress Software Corporation September 2016

Example Debug Session with GNU gdb on Linux or with HP gdb on HP-UX

start the server

$ /home/carl/oaserver810/admin/oacla.sh -l

DataDirect OpenAccess SDK Manager Version

8.1.0.0010

(c) 1995-2016. Progress Software Corporation. All Rights Reserved.

oacla> ServiceStart OpenAccessSDK810_C

oacla> exit

determinate pid of the server

$ ps -fu carl | grep oasoa

carl 28656 1 0 20:02 ? 00:00:00

/home/carl/oaserver810/bin/oasoa -n OpenAccessSDK810_C -d

/home/carl/oaserver810/cfg/oa

dm.ini

carl 28681 26786 0 20:03 pts/2 00:00:00 grep oasoa

attach with gdb to this server

$ gdb -p 28656

GNU gdb Red Hat Linux (6.3.0.0-0.30.1rh)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and

you

are welcome to change it and/or distribute copies of it under certain

conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for

details.

This GDB was configured as "i386-redhat-linux-gnu".

Attaching to process 28656

Reading symbols from /home/carl/oaserver810/bin/oasoa...done.

...

Reading symbols from /home/carl/oaserver810/ip/bin/liboadsdam.so...done.

Loaded symbols for /home/carl/oaserver810/ip/bin/liboadsdam.so

Reading symbols from /home/carl/oaserver810/ip/bin/oadamipmem.so...done.

Loaded symbols for /home/carl/oaserver810/ip/bin/oadamipmem.so

0x004f26cd in poll () from /lib/tls/libc.so.6

set breakpoint in the ip-code to debug

(gdb) break OAIP_connectW

Breakpoint 1 at 0x5e3c8e: file src/mem_drv.c, line 710.

(gdb) break OAIP_execute

Breakpoint 2 at 0x5e4543: file src/mem_drv.c, line 921.

#continue execution of the server

(gdb) cont

Continuing.

a client connect...

[Thread 52853680 (LWP 29079) exited]

[New Thread 52853680 (LWP 29320)]

[Switching to Thread 52853680 (LWP 29320)]

 Debugging an IP

Progress Software Corporation September 2016 9

Breakpoint 1, OAIP_connectW (dam_hdbc=0x9fde38c, henv=0x9f96974,

pMemTree=0x9fa4ad0,sDatasourceName=0x9fdee28, sUserName=0x9fde5a0,

sPassword=0x9f992f0, sCurrentCatalog=0x9fdf02c, sIPProperties=0x9fdf634,

sIPCustomProperties=0x9fe52a4,

 phdbc=0x9fe091c) at src/mem_drv.c:710

710 char sFunctionName[]="OAIP_connectW";

#dump unicode string sUserName in hex (wchar_t is 4 bytes on Linux)

(gdb) x/8w sUserName

0x9fde5a0: 0x00000070 0x0000006f 0x0000006f 0x00000068

0x9fde5b0: 0x00000000 0x00000000 0x00000000 0x00000000

#continue execution of the server

(gdb) cont

Continuing.

the client execute a query

Breakpoint 2, OAIP_execute (hdbc=0x9fa4b24, hstmt=0x9fa36cc,

iStmtType=8, hSearchCol=0x0, piNumResRows=0x32673cc)

at src/mem_drv.c:921

921 char sFunctionName[]="OAIP_execute";

(gdb)

Starting an OpenAccess™ SDK Server from the Debugger

This method of debugging has to be used when the OAIP_init() IP function that is called

during the OpenAccess SDK server startup must be debugged.

Before debugging

 Compile and link the IP module in debug (-g flag). The setenvd.sh (or .csh) scripts

that are supplied with the SDK set the correct flags. Make sure to disable

optimization (-O flag).

 Make sure that the ServiceIPModule configuration attribute contains your IP module.

 Check the server is not running

Debugging steps

1. Set the library path environment variable to install_dir/bin. The name of the

environment variable is LD_LIBRARY_PATH on Solaris and Linux, LIBPATH on

AIX, SHLIB_PATH on HP-UX.

2. Export the environment variable OASDK_DEBUG_NOFORK.

3. Export OASDK_DEBUG_NOFORK=1.

4. Start the debugger with the OpenAccess SDK server image install_dir/bin/oasoa.

5. Set a breakpoint in OAIP_init().

6. Run the OpenAccess SDK sevice with the following options

-debug -n <ServiceName> -d <configfile>

Example Debug Session with dbx on Solaris:

export the needed environment variables

$ export LD_LIBRARY_PATH=/home/carl/oaserver810/bin

$ export OASDK_DEBUG_NOFORK=1

10 Progress Software Corporation September 2016

start dbx with OpenAccess SDK server image

$ dbx /home/carl/oaserver810/bin/oasoa

Reading oasoa

Reading ld.so.1

....

preload your IP module you want to debug

(dbx) loadobject -load /home/carl/oaserver810/ip/bin/oadamipmem.so

Reading oadamipmem.so

Loaded loadobject: /home/carl/oaserver810/ip/bin/oadamipmem.so

set breakpoint in OAIP_init()

(dbx) stop in OAIP_init

(2) stop in OAIP_init

start OpenAccess SDK service

(dbx) run -dbx -n OpenAccessSDK810_C -d

/home/carl/oaserver810/cfg/oadm.ini

Running: oasoa -dbx -n OpenAccessSDK810_C -d

/home/carl/oaserver810/cfg/oadm.ini

(process id 4726)

Reading en_US.ISO8859-1.so.2

Reading liboadsdam.so

Reading libw.so.1

t@1 (l@1) stopped in OAIP_init at line 246 in file "mem_drv.c"

 246 char sUnicode[]="0";

(dbx) next

...

Example Debug Session with dbx on AIX

export the needed env variables

$ export LD_LIBRARY_PATH=/home/carl/oaserver810/bin

$ export OASDK_DEBUG_NOFORK=1

#start dbx with openAccess SDK service image

using –I to passing the location of the IP-sources to debug.

$dbx -I /home/carl/oaserver810/ip/oac/memory

/home/carl/oaserver810/bin/oasoa

set breakpoint in dlopen()

(dbx) stop in dlopen

[1] stop in dlopen

start OpenAccess SDK server and stop whne dlopen() is called to load

the IP module

(dbx) run -debug -n OpenAccessSDK810_C -d

/home/carl/oaserver810/cfg/oadm.ini

[1] stopped in dlopen at 0xd02ac4c0 ($t1)

0xd02ac4c0 (dlopen) bee1ffdc stmw r23,-36(r1)

(dbx) where

dlopen(0x2ff21be4, 0x4) at 0xd02ac4c0

SHLBLoad() at 0x1003ddf0

 Debugging an IP

Progress Software Corporation September 2016 11

SWANDBSRVC_Init() at 0x101cba34

SWANSRVC_Init() at 0x101a4554

RealMain() at 0x1000134c

main() at 0x10000518

load of liboadsdam.so, continue

(dbx) cont

[1] stopped in dlopen at 0xd02ac4c0 ($t1)

0xd02ac4c0 (dlopen) bee1ffdc stmw r23,-36(r1)

(dbx) where

dlopen(0x2ff21480, 0x4) at 0xd02ac4c0

LoadLibrary() at 0xd5441af0

ipRegisterInterface() at 0xd558799c

dam_init_ip() at 0xd558a518

sqldrv_init() at 0xd551b89c

OADS_init() at 0xd543b034

SWANDBSRVC_Init() at 0x101cc54c

SWANSRVC_Init() at 0x101a4554

RealMain() at 0x1000134c

main() at 0x10000518

(dbx) 0x2ff21480/s

0x2ff21480: "/home/carl/oaserver810/ip/bin/oadamipmem.so"

loading the IP-module

set breakpoint in dlsym() and OpenAccess should call dlsym() for the

symbol "OAIP_init"

(dbx) stop in dlsym

[3] stop in dlsym

(dbx) status

[1] stop in dlopen

[3] stop in dlsym

(dbx) cont

[3] stopped in dlsym at 0xd02ac2d4 ($t1)

0xd02ac2d4 (dlsym) 93e1fffc stw r31,-4(r1)

(dbx) where

dlsym(0x3, 0x20b81f9c) at 0xd02ac2d4

GetProcAddress() at 0xd5441a80

ipRegisterInterface() at 0xd5587abc

dam_init_ip() at 0xd558a518

sqldrv_init() at 0xd551b89c

OADS_init() at 0xd543b034

SWANDBSRVC_Init() at 0x101cc54c

SWANSRVC_Init() at 0x101a4554

RealMain() at 0x1000134c

main() at 0x10000518

(dbx) 0x20b81f9c /s

0x20b81f9c: "OAIP_init"

delete breakpoint in dlsym() and dlopen()

set breakpoint in OAIP_init()

(dbx) status

[1] stop in dlopen

[3] stop in dlsym

(dbx) delete 1

(dbx) delete 3

(dbx) stop in OAIP_init

[4] stop in OAIP_init

(dbx) cont

[4] stopped in OAIP_init at line 247 in file

"/home/carl/oaserver810/ip/oac/memory/src/mem_drv.c" ($t1)

12 Progress Software Corporation September 2016

 247 char sUnicode[]="0";

(dbx) next

Other Tips

Viewing Debug Information Sent to stdout

If the service is started from the console, the debug information should be written to the

tty. The service uses stdout of its parent process.

Where your printf-messages are written when the service is started in a “normal” way

depends on:

 When your services are started up through the oaagent from a remote admin client,

you see them in install_dir/logging/startOAAgent<pid>.log

 When your services are started up using the start-scripts in the install_dir/admin, you

see them in install_dir/logging/startOAService<pid>.log

 When your services are started from the install_dir /admin/oacla, you see them on the

tty.

To run the service in foreground, turn off the fork using “export

OASDK_DEBUG_NOFORK=1”.

You can use an analogous procedure as described in “Starting an OpenAccess™ SDK

Server from the Debuggers” without the debugger as follows:

export the needed env variables

$ export LD_LIBRARY_PATH=/home/carl/oaserver810/bin

$ export OASDK_DEBUG_NOFORK=1

 # start there OpenAccess SDK server image with the –debug flag,

servicename, and

 # Configfile

$ /home/carl/oaserver810/bin/oasoa -debug -n OpenAccessSDK810_C -d

/home/carl/oaserver810/cfg/oadm.ini

Avoid the use of printf() to write trace messages from an IP. Instead, use the OpenAccess

SDK trace function tm_trace().

 Debugging an IP

Progress Software Corporation September 2016 13

Stopping an OpenAccess™ SDK Server Being Debugged

Before stopping the server, always disable all breakpoints. You can then use the

OpenAccess SDK Manager (Management Console or Command Line) to stop the server:

1. From the OpenAccess SDK Management Console:

 Select the server to stop, and select Refresh .The server should become active.

 Select the server to stop, and select Stop.

2. From the OpenAccess SDK Command Line (oasoa.exe or oasoa.sh), use the oacla

command ServiceStop.

For example:

DataDirect OpenAccess SDK Manager Version .

8.1.0.0010

⌐ Copyright 1995-2016 Progress Software Corporation, All rights

reserved

oacla> ActivateLocalConfig

oacla> ServiceList

--

Name Host Status Description

OpenAccessSDK810_Agent belg-carl7 active Agent service

OpenAccessSDK810_C belg-carl7 active Service for C/C++

OpenAccessSDK810_Java belg-carl7 inactive Service for Java

OpenAccessSDK810_NET belg-carl7 inactive Service for .NET

OpenAccessSDK810_C_SQL belg-carl7 inactive Service for C/C++

OpenAccessSDK810_Java_SQL belg-carl7 inactive Service for Java

oacla> ServiceStop OpenAccessSDK810_C

oacla>

The oasoa –debug flag

In a typical service startup, either bin/oasoa or bin\oasoa.exe is started up by bin/oastrtr or

bin\oastrtr.exe. The oastrtr executable exports the environment variables set in

ServiceEnvironmentVariable before starting bin/oasoa or bin\oasoa.exe.

When bin/oasoa or bin\oasoa.exe is started directly from the command line or from the

debugger, the service runs with just the environment variables set within the user’s

environment. However, the use of the –debug flag forces oasoa to read the

ServiceEnvronmentVariable service attributes and set them for the process.

On Windows, the –debug flag also enables the PRB Q173260 workaround as explained

in http://support.microsoft.com/kb/173260/

http://support.microsoft.com/kb/173260/

14 Progress Software Corporation September 2016

OpenAccess SDK Service Exit Codes

The following table lists the exit codes displayed when a service (oasoa) is started from

the debugger or from the command line.

Code Reason

10 oasoa is started without the required command arguments

11 The –servicename or -n option is missing the servicename argument

12 The –connectmodel or -m option is missing an argument

13 The –sessionid option is missing an argument

14 The -connectinfo option is missing an argument

15 The -datamodel or –d option is missing an argument

16 The –msgfile or –g option missing an argument

17 Missing the required servicename

18 Invalid value for connection model passed

 …

21 Cannot open the message file

22 Cannot open the configuration file

23 Configuration file has incorrect version

24 Servicename name was not found in configuration file

25 ServiceMessageFile attribute was not set in configuration file

 …

91 Internal error, memory allocation failed.

95 Internal error, fatal server error detected.

Examples of Common Startup Problems

$ dbx /home/carl/oaserver810/bin/oasoa

Type 'help' for help.

reading symbolic information ...warning: no source compiled with –g

without argument

(dbx) run

 execution completed (exit code 10)

without required servicename argument

(dbx) run -debug

 execution completed (exit code 17)

without required configuration file argument

(dbx) run -debug -n OpenAccessSDK810_C

 execution completed (exit code 22)

with incorrect servicename

(dbx) run -debug -n noneExistingService -d

/home/carl/oaserver810/cfg/oadm.ini

 execution completed (exit code 24)

with incorrect configuration file

(dbx) run -debug -n OpenAccessSDK810_C -d /WrongDirectory/cfg/oadm.ini

 execution completed (exit code 22)

 Debugging an IP

Progress Software Corporation September 2016 15

Debugging a .NET IP

You must use Visual Studio 2010 or higher to debug a .NET IP.

1. Build the IP module in Debug mode. Set break point in ipConnect.

2. Start the OpenAccessSDK810_NET Service from OpenAccess SDK Manager.

3. Select Debug / processes. Select oasoa.exe and click Attach.

4. From an OpenAccess SDK client, connect to your data source.

The process should break in ipConnect.

You must restart the OpenAccess SDK service OpenAccessSDK810_NET after making

any code changes.

Debugging a Java IP

This section provides a summary of using Eclipse to compile and debug a Java IP and a

detailed procedure for creating an IP project in Eclipse and then debugging it.

Overview of Using Eclipse

This section summarizes the procedure for debugging using Eclipse. Refer to the

Detailed Procedure for Using Eclipse section for a step by step procedure.

1. Setup project in Eclipse to build IP.

a. Create SDK810 project. We will refer to the project location as

java_build_sdk810.

b. Select the Import option to import the IP files and oasql.jar.

I. Select the directory as install_dir\ip

(for example: C:\Program Files\Progress\DataDirect\oaserver81\ip).

II. Expand the directory tree and select the oajava and oajava\ip folders. This

selects the oajava\oasql.jar and oajava\ip*.java files. This will create the

oajava folder under {java_build_sdk810}

III. Select Project properties and modify settings in Java Build Path. In the

Libraries tab, Select Add external JARs and select

java_build_sdk810\oajava\oasql.jar

IV. Complete the build.

2. Configure a Service to run JVM to allow remote debugging.

a. Open the OpenAccess SDK Management Console and select IP Parameters

under the OpenAccessSDK810_Java service.

b. Create an attribute ServiceJVMOptions with the following values:

-Xrunjdwp:transport=dt_socket,address=9003,server=y,suspend=n -Xdebug

3. Open the OpenAccess SDK Management Console and select IP Parameters under

the OpenAccessSDK810_Java service. Select the attribute “ServiceJVMClassPath”

(if it doesn’t exist, create one) and add the current workspace directory

(java_build_sdk810\SDK810) along with install_dir\ip\oajava\oasql.jar and any

additional elements required by your IP. Remove the install_dir\ip entry.

16 Progress Software Corporation September 2016

4. Save the settings and Restart/Start OpenAccessSDK810_Java Service.

5. Connect from an OpenAccess SDK client and verify that the data source is working

correctly.

6. Configure Eclipse to Debug.

 Select Debug / Debug As… Select Remote Java Application.

 Create new Debug profile called SDK810.

 Set Host:localhost and Port:9003. (This Port number comes from the address

value in step 2b.

7. Set a breakpoint in ipExecute or anywhere in the code where you need to debug.

8. Connect from the Client and Run query. Eclipse should allow you to debug the IP.

After recompiling the code, you must restart the service in order to load the newly

complied class file.

Detailed Procedure for Using Eclipse

Loading/Compiling an IP thru Eclipse

This section provides a procedure for working with Eclipse 3.0.

1. Launch Eclipse.

2. Create / Select Workspace.

Create a new project by selecting File / New / Project and choosing Java Project.

Name the project SDK. Use the setting as shown in the following figure and then

click Next.

 Debugging an IP

Progress Software Corporation September 2016 17

3. Select SDK and then select Add Folder. Type src under Folder Name and then click

OK.

4. The Source Folder Added dialog box appears. Select No.

5. Click Finish. A confirmation window appears. Click Yes.

18 Progress Software Corporation September 2016

6. Go to the Eclipse window. Under Package Explorer Tab, right-click SDK. Select

Import.

 Debugging an IP

Progress Software Corporation September 2016 19

7. Select File system and click Next.

8. Under “From Directory”, browse to C:\Program

Files\Progress\DataDirect\oaserver81\ip and select the example to run. Then, click

Finish.

Make sure that the name under SDK tree matches with the package name in the java

file, for example, “oajava.example1”.

9. Select Project-/ Properties and select Java Build Path. Click the Libraries tab and

click Add External JARs. Choose install_dir\oaserver\ip\oajava\oasql.jar.

The preceding steps create an Eclipse project called SDK. Now you need to configure

the OpenAccess SDK Service to use the IP classes that will be compiled using this

Eclipse project.

20 Progress Software Corporation September 2016

10. Open the OpenAccess SDK Management Console and select IP Parameters under

OpenAccessSDK810_Java service. Select the ServiceJVMClassPath attribute and add

the current workspace folder (C:\Program Files\DataDirect\OA_WorkSpace\SDK) as

the first element. Remove the install_dir\ip entry to ensure that the IP code is picked

up from the Eclipse workspace. The ServiceJVMClassPath attribute should have

install_dir\ip\oajava\oasql.jar, c:\Program File\DataDirect\OA_WorkSpace\SDK, and

any others elements required by your IP.

If the preceding attribute does not exist, then create one.

11. Select the ServiceJVMOptions attribute. If the attribute does not exist, then create it

and set its value to:

“-Xrunjdwp:transport=dt_socket,address=9003,server=y,suspend=n -Xdebug”.

Record the port number (9003 in this example). You will need it to connect from

Eclipse during the remote debug sessions.

12. Save the settings of the OpenAccess Management Console and start the

OpenAccessSDK810_Java service.

13. From an OpenAccess SDK client, connect to this service and the data source

configured under it for your IP. This step is to make sure the Java environment is set

up correctly.

NOTE: Every time you create a new project or compile the project, you must

restart the OpenAccessSDK810_Java service to load the new class.

 Debugging an IP

Progress Software Corporation September 2016 21

Debugging Using Eclipse

1. Move to an Eclipse window. Right-click the SDK under Package Explorer and select

Debug-/Debug.

2. Under Configurations, select Remote Java Application and click New.

22 Progress Software Corporation September 2016

3. Change the port number in the new window to the one recorded in step 13 and click

Debug.

4. Set breakpoints in the IP code.

5. From an OpenAccess SDK client, connect to the data source this IP code is tied to.

Eclipse should break at the breakpoints.

NOTE: Every time you create a new project or compile the project, you must

restart the OpenAccessSDK810_Java service to load the new class.

 Debugging an IP

Progress Software Corporation September 2016 23

Tip: Use Windows Authentication

Configure the OpenAccess SDK Agent on Windows for single sign-on and the

administrator clients will not ask for a username and password.

To do this, add Kerberos or integrated_nt to ServiceAdminAuthMethods attribute and

add the users authorized to connect to this Agent to the ServiceAdministrator attribute.

Example:
oacla> ServiceAttributeAdd OpenAccessSDK810_Agent

ServiceAdminAuthMethods integrated_nt

oacla> ServiceInfo OpenAccessSDK810_Agent

--

 Configuration information for OpenAccessSDK810_Agent

--

 Administration Security

 ServiceAdminAuthMethods[0]: OSLogon(UID,PWD)

 ServiceAdminAuthMethods[1]: integrated_nt

 ServiceAdministrator[0]: EMEA\carl

Notice that the preceding configuration includes two entries for

ServiceAdminAuthMethods. The administrator clients use integrated_nt for as the

authentication method, because authMethod integrated_nt is more secure than

authMethod OSLogon(UID,PWD)

In addition, in this configuration, only the user ‘EMEA\carl’ is allowed access to the

Agent, because this is the only user defined in the ServiceAdministrator attribute.

24 Progress Software Corporation September 2016

© 2016 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by Progress Software

Corporation. The information in these materials is subject to change without notice, and Progress Software

Corporation assumes no responsibility for any errors that may appear therein. The references in these materials to

specific platforms supported are subject to change.

Business Making Progress, Corticon, DataDirect (and design), DataDirect Cloud, DataDirect Connect, DataDirect

Connect64, DataDirect XML Converters, DataDirect XQuery, Deliver More Than Expected, Icenium, Kendo UI,

Making Software Work Together, NativeScript, OpenEdge, Powered by Progress, Progress, Progress Software

Business Making Progress, Progress Software Developers Network, Rollbase, RulesCloud, RulesWorld, SequeLink,

Sitefinity (and Design), SpeedScript, Stylus Studio, TeamPulse, Telerik, Telerik (and Design), Test Studio, and

WebSpeed are registered trademarks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S.

and/or other countries. AccelEvent, AppsAlive, AppServer, BravePoint, BusinessEdge, DataDirect Spy, DataDirect

SupportLink, Future Proof, High Performance Integration, OpenAccess, ProDataSet, Progress Arcade, Progress

Profiles, Progress Results, Progress RFID, Progress Software, ProVision, PSE Pro, SectorAlliance, Sitefinity,

SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,

SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, WebClient, and Who Makes

Progress are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or affiliates in the

U.S. and other countries. Java is a registered trademark of Oracle and/or its affiliates. Any other marks contained

herein may be trademarks of their respective owners.

Please refer to the Release Notes applicable to the particular Progress product release for any third-party

acknowledgements required to be provided in the documentation associated with the Progress product.

Third Party Acknowledgments:

One or more products in the Progress DataDirect OpenAccess v8.1 release includes third party components covered by

licenses that require that the following documentation notices be provided. If changes in third party components

occurred for the current release of the Product, the following Third Party Acknowledgements may contain notice

updates to any earlier versions provided in documentation or README file.

Progress DataDirect OpenAccess v8.1 incorporates OpenLDAP v2.2.6 library. Such technology is subject to the

following terms and conditions: The OpenLDAP Public License Version 2.8, 17 August 2003.

Redistribution and use of this software and associated documentation ("Software"), with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions in source form must retain copyright statements and notices,

2. Redistributions in binary form must reproduce applicable copyright statements and notices, this list of conditions,

and the following disclaimer in the documentation and/or other materials provided with the distribution, and

3. Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time. Each revision is distinguished by a version

number. You may use this Software under terms of this license revision or under the terms of any subsequent revision

of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS CONTRIBUTORS ``AS IS''

AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE OPENLDAP FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S) OR

OWNER(S) OF THE SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in advertising or otherwise to promote the sale, use or

other dealing in this Software without specific, written prior permission. Title to copyright in this Software shall at all

times remain with copyright holders. OpenLDAP is a registered trademark of the OpenLDAP Foundation.

 Debugging an IP

Progress Software Corporation September 2016 25

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City, California, USA. All Rights Reserved. Permission

to copy and distribute verbatim copies of this document is granted.

Progress DataDirect OpenAccess v8.1 incorporates OpenSSL toolkit v1.0.2_x. Such technology is subject to the

following terms and conditions: LICENSE ISSUES ============== The OpenSSL toolkit stays under a dual

license, i.e. both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit. See below

for the actual license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues

related to OpenSSL please contact openssl-core@openssl.org. OpenSSL License ---------------

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms,

with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source

code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in

binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution. 3. All advertising materials mentioning features or

use of this software must display the following acknowledgment: "This product includes software developed by the

OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 4. The names "OpenSSL Toolkit" and

"OpenSSL Project" must not be used to endorse or promote products derived from this software without prior written

permission. For written permission, please contact openssl-core@openssl.org. 5. Products derived from this software

may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the

OpenSSL Project. 6. Redistributions of any form whatsoever must retain the following acknowledgment: "This product

includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)" THIS

SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE. =====================================

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes

software written by Tim Hudson (tjh@cryptsoft.com). - Original SSLeay License ------------------

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved. This package is an SSL implementation

written by Eric Young (eay@cryptsoft.com). The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are aheared to. The

following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the

SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that

the holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the

author of the parts of the library used. This can be in the form of a textual message at program startup or in

documentation (online or textual) provided with the package. Redistribution and use in source and binary forms, with

or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code

must retain the copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form

must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution. 3. All advertising materials mentioning features or use of this

software must display the following acknowledgement: "This product includes cryptographic software written by Eric

Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from the library being used are not

cryptographic related :-). 4. If you include any Windows specific code (or a derivative thereof) from the apps directory

(application code) you must include an acknowledgement: "This product includes software written by Tim Hudson

(tjh@cryptsoft.com)" THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE. The licence and distribution terms for any publically available version or derivative of this code cannot be

changed. i.e. this code cannot simply be copied and put under another distribution licence [including the GNU Public

Licence.]

26 Progress Software Corporation September 2016

Progress DataDirect OpenAccess v8.1 incorporates ICU v4.2.1. Such technology is subject to the following terms and

conditions: ICU License - ICU 1.8.1 and later ICU License - ICU 1.8.1 and later COPYRIGHT AND PERMISSION

NOTICE. Copyright (c) 1995-2010 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all

copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting

documentation. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT

SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY

CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH

THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in this notice, the name of a copyright

holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without

prior written authorization of the copyright holder. All trademarks and registered trademarks mentioned herein are the

property of their respective owners.

	Debugging a C/C++ IP
	Debugging on Windows
	Attaching to a Running Service
	Launching an OpenAccess™ SDK Service from the Debugger
	Known Issue When Debugging on Windows

	Debugging on UNIX
	Attach to an OpenAccess™ SDK Server with the Debugger
	Example Debug Session with dbx on Solaris:
	Example Debug Session with dbx on AIX
	Example Debug Session with GNU gdb on Linux or with HP gdb on HP-UX

	Starting an OpenAccess™ SDK Server from the Debugger
	Debugging steps
	Example Debug Session with dbx on Solaris:
	Example Debug Session with dbx on AIX

	Other Tips
	Viewing Debug Information Sent to stdout

	Stopping an OpenAccess™ SDK Server Being Debugged
	The oasoa –debug flag
	OpenAccess SDK Service Exit Codes
	Examples of Common Startup Problems

	Debugging a .NET IP
	Debugging a Java IP
	Overview of Using Eclipse
	Detailed Procedure for Using Eclipse
	Loading/Compiling an IP thru Eclipse
	Debugging Using Eclipse

	Tip: Use Windows Authentication

