
Corticon.js
Rule Language

Copyright

Visit the following page online to see Progress Software Corporation’s current Product Documentation Copyright
Notice/Trademark Legend: https://www.progress.com/legal/documentation-copyright.

Last updated with new content: Corticon.js 2.0

Updated: 2023/06/28

3Progress Corticon.js: Rule Language: Version 2.0

https://www.progress.com/legal/documentation-copyright

Progress Corticon.js: Rule Language: Version 2.04

Copyright

Table of Contents

Introduction to Corticon.js Rule Language...9
Rule structure..10
Basic data types..10
Truth values..11
Collection operators..11
Language operators..11
Vocabulary used in this Language Guide...12

How to access rule operators...13

Usage restrictions..15

Rule operators..17
Attribute operators..18

Boolean..19
Date..19
DateTime..22
Decimal..27
Integer..30
String..33

Entity and Association operators..37
Collection...37
Entity..39
Sequence...40

General terms...41

Rule operator details and examples...43
Absolute value..47
Add numbers...48
Add strings..49
Add days...50
Add hours..51
Add minutes..52
Add months...53
Add seconds...54
Add years..55

5Progress Corticon.js: Rule Language: Version 2.0

Contents

After date...56
After time...58
Associate elements...60
At...61
Average...63
Before date..64
Before time..65
Ceiling...67
CellValue...68
Character at..69
Clone...70
Concatenate..73
Contains..75
Day..76
Day of week..77
Day of year..79
Days between...80
Decrement...81
Disassociate elements..82
Divide..83
Ends with...84
Equals ignoring case...85
Equals when used as an assignment...87
Equals when used as a comparison...88
Equals when using Strings..90
Exists...91
Exponent...92
False...94
First...95
Floor..96
For all..97
Get Milliseconds ...99
Greater than..100
Greater than or equal to..102
Hour..103
Hours between..104
In LIST...106
In RANGE...108
Increment..110
Index of...111
Is empty...112
Is integer...113
Last...114
Is same date..116
Is same time..117

Progress Corticon.js: Rule Language: Version 2.06

Contents

Less than...119
Less than or equal to..121
Logarithm BASE 10..122
Logarithm BASE X..123
Lowercase...125
Matches...126
Maximum value...128
Maximum value COLLECTION...129
Minimum value..130
Minimum value COLLECTION..132
Minute...133
Minutes between...134
Mod...135
Month..136
Months between..138
Multiply..139
Natural logarithm...140
New...141
New unique...143
Not...145
Not empty..147
Not equal to...148
Now...150
Null..151
Other...153
Or..154
Random...155
Regular expression to replace String..157
Remove element...159
Replace elements...161
Replace String..163
Round..164
Second..166
Seconds between...167
Size of collection...169
Size of string...170
Sorted by...171
Sorted by descending...173
Starts with...176
Substring...177
Subtract...178
Sum...179
Today...181
To dateTime..182
To date Casting a dateTime to a date...183

7Progress Corticon.js: Rule Language: Version 2.0

Contents

To dateTime Casting a string to a dateTime...184
To dateTime Casting a date to a dateTime...185
To dateTime Timezone offset..186
To decimal...187
To integer..189
To string...192
Trim spaces...193
True...194
Truncate..195
Uppercase...196
Week of month..197
Week of year...198
Weeks between...199
Year...200
Years between..201

Appendix A: Standard Boolean constructions.......................................203
Boolean AND..203
Boolean NAND..206
Boolean OR...206
Boolean XOR..207
Boolean NOR..208
Boolean XNOR...209

Appendix B: Precedence of rule operators...211

Appendix C: Formats for date and dateTime in Corticon.js Studio tester.215

Appendix D: Formats for date and dateTime in JSON payloads...........217

Progress Corticon.js: Rule Language: Version 2.08

Contents

1
Introduction to Corticon.js Rule Language

Graphical modeling languages and tools (UML, ER, ORM, for example) are not sufficiently precise for
specifications. Additional constraints on the objects in the model must also be defined. While natural languages
are easily used by individuals without a programming background, they are often ambiguous. On the other
hand, formal programming languages are precise, but not easily used by business analysts and other
non-programmers.

The Corticon.js Rule Language has been developed to resolve this dilemma. Based on the Object Constraint
Language (OCL, an extension of the Universal Modeling Language specification 1.1), the Corticon.js Rule
Language (CRL) is designed to enable non-programmers to express rules clearly and precisely without the
use of procedural programming languages. More information on OCL may be found at www.uml.org.

Note: A preferred user language might use different separator symbols than those documented for decimal
values, list ranges, and dates.

For details, see the following topics:

• Rule structure

• Basic data types

• Truth values

• Collection operators

• Language operators

• Vocabulary used in this Language Guide

9Progress Corticon.js: Rule Language: Version 2.0

http://www.uml.org/

Rule structure
In traditional programming languages (or logic systems), most rules are expressed via IF/THEN structures.
The IF clause contains a conditional expression and the THEN clause contains actions the rule should perform
if all conditions have been met. This IF/THEN structure is expressed as Conditions and Actions in the Rulesheet
user interface of Corticon.js Studio. For more information on building and organizing rules in Corticon.js Studio,
see the Corticon.js Studio Tutorial: Basic Rule Modeling.

Basic data types
The proper expression and execution of rules in Corticon rules is dependent on the type of data involved. Each
attribute in the Corticon Vocabulary has a data type, meaning that it has restrictions on the type of data it can
contain. Corticon standard data types are as follows:

DescriptionData Type

Any combination of alphanumeric characters, of any length.String

A whole number, including zero and negative numbers, to the maximum values
for a 64-bit long signed integer with 53 significant digits (-9007199254740991 to
9007199254740991).

Integer

A number containing a decimal point, including zero and negative numbers to the
limits of precision in our library. With an arbitrary-precision, the Decimal type for
JavaScript calculations are slower than with a plain Number, but they can be
executed with an arbitrary higher precision that reduces occurrence of round-off
errors. Decimal values in JSON input payloads can be represented either as a
number or as string. See below for details and examples.

Decimal

Values are true and false. T and F can also be used.Boolean

DateTime values in a Corticon.js payload must conform to the ISO 8601 standard,
or as the number of milliseconds since the epoch. For example, for 9/13/2025
2:00:00 PM EST use either 1757782800000 or
"2025-09-13T13:00:00-04:00". See Formats for date and dateTime in JSON
payloads on page 217 and Formats for date and dateTime in Corticon.js Studio
tester on page 215 for details on date and dateTime values.

DateTime

A value with only date information. No time information is allowed.Date

In this guide, the data types Integer and Decimal are often referred to by the generic term <Number>.Wherever
<Number> is used, either Integer or Decimal data types may be used.

Decimal data in payloads
Decimal data might not fit in a JavaScript number type because JavaScript numbers are a subset of all numbers
that can be expressed with the Decimal data type. Therefore, decimals as JavaScript numbers in JSON payload
are represented as Strings. For example:

Decimal format in JSON Input Payload

Progress Corticon.js: Rule Language: Version 2.010

Chapter 1: Introduction to Corticon.js Rule Language

Decimals in a JSON input payload can be represented either as a number or as string. For example:

{
"decimal1" : 123.45,
"decimal2" : "9876543210000000000000000000000000000000.987"}

{

Decimal format in JSON Output Payload

Decimals as JavaScript numbers in a JSON output payload are converted to Strings (stringified). For example:

{
"decimal1" : "123.45",
"decimal2" : "10000000000000000000000000000000.987"}

{

Truth values
This guide uses the notation <Expression> to refer to some combination of terms from the Vocabulary that
resolves or evaluates to a single “truth value”. A truth value is the Boolean value (true or false) assigned
to an expression upon evaluation by the rule engine. For example, the expression Patient.name=‘John’
has a truth value of true whenever the patient's name is John. If it is not John, then the truth value of this
expression is false.

Collection operators
Many of the operators provided in the Corticon.js Rule Language deal exclusively with collections of entities.
When using collection operators, the expression must use aliases to represent the collection(s) operated on
by the collection operator(s). A complete discussion of aliases is included in theRule Modeling Guide. Reminders
are included throughout this manual wherever collection operators are referenced.

Language operators
The Corticon.js Rule Language operators can be grouped into various classifications as shown in Categories
of rule operators. Each operator is subsequently described in detail in the Rule operator details and examples
section of this document. That section includes a detailed description of the operator, its syntax, usage
restrictions, and an example in a Corticon.js Rulesheet and Ruletest.

11Progress Corticon.js: Rule Language: Version 2.0

Truth values

Vocabulary used in this Language Guide
This guide uses a generic Vocabulary in all its examples. The Vocabulary contains four entities, each of which
contains the same attribute names and types. Attribute names reflect their data types. For example, integer1
has a data type of Integer. This generic Vocabulary provides sufficient flexibility to create examples using all
operators and functions in the Corticon.js Rule Language. Entity1 is shown expanded in the following figure:

Figure 1: Vocabulary used in Corticon.js Language Guide examples

Progress Corticon.js: Rule Language: Version 2.012

Chapter 1: Introduction to Corticon.js Rule Language

2
How to access rule operators

The Studio tools for accessing operators provide icons with decorations, and tooltips.

Icons
Rule Operators are assigned icons which provide the user with information about their usage. The following
table describes these icons:

ExamplesPurposeWhere FoundIcon

null, true, otherindicates special values or
constants

General, Literals category

now, todayindicates system values
that are automatically
retrieved upon rule
execution.

General, Functions
category

notthis special “unary”
operator icon is used only
with not

Operators, Boolean
category

13Progress Corticon.js: Rule Language: Version 2.0

ExamplesPurposeWhere FoundIcon

day, round, containsindicates the operator
uses a period “.” to attach
to its operand. Most
operators with this icon
typically fell into the
previous “function”
category.

Operators, all categories

equals, multiplyindicates the operator is
used between two
operands. Most operators
with this icon typically fell
into the previous
“comparison” category.

Operators, all categories

Tool tips
In Corticon.js Studio, moving the mouse over a Vocabulary operator and pausing, or hovering for a moment,
causes a dynamic tool tip text box to display. This tool tip contains information about operator syntax, return
data type, and description, all of which are supplied in more detail in this set of topics. For questions not
answered by the tool tip, refer to the detailed operator descriptions in this publication. The following figure
shows a typical tool tip for the dateTime operator .monthsBetween:

Figure 2: Typical Rule Operator Tool Tip

Progress Corticon.js: Rule Language: Version 2.014

Chapter 2: How to access rule operators

3
Usage restrictions

The following illustrations show the general usage restrictions for the various types of Vocabulary terms
depending on where they are used in a Rulesheet. This table indicates, for example, that entities (terms from
the Vocabulary) may be used in any section of the Rulesheet. Rule Operators, however, are restricted to only
three sections.

15Progress Corticon.js: Rule Language: Version 2.0

Note: Some operators have specific restrictions that vary from this general table – see each operator's usage
restrictions for details of these exceptions.

Figure 3: Vocabulary usage restrictions in Rulesheet sections

Figure 4: Sections of Rulesheet that correlate with usage restrictions

Progress Corticon.js: Rule Language: Version 2.016

Chapter 3: Usage restrictions

4
Rule operators

Corticon.js Studio presents its rule operators in logical groups.

17Progress Corticon.js: Rule Language: Version 2.0

Rule Operators are classified based on the data type(s) of the terms to which the operator may be applied
(known as the “operand”). When you open an operator group and hover over an operator, a help window shows
its syntax, and details about that operator, as shown:

Figure 5: JS Rule Operator categories

For details, see the following topics:

• Attribute operators

• Entity and Association operators

• General terms

Attribute operators
The Corticon.js Rule Language supports attribute operators categorized as Boolean, DateTime, Decimal,
Integer, and String.

Progress Corticon.js: Rule Language: Version 2.018

Chapter 4: Rule operators

Boolean
Corticon.js's Boolean attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <Expression1> has
the same value as <Expression2>.

Boolean<Expression1> = <Expression2>

Equals (used as an assignment)

Assigns the truth value of <Expression1> to
<Boolean1>

Boolean<Boolean1> = <Expression1>

Not Equal To

Returns a value of true if <Expression1> does
not have the same truth value as <Expression2>

Boolean<Expression1> <> <Expression2>

Or

Returns a value of true if either <Expression1>
or <Expression2> evaluates to true. This
operator can be used only in Actions and
Preconditions/Filters.

Boolean<Expression1> or <Expression2> or…

And

Returns a value of true if both <<Boolean1> and
<Boolean2 are true. This operator can be used
only in Actions and Preconditions/Filters.

Boolean<<Boolean1> and <Boolean2>

Not

Returns the negation of the truth value of
<Expression>

Booleannot <Expression>

Note: See also related information in the topics Precedence of rule operators on page 211 and Standard
Boolean constructions on page 203..

Date
Corticon.js's Date attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

19Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Returns a value of true if <Date1> is the same as
<Date2>.

Boolean<Date1> = <Date2>

Equals (used as an assignment)

Assigns the value of <Date2> to <Date1>DateTime<Date1> = <Date2>

Not Equal To

Returns a value of true if <Date1> does not equal
<Date2>

Boolean<Date1> <> <Date2>

Less than

Returns a value of true if <Date1> is less than
<Date2>

Boolean<Date1> < <Date2>

Greater than

Returns a value of true if <Date1> is greater than
<Date2>

Boolean<Date1> > <Date2>

Less than or Equal to

Returns a value of true if <Date1> is less than or
equal to <Date2>

Boolean<Date1> <= <Date2>

Greater than or Equal to

Returns a value of true if <Date1> is greater than
or equal to <Date2>

Boolean<Date1> >= <Date2>

In (Range)

Returns a value of true if attributeReference
is in the range of Date values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Year

Returns the century/year portion of <Date> as a
four digit Integer

Integer<Date>.year

Progress Corticon.js: Rule Language: Version 2.020

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Month

Returns the month in <Date> as an Integer
between 1 and 12

Integer<Date>.month

Day

Returns the day portion of <Date> as an Integer
between 1 and 31

Integer<Date>.day

Add years

Adds the number of years in <Integer> to the
number of years in <Date>

Date<Date>.addYears(<Integer>)

Add months

Adds the number of months in <Integer> to the
number of months in <DateTime>

Date<Date>.addMonth(<Integer>)

Add days

Adds the number of days in <Integer> to the
number of days in <Date>

Date<Date>.addDays(<Integer>)

Years between

Returns the Integer number of years between
<Date1> and <Date2>. This function returns a
positive number if <Date2> is later than <Date1>.

Integer<Date1>.yearsBetween(<Date2>)

Months between

Returns the Integer number of months between
<Date1> and <Date2>. If the month and year
portions of <Date1> and <Date2> are the same,
the result is zero. This function returns a positive
number if <Date2> is later than <Date1>.

Integer<Date1>.monthsBetween(<Date2>)

Days between

Returns the Integer number of days between
<Date1> and <Date2>. If the two dates differ by
less than a full 24-hour period, the value is zero.
This function returns a positive number if <Date2>
is later than <Date1>.

Integer<Date1>.daysBetween(<Date2>)

Day of Week

Returns an Integer corresponding to day of the
week, with Sunday equal to 1, in <Date>.

Integer<Date>.dayOfWeek

21Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Week of Year

Returns an Integer from 1 to 52, equal to the week
number within the year in <Date>.

Integer<Date>.weekOfYear

Day of Year

Returns an Integer from 1 to 366, equal to the day
number within the year in <Date>

Integer<Date>.dayOfYear

Week of Month

Returns an Integer from 1 to 6, equal to the week
number within the month in <DateTime> or
<Date>. A week begins on Sunday and ends on
Saturday.

Integer<Date>.weekOfMonth

To DateTime

Returns a DateTime where the date portion is
equal to the value of <Date> and the time portion
is equal to 00:00:00 in the system’s local timezone.

DateTime<Date>.toDateTime

To DateTime with Timezone Offset

Returns a DateTime where the date portion is
equal to the value of <Date> and the time portion
is equal to 00:00:00 in the timezone specified by
the value of <string>.

DateTime<Date>.toDateTime (<string>)

DateTime

Note: A DateTime data typemust contain both date information and time information. Applying a DateTime
operator to a DateTime attribute should always produce a result. Be sure to use the data type that suits your
needs.

Corticon.js's DateTime attribute operators that enable date-only or time-only comparison are as follows:

DescriptionReturnsName and Syntax

Is same date

Returns a value of true if DateTime1 is the same
as DateTime2, ignoring the time part.

Boolean<DateTime1>.isSameDate (<DateTime2>)

After date

Returns a value of true if DateTime1 is after
DateTime2, ignoring the time part.

Boolean<DateTime1>.afterDate (<DateTime2>)

Progress Corticon.js: Rule Language: Version 2.022

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Before date

Returns a value of true if DateTime1 is before
DateTime2, ignoring the time part.

Boolean<DateTime1>.beforeDate (<DateTime2>)

Is same time

Returns a value of true if DateTime1 is the same
as DateTime2, ignoring the date part.

Boolean<DateTime1>.isSameTime
(<DateTime2>)

After time

Returns a value of true if DateTime1 is after
DateTime2, ignoring the date part.

Boolean<DateTime1>.afterTime (<DateTime2>)

Before time

Returns a value of true if DateTime1 is before
DateTime2, ignoring the date part.

Boolean<DateTime1>.beforeTime(<DateTime2>)

Corticon.js's DateTime attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <DateTime1> is the
same as <DateTime2>, including both the Date
and the Time portions

Boolean<DateTime1> = <DateTime2>

Equals (used as an assignment)

Assigns the value of <DateTime2> to
<DateTime1>

DateTime<DateTime1> = <DateTime2>

Not Equal To

Returns a value of true if <DateTime1> does not
equal <DateTime2>

Boolean<DateTime1> <> <DateTime2>

Less than

Returns a value of true if <DateTime1> is less
than <DateTime2>

Boolean<DateTime1> < <DateTime2>

Greater than

Returns a value of true if <DateTime1> is greater
than or equal to <DateTime2>

Boolean<DateTime1> > <DateTime2>

Less than or Equal to

23Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Returns a value of true if <DateTime1> is less
than or equal to <DateTime2>

Boolean<DateTime1> <= <DateTime2>

Greater than or Equal to

Returns a value of true if <DateTime1> is greater
than or equal to <DateTime2>

Boolean<DateTime1> >= <DateTime2>

In (Range)

Returns a value of true if attributeReference
is in the range of DateTime values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and brackets []
indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Year

Returns the century/year portion of <DateTime>
as a four digit Integer

Integer<DateTime>.year

Month

Returns the month in <DateTime> as an Integer
between 1 and 12

Integer<DateTime>.month

Day

Returns the day portion of <DateTime> as an
Integer between 1 and 31

Integer<DateTime>.day

Hour

Returns the hour portion of <DateTime>. The
returned value is based on a 24-hour clock.

Integer<DateTime>.hour

Minute

Returns the minute portion of <DateTime> as an
Integer between 0 and 59

Integer<DateTime>.min

Second

Progress Corticon.js: Rule Language: Version 2.024

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns the seconds portion of <>.sec DateTime>
as an Integer between 0 and 59

Integer<DateTime

Add years

Adds the number of years in <Integer> to the
number of years in <DateTime>

DateTime<DateTime>.addYears (<Integer>)

Add months

Adds the number of months in <Integer> to the
number of months in <DateTime>

DateTime<DateTime>>.addMonths (<Integer>)

Add days

Adds the number of days in <Integer> to the
number of days in <DateTime>

DateTime<DateTime>.addDays (<Integer>)

Add hours

Adds the number of hours in <Integer> to the
number of hours in the Time portion of
<DateTime>

DateTime<DateTime>.addHours (<Integer>)

Add minutes

Adds the number of minutes in <Integer> to the
number of minutes in the Time portion of
<DateTime>

DateTime<DateTime>.addMinutes (<Integer>)

Add seconds

Adds the number of seconds in <Integer> to the
number of seconds in the Time portion of
<DateTime>

DateTime<DateTime>.addSeconds (<Integer>)

Years between

Returns the Integer number of years between
<DateTime1> and <Date2>. This function returns
a positive number if <DateTime2> is later than
<DateTime1>.

Integer<DateTime1>.yearsBetween
(<DateTime2>)

Months between

Returns the Integer number of months between
<DateTime1> and <DateTime2>. If the month
and year portions of <DateTime1> and
<DateTime2> are the same, the result is
zero. This function returns a positive number if
<DateTime2> is later than <DateTime1>.

Integer<DateTime1>.monthsBetween
(<DateTime2>)

25Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Days between

Returns the Integer number of days between
<DateTime1> and <DateTime2>. If the two dates
differ by less than a full 24-hour period, the value
is zero. This function returns a positive number if
<DateTime2> is later than <DateTime1>.

Integer<DateTime1>.daysBetween
(<DateTime2>)

Hours between

Returns the Integer number of hours between
<DateTime1> and <DateTime2>. If the two dates
differ by less than a full hour, the value is zero.
This function returns a positive number if
<DateTime2> is later than <DateTime1>.

Integer<DateTime1>.hoursBetween
(<DateTime2>)

Minutes between

Returns the Integer number of minutes between
<DateTime1> and <DateTime2>. This function
returns a positive number if <DateTime2> is later
than <DateTime1>.

Integer<DateTime1>.minsBetween
(<DateTime2>)

Weeks between

Returns the Integer number of weeks between
<startDate> and <endDate>.

Integer<DateTime1>.weeksBetween
(<DateTime2>)

Seconds between

Returns the Integer number of seconds between
<DateTime1> and <DateTime2>. This function
returns a positive number if <DateTime2> is later
than <DateTime1>.

Integer<DateTime1>.secsBetween (<DateTime2>)

Day of Week

Returns an Integer corresponding to day of the
week, with Sunday equal to 1, in <DateTime>.

Integer<DateTime>.dayOfWeek

Week of Year

Returns an Integer from 1 to 52, equal to the week
number within the year in <DateTime>

Integer<DateTime>.weekOfYear

Day of Year

Returns an Integer from 1 to 366, equal to the day
number within the year in <DateTime>

Integer<DateTime>.dayOfYear

Week of Month

Progress Corticon.js: Rule Language: Version 2.026

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns an Integer from 1 to 6, equal to the week
number within the month in <DateTime>. A week
begins on Sunday and ends on Saturday.

Integer<DateTime>.weekOfMonth

To Date

Returns the date portion only of DateTimeDate<DateTime>.toDate

getMilliseconds

Returns the internal date/time, namely the number
of milliseconds that have transpired since the
epoch, 1/1/1970 00:00:00 GMT.

Integer<DateTime>.getMilliseconds

Decimal
In this section, wherever the syntax includes <Number>, either Integer or Decimal data types may be used.

Corticon.js's Decimal attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <Number1> is the same
as <Number2>.

Boolean<Number1> = <Number2>

Equals (used as an assignment)

Assigns the value of <Number2> to the value of
<Number1>.

Number<Number1> = <Number2>

Not Equal To

Returns a value of true if <Number1> is not equal
to <Number2>.

Boolean<Number1> <> <Number2>

Less than

Returns a value of true if <Number1> is less than
<Number2>.

Boolean<Number1> < <Number2>

Greater than

Returns a value of true if <Number1> is greater
than <Number2>.

Boolean<Number1> > <Number2>

Less than or Equal to

27Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Returns a value of true if <Number1> is less than
or equal to <Number2>.

Boolean<Number1> <= <Number2>

Greater than or Equal to

Returns a value of true if <Number1> is greater
than or equal to <Number2>.

Boolean<Number1> >= <Number2>

In (Range)

Returns a value of true if attributeReference
is in the range of Decimal values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Add

Returns the sum of <Number1> and <Number2>.
The resulting data type is the more expansive of
either <Number1> or <Number2>. For example,
if an Integer value is added to a Decimal value,
the resulting value will be a Decimal. See
Precedence of rule operators on page 211.

Number<Number1> + <Number2>

Subtract

Subtracts <Number2> from <Number1>. The
resulting data type is the more expansive of either
<Number1> or <Number2>. See Precedence of
rule operators on page 211.

Number<Number1> - <Number2>

Multiply

Returns the product of <Number1> and
<Number2>. The resulting data type is the more
expansive of either <Number1> or
<Number2>. See Precedence of rule operators
on page 211.

Number<Number1> * <Number2>

Divide

Progress Corticon.js: Rule Language: Version 2.028

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Divides <Number1> by <Number2>. The resulting
data type is the more expansive of either
<Number1> or <Number2>. See Precedence of
rule operators on page 211.

Number<Number1> / <Number2>

Exponent

Raises <Number1> to the power of <Number2>.
The resulting data type is the more expansive of
either <Number1> or <Number2>. See
Precedence of rule operators on page 211.

Number<Number1> ** <Number2>

Absolute Value

Returns the absolute value of <Number>. If the
<Number> is positive, <Number> itself is returned;
if <Number> is negative, the negation of
<Number> is returned.

Decimal<Decimal>.absVal

Floor

Returns a new Decimal whose value is the value
of this Decimal rounded to a whole number in the
direction of negative infinity.

Integer<Decimal>.floor

Ceiling

Returns a new Decimal whose value is the value
of this Decimal rounded to a whole number in the
direction of positive infinity.

Integer<Decimal>.ceiling

Round

Rounds <Decimal> to the nearest Integer.Decimal<Decimal>.round

Round(n)

Returns <Decimal> rounded to the number of
decimal places specified by decimalDigits.
Rounds toward the nearest neighbor; where
equivalent, rounds toward infinity.

Decimal<Decimal>.round(<decimalDigits<Integer>>)

Round(n)

Returns <Decimal> rounded to the number of
decimal places specified by decimalDigits.
See details page for information about mode.

Decimal<Decimal>.round(<decimalDigits<Integer>>,mode:<integer)

Maximum Value

Returns the greater of <Decimal> and <Number>.Number<Decimal>.max(<Number>)

29Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Minimum Value

Returns the lesser of <Decimal> and <Number>.Number<Decimal>.min(<Number>)

Logarithm (base 10)

Returns the logarithm (base 10) of <Decimal>.
<Decimal> may not be zero.

Decimal<Decimal>.log

Logarithm (base x)

Returns the logarithm (base <Decimal2>) of
<Decimal1>. <Decimal1> may not be zero.

Decimal<Decimal1>.log(<Decimal2>)

Natural Logarithm

Returns the logarithm (base e) of
<Decimal>.<Decimal> may not be zero.

Decimal<Decimal>.ln

Random

Returns a random decimal between minRange
and maxRange.

Decimal<Decimal>.random(minRange,
maxRange)

Truncate

Truncates "this" Decimal value to an integer by
removing the fractional portion.

Integer<Decimal>.truncate

Integer
In this section, wherever the syntax includes <Number>, either Integer or Decimal data types may be used.

Corticon.js's Integer attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <Number1> is the same
as <Number2>.

Boolean<Number1> = <Number2>

Equals (used as an assignment)

Assigns the value of <Number2> to the value of
<Number1>. The data type of <Number1> must
be expansive enough to accommodate
<Number2>.

Number<Number1> = <Number2>

Not Equal To

Progress Corticon.js: Rule Language: Version 2.030

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns a value of true if <Number1> is not equal
to <Number2>.

Boolean<Number1> <> <Number2>

Less than

Returns a value of true if <Number1> is less than
<Number2>.

Boolean<Number1> < <Number2>

Greater than

Returns a value of true if <Number1> is greater
than <Number2>.

Boolean<Number1> > <Number2>

Less than or Equal to

Returns a value of true if <Number1> is less than
or equal to <Number2>.

Boolean<Number1> <= <Number2>

Greater than or Equal to

Returns a value of true if <Number1> is greater
than or equal to <Number2>.

Boolean<Number1> >= <Number2>

In (Range)

Returns a value of true if attributeReference
is in the range of Integer values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Add

Returns the sum of <Number1> and <Number2>.
The resulting data type is the more expansive of
either <Number1> or <Number2>. For example,
if an Integer value is added to a Decimal value,
the resulting value will be a Decimal. See
Precedence of rule operators on page 211.

Number<Number1> + <Number2>

Subtract

31Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Subtracts <Number2> from <Number1>. The
resulting data type is the more expansive of either
<Number1> or <Number2>. See Precedence of
rule operators on page 211.

Number<Number1> - <Number2>

Multiply

Returns the product of <Number1> and
<Number2>. The resulting data type is the more
expansive of either <Number1> or
<Number2>. See Precedence of rule operators
on page 211.

Number<Number1> * <Number2>

Increment

Increments <Number1> by <Number2>. The data
type of <Number1> must accommodate the
addition of <Number2>. See Precedence of rule
operators on page 211.

Number<Number1> += <Number2>

Decrement

Decrements <Number1> by the value of
<Number2>. The data type of <Number1> must
accommodate the addition of <Number2>. See
Precedence of rule operators on page 211.

Number<Number1> -= <Number2>

Absolute value on page 47.

Returns the absolute value of <Integer>. If the
<Integer> is positive, <Integer> itself is
returned; if <Integer> is negative, the negation
of <Integer> is returned.

Number<Integer>.absVal

To Decimal

Converts an attribute of type Integer to type
Decimal.

Decimal<Integer>.toDecimal

To String

Converts an attribute of type Integer to type String.String<Integer>.toString

Maximum Value

Returns the greater of <Integer1> and
<Integer2>.

Integer<Integer1>.max(<Integer2>)

Minimum Value

Progress Corticon.js: Rule Language: Version 2.032

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns the lesser of <Integer1> and
<Integer2>.

Integer<Integer1>.min(<Integer2>)

Random

Returns a random integer between minRange and
maxRange.

Decimal<Decimal>.random(minRange,
maxRange)

Mod

Returns the whole number remainder that results
from dividing <Integer1> by <Integer2>. If the
remainder is a fraction, then zero is returned.

Integer<Integer1>.mod(<Integer2>)

Logarithm (base 10)

Returns the logarithm (base 10) of
<Integer>. <Integer> may not be zero.

Decimal<Integer>.log

Logarithm (base x)

Returns the logarithm (base <Decimal>) of
<Integer>. <Integer> may not be zero.

Decimal<Integer>.log(<Decimal>)

Natural Logarithm

Returns the natural logarithm (base e) of
<Number>. <Integer> may not be zero.

Decimal<Integer>.ln

String
Corticon.js's String attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <String1> exactly
matches <String2>. Both case and length are
examined to determine equality.

Boolean<String1> = <String2>

Equals (used as an assignment)

Assigns the value of <String2> to the value of
<String1>.

String<String1> = <String2>

Not Equal to

33Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Returns a value of true if <String1> is not equal
to <String2>.

Boolean<String1> <> <String2>

Less than

Returns a value of true if <String1> is less than
<String2>.

Boolean<String1> < <String2>

Greater than on page 100

Returns a value of true if <String1> is greater
than <String2>.

Boolean<String1> > <String2>

Less than or Equal to

Returns a value of true if <String1> is less than
or equal to <String2>.

Boolean<String1> <= <String2>

Greater than or Equal to

Returns a value of true if <String1> is greater
than or equal to <String2>.

Boolean<String1> >= <String2>

In (Range)

Returns a value of true if attributeReference
is in the range of String values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Adding Strings

Concatenates <String1> to <String2>.
Alternative syntax.

String<String1> + <String2>

Size

Returns the number of characters in <String>.String<String>.size

Concatenate

Concatenates <String1> to <String2>.String<String1>.concat(<String2>)

Progress Corticon.js: Rule Language: Version 2.034

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Uppercase

Converts all characters <String> to uppercase.String<String>.toUpper

Lowercase

Converts all characters in <String> to lowercase.String<String>.toLower

To DateTime

Converts the value in <String> to data type
DateTime ONLY if date as ISO8601 string or
millisecs since epoch as a string.

DateTime<String>.toDateTime

To Decimal

Converts an attribute of type String to data type
Decimal ONLY if all characters in <String> are
numeric and contain not more than one decimal
point. If any non-numeric characters are present
(other than a single decimal point or leading minus
sign), no value is returned.

Decimal<String>.toDecimal

To Integer

Converts an attribute of type String to type Integer
ONLY if all characters in <String> are numeric. If
any non-numeric characters are present, no value
is returned.

Integer<String>.toInteger

Substring

Returns that portion of <String> between
character positions <Integer1> and Integer2>.

String<String>.substring
(<Integer1>,<Integer2>)

Equals Ignoring Case

Returns a value of true if <String1> is the same
as <String2>, irrespective of case.

Boolean<String1>.equalsIgnoreCase
(<String2>)

Starts with

Returns a value of true if the <String1> begins
with the characters specified in <String2>.

Boolean<String1>.startsWith (<String2>)

Ends with

Evaluates the contents of <String1> and returns
a value of true if the String ends with the characters
specified in <String2>.

Boolean<String1>.endsWith (<String2>)

35Progress Corticon.js: Rule Language: Version 2.0

Attribute operators

DescriptionReturnsName and Syntax

Contains

Evaluates the contents of <String1> and returns
a value of true if it contains the exact characters
defined by <String2>

Boolean<String1>.contains (<String2>)

Equals

Returns a value of true if <String1> is the same
as <String2>.

Boolean<String1>.equals (<String2>)

Index Of

Returns the beginning character position number
of <String2> within <String1>, if <String1>
contains <String2>. If it does not, the function
returns a value of zero.

Integer<String1>.indexOf (<String2)

Replace String

Returns a new String where the instances of the
String to be replaced are replaced by the value of
the replacement String.

String<String>.replaceString(stringToBeReplaced,replacementString)

Regular expression replace String

Returns a new String where the Strings matching
the regular expression are replaced by the
replacement String.

String<String>.regexReplaceString(regularExpression,replacementString)

Matches

Returns true if the regular expression matches the
String.

Boolean<String>.matches(regularExpression:String)

characterAt(index)

Returns the character at the specified position in
the String.

String<String>.characterAt(index:Integer)

isInteger

Progress Corticon.js: Rule Language: Version 2.036

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Determines whether "this" String contains only
integer digits.

Note: This operator examines each character in
a string to determine whether it is in the range 0
to 9. Therefore, the operator returns true when
the entire string evaluates as a positive integer,
and falsewhen a minus sign is the first character
of a string that would evaluate as a negative
integer. A new extended operator could be created
if the string as a whole is to be evaluated as true
whether positive or negative (for example, by
allowing the first character to be a minus sign.)

Boolean<String>.isInteger

trimSpaces

Trims leading and trailing spaces from "this" String.String<String>.trimSpaces

Entity and Association operators
The Corticon.js rule language supports Entity, Association, and Sequence operators.

Collection
Corticon.js's Collection operators are as follows:

DescriptionReturnsName and Syntax

Replace element(s)

replaces all elements in <Collection1> with
elements of <Collection2> or with <Entity>,
provided the new associations are allowed by the
Business Vocabulary.

modifies a
collection<Collection1> = <Collection2>

<Collection1> = <Entity>

Associate element(s)

Associates all elements of <Collection2> or
<Entity> with <Collection1>. Every
<Collection> must be expressed as a unique
alias.

modifies a
collection<Collection1> += <Collection2>

<Collection1> += <Entity>

Disassociate element(s)

37Progress Corticon.js: Rule Language: Version 2.0

Entity and Association operators

DescriptionReturnsName and Syntax

Disassociates all elements of <Collection2>
from <Collection1>. Does not delete the
disassociated elements. Every <Collection>
must be expressed as a unique alias.

modifies a
collection

<Collection1> -= <Collection2>

Is empty

Returns a value of true if <Collection> contains
no elements

Boolean<Collection> ->isEmpty

Not empty

Returns a value of true if <Collection> contains
at least one element.

Boolean<Collection> ->notEmpty

Exists

Returns a value of true if <Expression> holds
true for at least one element of <Collection>

Boolean<Collection> ->exists (<Expression>)

For all

Returns a value of true if every <Expression>
holds true for every element of <Collection>

Boolean<Collection> ->forAll (<Expression>)

Sorted by

Sequences the elements of <Collection> in
ascending order, using the value of <Attribute>
as the index. <Collection> must be expressed
as a unique alias.

converts a
collection
into a
sequence

<Collection> ->sortedBy (<Attribute>)

Sorted by descending

Sequences the elements of <Collection> in
descending order, using the value of
<Attribute> as the index. <Collection>must
be expressed as a unique alias.

converts a
collection
into a
sequence

<Collection> ->sortedByDesc
(<Attribute>)

Size of collection

Returns the number of elements in
<Collection>. <Collection> must be
expressed as a unique alias.

Integer<Collection> ->size

Sum

Sums the values of the specified <attribute>
for all elements in <Collection>. <attribute>
must be a numeric data type.

Number<Collection.attribute> ->sum

Progress Corticon.js: Rule Language: Version 2.038

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Average

Averages all of the specified attributes in
<Collection>. <Collection> must be
expressed as a unique alias. <attribute> must
be a numeric data type

Number<Collection.attribute> ->avg

Minimum

Returns the lowest value of <attribute> for all
elements in <Collection>. <attribute>must
be a numeric data type

Number<Collection.attribute> ->min

Maximum

Returns the highest value of <attribute> for all
elements in <Collection>. <attribute>must
be a numeric data type

Number<Collection.attribute> ->max

Entity
Corticon.js's Entity operators are as follows:

DescriptionReturnsName and Syntax

New

Creates a new instance of <Entity>. Expressions
(optional to assign attribute values) in square
brackets [..] must be written in the form: attribute
= value.

Entity<Entity> .new [<Expression1>,…]

New Unique

Creates a new instance of <Entity> only if the
instance created is unique as defined by optional
<Expression1>,…

Entity<Entity> .newUnique
[<Expression1>,…]

Clone

Creates a new instance of <Entity> with the
same attributes and their respective values.
Expressions (optional to override attribute values)
in square brackets [..] must be written in the form:
attribute = value.

Entity<Entity>.clone [<Expression1>,…]

39Progress Corticon.js: Rule Language: Version 2.0

Entity and Association operators

DescriptionReturnsName and Syntax

Remove

Deletes the entity from memory and from the
resultant JSON document. Children can be
removed as well when set to (true, or retained
after moving to root (false). Blank or no value
defaults to true.

Entity< Entity>.remove [(true)|(false)]

Sequence
Sequence operators act on collections that have already been ordered by a sorting operator (see sortedBy
and sortedByDesc). In other words, sequence operators operate on collections that have been turned into
sequences. The notation <Sequence> used below, is shorthand for a completed sorting operation. For example:

<Collection> -> sortedBy(<Attribute>)

produces a <Sequence>, in this case the elements of <Collection> arranged in ascending order using
<Attribute> as the index. This <Sequence> can then be used with one of the sequence operators described
below. The design of the Object Constraint Language (upon which the Corticon.js Rule Language is based),
allows for the “chaining” of operators, so a collection operator and a sequence operator can be used in the
same expression to produce a sequence and identify a particular element of that sequence in the same step.
For example:

<Entity.attribute1> = <Collection> ->sortedBy(<Attribute3>) ->first.<Attribute2>

performs the following:

1. Sorts <Collection> in ascending order according to <Attribute3>, turning it into a <Sequence>

2. Locates the first element of <Sequence>

3. Reads the value of <Attribute2> of the first element

4. Assigns the value of <Attribute2> of the first element to <Entity.attribute1>

Corticon.js's Sequence operators are as follows:

DescriptionReturnsName and Syntax

At

Returns the element at position <Integer>.
<Sequence> must be expressed as a unique
alias.

Entity<Sequence> ->at(<Integer>)

First

Returns the first element of <Sequence>.
<Sequence> must be expressed as a unique
alias.

Entity<Sequence> ->first

Progress Corticon.js: Rule Language: Version 2.040

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Last

Returns the last element of <Sequence>.
<Sequence> must be expressed as a unique
alias.

Entity<Sequence> ->last

General terms
Corticon.js's General operators are Functions and Literals.

Functions
Corticon.js's Functions operators are as follows:

DescriptionReturnsName and Syntax

Custom operators with return datatype

Calls the specified custom function with the custom
string parameter. Returns the data specified in the
custom function as the requested datatype. See
"Customized data access operators" in the
Corticon.js Integration Guide for more information.

Corresponding
datatype

getBoolean getDate getDateTime
getDecimal getInteger getString

Custom operators with no return

Call the specified function with t he custom
parameters. See "Customized data access
operators" in the Corticon.js Integration Guide for
more information.

nothingsetBoolean setDate setDateTime
setDecimal setInteger setString

Now

Returns the current system date and time when
the rule is executed.

DateTimenow

Today

Returns the current system date when the rule is
executed.

Datetoday

Literals
Literal Terms can be used in any section of the Rulesheet, except Scope and Rule Statements. Exceptions
to this general statement exist. See individual literals for detailed usage restrictions.

Corticon.js's Literals operators are as follows:

41Progress Corticon.js: Rule Language: Version 2.0

General terms

DescriptionReturnsName and Syntax

Null

The null value corresponds to one of three different
scenarios:

• the absence of an attribute in a Ruletest
scenario

• the absence of data for an attribute in a
Ruletest scenario

• an object that has a value of null

nonenull

True

Represents Boolean value trueBooleantrue or T

False

Represents the Boolean value falseBooleanfalse or F

Other

When included in a condition’s Values set, other
represents any value not explicitly included in the
set, including null.

anyother

CellValue

cellValue is a variable whose value is determined
by the rule Column that executes

anycellValue

Progress Corticon.js: Rule Language: Version 2.042

Chapter 4: Rule operators

5
Rule operator details and examples

The following pages describe each operator in greater detail. Each Rule Operator has the following sections

1. Syntax – Describes the standard syntax used with this operator. In this section, as in the previous summary
tables, the angle bracket convention <..> is used to indicate what types of terms and their data types can
be used with the operator. When using the operator with real terms from the Vocabulary, do not include the
angle brackets.

2. Description – Provides a plain-language description of the operator's purpose and details of its use. Important
reminders, tips, or cautions are included in this section.

3. Usage Restrictions – Describes what limitations exist for this operator, and where an operator may not be
used in a Rulesheet. Such limitations are rare, but important to a good understanding of Corticon.js Studio.

4. Example – Shows an example of each operator in a Rulesheet. A screenshot of the example Rulesheet is
provided, with portions of the Rulesheet not used by the example collapsed or truncated for clarity. The
example also includes sample input and output data for Ruletest scenarios run against the Rulesheet.

The entire list of operators is presented in alphabetic order.

For details, see the following topics:

• Absolute value

• Add numbers

• Add strings

• Add days

• Add hours

• Add minutes

43Progress Corticon.js: Rule Language: Version 2.0

• Add months

• Add seconds

• Add years

• After date

• After time

• Associate elements

• At

• Average

• Before date

• Before time

• Ceiling

• CellValue

• Character at

• Clone

• Concatenate

• Contains

• Day

• Day of week

• Day of year

• Days between

• Decrement

• Disassociate elements

• Divide

• Ends with

• Equals ignoring case

• Equals when used as an assignment

• Equals when used as a comparison

• Equals when using Strings

• Exists

• Exponent

• False

• First

• Floor

Progress Corticon.js: Rule Language: Version 2.044

Chapter 5: Rule operator details and examples

• For all

• Get Milliseconds

• Greater than

• Greater than or equal to

• Hour

• Hours between

• In LIST

• In RANGE

• Increment

• Index of

• Is empty

• Is integer

• Last

• Is same date

• Is same time

• Less than

• Less than or equal to

• Logarithm BASE 10

• Logarithm BASE X

• Lowercase

• Matches

• Maximum value

• Maximum value COLLECTION

• Minimum value

• Minimum value COLLECTION

• Minute

• Minutes between

• Mod

• Month

• Months between

• Multiply

• Natural logarithm

• New

45Progress Corticon.js: Rule Language: Version 2.0

• New unique

• Not

• Not empty

• Not equal to

• Now

• Null

• Other

• Or

• Random

• Regular expression to replace String

• Remove element

• Replace elements

• Replace String

• Round

• Second

• Seconds between

• Size of collection

• Size of string

• Sorted by

• Sorted by descending

• Starts with

• Substring

• Subtract

• Sum

• Today

• To dateTime

• To date Casting a dateTime to a date

• To dateTime Casting a string to a dateTime

• To dateTime Casting a date to a dateTime

• To dateTime Timezone offset

• To decimal

• To integer

• To string

Progress Corticon.js: Rule Language: Version 2.046

Chapter 5: Rule operator details and examples

• Trim spaces

• True

• Truncate

• Uppercase

• Week of month

• Week of year

• Weeks between

• Year

• Years between

Absolute value
SYNTAX
<Number>.absVal

DESCRIPTION
Returns the absolute value of <Number>. If the <Number> is positive, <Number> itself is returned; if <Number>
is negative, the negation of <Number> is returned.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .absVal to produce the absolute value of decimal2 and assign it to decimal1

47Progress Corticon.js: Rule Language: Version 2.0

Absolute value

SAMPLE RULETEST
A sample Ruletest provides decimal2 values for three different scenarios of Entity1. Input and Output
panels are shown below.

Add numbers
SYNTAX
<Number1> + <Number2>

DESCRIPTION
Adds <Number1> to <Number2>. The resulting data type is the more expansive of those of <Number1> and
<Number2>. For example, if you are adding an Integer value and a Decimal value, the resulting value will be
a Decimal. See Precedence of rule operators on page 211.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses the add numbers operation to add the value of decimal2 to the value of integer1
and assign the result to decimal1

Progress Corticon.js: Rule Language: Version 2.048

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides an integer1 value of 300which is added to the value of decimal2 and assigned
to the value of decimal1 for three instances of Entity1. Input and Output panels are shown below.

Add strings
SYNTAX
<String1> + <String2>

DESCRIPTION
Adds <String1> to <String2>. This has the same effect as using the .concat operator. However, the “+”
syntax permits concatenation of more than two String values without nesting, as shown in the example below.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

49Progress Corticon.js: Rule Language: Version 2.0

Add strings

RULESHEET EXAMPLE
This sample Rulesheet uses add strings operation to add the String AAA to string2 to ZZZ and assign the
result to string1

SAMPLE RULETEST

Add days
SYNTAX
<DateTime>.addDays(<Integer>)

<Date>.addDays(<Integer>)

DESCRIPTION
Adds the number of days in <Integer> to the number of days in <DateTime> or <Date>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.050

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
This sample Rulesheet uses .addDays to add 45 days to the value of dateTime2 and assign the result to
dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below. Notice the month portion of dateTime1 also changes accordingly.

Add hours
SYNTAX
<DateTime>.addHours(<Integer>)

DESCRIPTION
Adds the number of hours in <Integer> to the number of hours in the Time portion of <DateTime.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

51Progress Corticon.js: Rule Language: Version 2.0

Add hours

RULESHEET EXAMPLE
This sample Rulesheet uses the . addHours to add 30 hours to the value of dateTime2 and assign the result
to dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below.

Add minutes
SYNTAX
<DateTime>.addMinutes(<Integer>)

DESCRIPTION
Adds the number of minutes in <Integer> to the number of minutes in the Time portion of <DateTime>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.052

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
This sample Rulesheet uses the . addMinutes add 90 minutes to the value of dateTime2 and assign the
result to dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below.

Add months
SYNTAX
<DateTime>.addMonths(<Integer>)

<Date>.addMonths(<Integer>)

DESCRIPTION
Adds the number of months in <Integer> to the number of months in <DateTime> or <Date>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

53Progress Corticon.js: Rule Language: Version 2.0

Add months

RULESHEET EXAMPLE
This sample Rulesheet uses . addMonths in a Nonconditional rule to add 10months to the value of dateTime2
and assign the result to dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below. Notice the year portion of dateTime1 also changes accordingly.

Add seconds
SYNTAX
<DateTime>.addSeconds(<Integer>)

DESCRIPTION
Adds the number of seconds in <Integer> to the number of seconds in the Time portion of <DateTime> .

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.054

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
This sample Rulesheet uses .addSeconds in a Nonconditional rule to add 90 seconds to the value of
dateTime2 and assign the result to dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below.

Add years
SYNTAX
<DateTime>.addYears(<Integer>)

<Date>.addYears(<Integer>)

DESCRIPTION
Adds the number of years in <Integer> to the number of years in the Date portion of <DateTime> or <Date>.

55Progress Corticon.js: Rule Language: Version 2.0

Add years

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .addYears in a Nonconditional rule to add 10 years to the value of dateTime2
and assign the result to dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below.

After date
SYNTAX
<DateTime1>.afterDate(<DateTime2>)

DESCRIPTION
Returns boolean. True if DateTime1 is after DateTime2, ignoring the time part.

Progress Corticon.js: Rule Language: Version 2.056

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .afterDate to determine whether a dateTime date value is a later date than
another.

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

57Progress Corticon.js: Rule Language: Version 2.0

After date

After time
SYNTAX
<DateTime1>afterTime(<DateTime2>)

DESCRIPTION
Returns boolean. True if DateTime1 is after DateTime2, ignoring the date part.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .afterTime to determine whether a dateTime time value is a later time than
another.

Progress Corticon.js: Rule Language: Version 2.058

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

59Progress Corticon.js: Rule Language: Version 2.0

After time

Associate elements
SYNTAX
<Collection1> += <Collection2>

<Collection1> += <Entity>

DESCRIPTION
Associates all elements of <Collection2> or a single element named <Entity> with <Collection1>,
provided such an association is allowed by the Vocabulary. Every collection must be uniquely identified with
an alias or role.
If the cardinality of the association between the parent entity of <Collection> and the <Entity> being
added is “one-to-one” (a straight line icon beside the association in the Rule Vocabulary), then this associate
element syntax is not used. Instead, replace element syntax is used, since the collection can contain only one
element, and any element present will be replaced by the new element.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: associate
element may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage
restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses associate element to associate an element of collection2 to collection1
when boolean1 value of any element in collection2 is true. Note that the Action is not associating all
elements in collection2 with collection1, only those elements within collection2 that satisfy the
condition.

Progress Corticon.js: Rule Language: Version 2.060

Chapter 5: Rule operator details and examples

SAMPLE RULETEST: HIER
A sample Ruletest provides two examples of Entity2 with boolean1 values, and a single Entity1. Input
and Output panels shows the association embedded in the parent entity:

SAMPLE RULETEST: FLAT
Setting two properties in the Studio's brms.properties file enables a Flat payload:

com.corticon.tester.ccserver.execute.format=XML
com.corticon.designer.tester.xmlmessagingstyle=Flat

After restarting Studio, running the same sample Ruletest shows the association dropping to the root with an
href entity:

At
SYNTAX
<Sequence> ->at(<Integer>).<Attribute1>

DESCRIPTION
Returns the value of <Attribute1> for the element at position <Integer> in <Sequence>. Another operator,
such as ->sortedBy, must be used to transform a <Collection> into a <Sequence> before ->at may be
used. <Sequence> must be expressed as a unique alias. See "Advanced collection sorting syntax" in the Rule
Modeling Guide for more examples of usage.

61Progress Corticon.js: Rule Language: Version 2.0

At

<Attribute1> may be of any data type.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->at(2) to identify the second element of the sequence created by applying sortedBy
to collection1. Once identified, the value of the string1 attribute belonging to this second element is
evaluated. If the value of string1 is Joe, then boolean1 attribute of Entity1 is assigned the value of true.

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

Progress Corticon.js: Rule Language: Version 2.062

Chapter 5: Rule operator details and examples

Average
SYNTAX
<Collection.attribute> ->avg

DESCRIPTION
Averages the values of all of the specified attributes in <Collection>. <Collection> must be expressed
as a unique alias. <attribute> must be a numeric data type.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->avg to average the integer1 values of all elements in collection2, then
assigns the resulting value to decimal1 in Entity1. Note the use of the alias collection2 to represent
the collection of Entity2 elements associated with Entity1.

SAMPLE RULETEST
A sample Ruletest provides integer1 values for three elements in collection2. The following illustration
shows Input and Output panels:

63Progress Corticon.js: Rule Language: Version 2.0

Average

Before date
SYNTAX
<DateTime1>.beforeDate(<DateTime2>)

DESCRIPTION
Returns boolean. True if DateTime1 is an earlier date than DateTime2, ignoring the time part.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .beforeDate to determine whether a dateTime value is an earlier date than
another.

Progress Corticon.js: Rule Language: Version 2.064

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Before time
SYNTAX
<DateTime1>.beforeTime(<DateTime2>)

DESCRIPTION
Returns boolean. True if DateTime1 is before DateTime2, ignoring the date part.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .beforeTime to determine whether a dateTime time value is an earlier date than
another.

65Progress Corticon.js: Rule Language: Version 2.0

Before time

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Progress Corticon.js: Rule Language: Version 2.066

Chapter 5: Rule operator details and examples

Ceiling
SYNTAX
<Decimal>.ceiling

DESCRIPTION
Returns the Decimal furthest from <Decimal>. .ceiling may also be thought of as a rounding to a whole
number in the direction of positive infinity.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The Rulesheet uses .ceiling to assign Decimal values to decimal1 that are closer to zero than the input
decimal2 values.

SAMPLE RULETEST
A sample Ruletest provides three decimal2 values. Input and Output panels are shown below:

67Progress Corticon.js: Rule Language: Version 2.0

Ceiling

CellValue
SYNTAX
Various, see Examples below

DESCRIPTION
When used in an expression, cellValue performs text replacement where the value is determined by the rule
Column that executes. Using cellValue in a Condition or Action expression eliminates the need for multiple,
separate Rows to express the same logic.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: cellValue
may only be used in Condition and Action Rows (sections 3 and 5 in Sections of Rulesheet that correlate with
usage restrictions).

RULESHEET EXAMPLE 1
This sample Rulesheet uses cellValue to increment integer1 by the amount in the Action Cell of the rule
Column that fires. An equivalent Rulesheet which does not use cellValue is also shown for comparison purposes.

Equivalent Rulesheet without using cellValue:

Progress Corticon.js: Rule Language: Version 2.068

Chapter 5: Rule operator details and examples

SAMPLE RULETEST 1
A sample Ruletest provides two examples of boolean1. The following table shows Input and Output panels.

Character at
SYNTAX
<String>.characterAt(index:Integer)

DESCRIPTION
Returns the character at the specified position in the String.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This action-only operator parses the specified string, and then returns that character to the return character
string.

69Progress Corticon.js: Rule Language: Version 2.0

Character at

SAMPLE RULETEST
A sample Ruletest provides three elements that point out (1) the expected behavior, (2) the result when the
character is not alphanumeric, and (3) a null when there is no character at that position in the String.

Clone
SYNTAX
<Entity>.clone[<Expression1>,<Expression2>…]

DESCRIPTION
Copies the specified Entity and its attribute values to a new Entity where Expressions (in the form
attribute=value) override the corresponding cloned attribute values. The new Entity has no associations.
Where an Entity specifies an Entity Identity, that identity is not copied to its clone entity. For each Entity in
Collection, the operator creates a duplicate of Entity. The implementation is a shallow clone -- associations
are not duplicated.

Progress Corticon.js: Rule Language: Version 2.070

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: clone may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with
usage restrictions).

Nested clone calls are not supported, such as E1.clone[assoc1 += E1.assoc1.clone[…]].

RULESHEET EXAMPLE
The following Rulesheet uses .clone to create a new Entity2 element when the value of qtyOrdered in
Entity1 is greater than the qtyShipped value. An alias is not required by the .clone operator, because it
is possible to create a new entity at the root level, without inserting it into a collection.

SAMPLE RULETEST
A sample Ruletest provides two collections of Entity1. Input, Output, and Expected panels are as follows:

71Progress Corticon.js: Rule Language: Version 2.0

Clone

RULESHEET EXAMPLE: COLLECTION
The following Rulesheet uses .clone to create a new Entity2 element in collection1 when Entity1 has
a non-zero qtyOrdered value.

Progress Corticon.js: Rule Language: Version 2.072

Chapter 5: Rule operator details and examples

SAMPLE RULETEST: COLLECTION
A sample Ruletest provides three collections of Entity1. Input and Output panels are illustrated below:

Concatenate
SYNTAX
<String1>.concat(<String2>)

DESCRIPTION
Concatenates <String1> to <String2>, placing <String2> at the end of <String1>

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

73Progress Corticon.js: Rule Language: Version 2.0

Concatenate

RULESHEET EXAMPLE
This sample Rulesheet uses .concat to create string1 by combining string1 and string2 from
Entity1.entity2.

SAMPLE RULETEST
A sample Ruletest provides three examples of string1 and string2. Input and Output panels are shown
below.

Progress Corticon.js: Rule Language: Version 2.074

Chapter 5: Rule operator details and examples

Contains
SYNTAX
<String1>.contains(<String2>)

DESCRIPTION
Evaluates <String1> and returns a value of true if it contains or includes the exact (case-sensitive) characters
specified in <String2>.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE 1
The following uses .contains to evaluate whether string1 includes the characters silver and assigns a
value to boolean1 for each outcome.

SAMPLE RULETEST 1
A sample Ruletest provides string1 values for three examples. Input and Output panels are shown below.
Note case sensitivity in these examples. Posted messages are not shown.

75Progress Corticon.js: Rule Language: Version 2.0

Contains

Day
SYNTAX
<DateTime>.day

<Date>.day

DESCRIPTION
Returns the day portion of <DateTime> or <Date> as an Integer between 1 and 31.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .day to assign a value to string1 and post a message.

Progress Corticon.js: Rule Language: Version 2.076

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides dateTime1 values for three examples. Input and Output panels are shown below.
Posted messages are not shown.

Day of week
SYNTAX
<DateTime>.dayOfWeek

<Date>.day

DESCRIPTION
Returns an Integer between 1 and 7, corresponding to the table below:

77Progress Corticon.js: Rule Language: Version 2.0

Day of week

day of the weekreturned Integer

Sunday1

Monday2

Tuesday3

Wednesday4

Thursday5

Friday6

Saturday7

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .dayOfWeek to assign a value to boolean1.

SAMPLE RULETEST

Progress Corticon.js: Rule Language: Version 2.078

Chapter 5: Rule operator details and examples

Day of year
SYNTAX
<DateTime>.dayOfYear

<Date>.dayOfYear

DESCRIPTION
Returns an Integer from 1 to 366, equal to the day number within the year.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .dayOfYear to assign a value to string1.

SAMPLE RULETEST

79Progress Corticon.js: Rule Language: Version 2.0

Day of year

Days between
SYNTAX
<DateTime1>.daysBetween(<DateTime2>)

<Date1>.daysBetween(<Date2>)

DESCRIPTION
Returns the Integer number of days between DateTimes or Dates. This function calculates the number of
milliseconds between the date values and divides that number by 86,400,000 (the number of milliseconds in
a day). Any fraction is truncated, leaving an Integer result. If the two dates differ by less than a full 24-hour
period, the value returned is zero. A positive Integer value is returned when <DateTime2> occurs after
<DateTime1>.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .daysBetween to determine the number of days that have elapsed between
dateTime1 and dateTime2, compare it to the values in the Condition cells, and assign a value to string1.

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for three examples. Input and Output panels are
shown below.

Progress Corticon.js: Rule Language: Version 2.080

Chapter 5: Rule operator details and examples

Decrement
SYNTAX
<Number1> -= <Number2>

DESCRIPTION
Decrements <Number1> by the value of <Number2>. The data type of <Number1> must accommodate the
subtraction of <Number2>. In other words, an Integer may not be decremented by a Decimal without using
another operator (such as .toInteger or Floor on page 96) to first convert the Decimal to an Integer.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: decrement
may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage restrictions).

RULESHEET EXAMPLE
This sample Rulesheet uses decrement to reduce integer1 by the value of integer2 when boolean1 is
false.

81Progress Corticon.js: Rule Language: Version 2.0

Decrement

SAMPLE RULETEST
A sample Ruletest provides three examples of integer1, integer2, and boolean1. Input and Output panels
are shown below.

Disassociate elements
SYNTAX
<Collection1> -= <Collection2>

DESCRIPTION
Disassociates all elements of <Collection2> from <Collection1>. Elements are not deleted, but once
disassociated from <Collection1>, they are moved to the root level of the data. <Collection1> must be
expressed as a unique alias. Contrast this behavior with remove, which deletes elements entirely.

Progress Corticon.js: Rule Language: Version 2.082

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
TheOperators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: disassociate
element may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage
restrictions).

RULESHEET EXAMPLE
This sample Rulesheet removes those elements from collection1 whose boolean1 value is true.

SAMPLE RULETEST
A sample Ruletest provides a collection with three elements. The illustration shows Input and Output panels:

Divide
SYNTAX
<Number1>/<Number2>

DESCRIPTION
Divides <Number1> by <Number2>. The resulting data type is the more expansive of those of <Number1>
and <Number2>.

83Progress Corticon.js: Rule Language: Version 2.0

Divide

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses divide to divide decimal1 by integer1 and assign the resulting value to
decimal2

SAMPLE RULETEST
A sample Ruletest provides decimal1 and integer1 values for three examples. Input and Output panels
are shown below.

Ends with
SYNTAX
<String1>.endsWith(<String2>)

Progress Corticon.js: Rule Language: Version 2.084

Chapter 5: Rule operator details and examples

DESCRIPTION
Evaluates <String1> and returns a value of true if it ends with the characters specified in <String2>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .endsWith to evaluate whether string1 ends with the characters ville and
assigns a different value to string2 for each outcome.

SAMPLE RULETEST
A sample Ruletest provides string1 values for three examples. Input and Output panels are shown below.

Equals ignoring case
SYNTAX
<String1>.equalsIgnoreCase(<String2>)

85Progress Corticon.js: Rule Language: Version 2.0

Equals ignoring case

DESCRIPTION
Returns a value of true if <String1> is the same as <String2>, irrespective of case.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .equalsIgnoreCase to compare the values of string1 and string2, and assign
a value to boolean1 based on the results of the comparison.

SAMPLE RULETEST
A sample Ruletest provides the plane type for three sets of string1 and string2. Input and Output panels
are shown below. Notice how these results differ from those shown in the equals example.

Progress Corticon.js: Rule Language: Version 2.086

Chapter 5: Rule operator details and examples

Equals when used as an assignment
SYNTAX

<Boolean1> = <Expression1>Boolean

<DateTime1> = <DateTime2>DateTime*

<Number1> = <Number2>Number

<String1> = <String2>String

DESCRIPTION

Assigns the truth value of <Expression1> to <Boolean1>.Boolean

Assigns the value of <DateTime2> to <DateTime1>.DateTime*

Assigns the value of <Number2> to <Number1>. Automatic casting (the process of
changing a value's data type) will occur when assigning an Integer data type to a Decimal
data type. To assign a Decimal value to an Integer value, use the .toInteger operator.

Number

Assigns the value of <String2> to <String1>.String

* includes DateTime and Date data types.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: equals
used as an assignment may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate
with usage restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses equals twice: in an Action row to assign a value to decimal1, and in an Action
row to assign a value to string1 based on the value of boolean1.

87Progress Corticon.js: Rule Language: Version 2.0

Equals when used as an assignment

SAMPLE RULETEST
A sample Ruletest provides two examples of boolean1. Input and Output panels are shown below:

Equals when used as a comparison
SYNTAX

<Expression1> = <Expression2>Boolean

<DateTime1> = <DateTime2>DateTime

<Number1> = <Number2>Number

<String1> = <String2>String

Progress Corticon.js: Rule Language: Version 2.088

Chapter 5: Rule operator details and examples

DESCRIPTION

Returns a value of true if <Expression1> is the same as <Expression2>.Boolean

Returns a value of true if <DateTime1> is the same as <DateTime2>, including both
the Date and the Time portions

DateTime

Returns a value of true if <Number1> is the same as <Number2>. Different numeric
data types may be compared in the same expression.

Number

Returns a value of true if <String1> is the same as <String2>. Both case and length
are examined to determine equality. Corticon.js Studio uses the ISO character precedence
in comparing String values.

String

*includes DateTime and Date data types

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses equals to Ruletest whether decimal1 equals decimal2, and assign a value
to string1 based on the result of the comparison.

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

89Progress Corticon.js: Rule Language: Version 2.0

Equals when used as a comparison

Equals when using Strings
SYNTAX
<String1>.equals(<String2>)

DESCRIPTION
Returns a value of true if <String1String2>, including character case. This is alternative syntax to > is
exactly the same as <equals (used as a comparison).

USAGE RESTRICTIONS
The Operators row in the table Summary Table of Vocabulary Usage Restriction applies. No special exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .equals to compare the contents of string1 and string2, and assign a value
to boolean1 as a result.

SAMPLE RULETEST
>A sample Ruletest provides three sets of string1 and string2. Input and Output panels are shown
below. Notice how these results differ from those shown in the .equalsIgnoreCase example.

Progress Corticon.js: Rule Language: Version 2.090

Chapter 5: Rule operator details and examples

Exists
SYNTAX
<Collection> ->exists(<Expression1>,<Expression2>,…)

<Collection> ->exists(<Expression1> or <Expression2> or …)

DESCRIPTION
Returns a value of true if <Expression> holds true for at least one element of <Collection>. <Collection>
must be expressed as a unique alias. Multiple <Expressions> are optional, but at least one is required.

Both AND (indicated by commas between <Expressions>) and OR syntax (indicated by or between
<Expressions>) are supported within the parentheses (..). However, take care to ensure invariant
expressions are not inadvertently created. For example:

<Collection> -> exists(integer1=5, integer1=8)

will always evaluate to false because no integer1 value can be both 5 AND 8 simultaneously.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->exists to check for the existence of an element in collection1 whose
string1 value equals New, and assigns a value to decimal1 based on the results of the test. Note the use
of unique alias collection1 to represent the collection of Entity2 associated with Entity1.

91Progress Corticon.js: Rule Language: Version 2.0

Exists

SAMPLE RULETEST
A sample Ruletest provides 2 separate collections of Entity2 elements and Entity1.decimal1 values. Input
and Output panels are shown below.

Exponent
SYNTAX
<Number1> ** <Number2>

Progress Corticon.js: Rule Language: Version 2.092

Chapter 5: Rule operator details and examples

DESCRIPTION
Raises <Number1> by the power of <Number2>. The resulting data type is the more expansive of those of
<Number1> and <Number2>. To find a root, <Number2> can be expressed as a decimal value, such as 0.5
for a square root, or -- for greater accuracy in larger roots -- in decimal format within parentheses, such as
**(1.0/3.0) for a cube root.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses exponent to raise integer1 and integer2 by the power of 2 and 0.5,
respectively, and assign the resulting value to decimal1 and decimal2, respectively.

SAMPLE RULETEST
A sample Ruletest provides decimal1 and integer1 values for three examples.

93Progress Corticon.js: Rule Language: Version 2.0

Exponent

False
SYNTAX
false or F

DESCRIPTION
Represents the Boolean value false. Recall from discussion of truth values that an <expression> is evaluated
for its truth value, so the expression Entity1.boolean1=false evaluates to true only when
boolean1=false. But since boolean1 is Boolean and has a truth value all by itself without any additional
syntax, we could simply state not Entity1.boolean1, with the same effect. Many examples in the
documentation use explicit syntax like boolean1=true or boolean2=false for clarity and consistency, even
though boolean1 or not boolean2 are equivalent, respectively, to the explicit syntax.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions applies. No special exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses false in a Filter row to test whether boolean1 is false, and perform the
Nonconditional computation if it is. As discussed above, the alternative expression not Entity1.boolean1
is logically equivalent.

SAMPLE RULETEST
A sample Ruletest provides three examples. Assume decimal2=10.0 and integer1=5 for all examples. Input
and Output panels are shown below:

Progress Corticon.js: Rule Language: Version 2.094

Chapter 5: Rule operator details and examples

First
SYNTAX
<Sequence> ->first.<attribute1>

DESCRIPTION
Returns the value of <attribute1> of the first element in <Sequence>. Another operator, such as ->sortedBy,
must be used to transform a <Collection> into a <Sequence> before ->first may be used. <Sequence>
must be expressed as a unique alias. See "Advanced collection sorting syntax" in the Rule Modeling Guide
for more examples of usage.

<attribute1> may be of any data type.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->first to identify the first element of the sequence created by applying ->sortedBy
to collection1. Once identified, the value of the string1 attribute belonging to this first element is evaluated.
If the value of string1 is Joe, then boolean1 attribute of Entity1 is assigned the value of true.

95Progress Corticon.js: Rule Language: Version 2.0

First

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

Floor
SYNTAX
<Decimal>.floor

DESCRIPTION
Returns the Decimal closest to zero from <Decimal>. .floor may also be thought of as a truncation of
<Decimal>.

Progress Corticon.js: Rule Language: Version 2.096

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The Rulesheet uses .floor to assign decimal values to decimal that are closer to zero than the input decimal2
values.

SAMPLE RULETEST
A sample Ruletest provides three decimal2 values. Input and Output panels are shown below:

Note: Notice how these results differ from those shown in the Round example.

For all
SYNTAX
<Collection> ->forAll(<Expression1>, <Expression2>,…)

97Progress Corticon.js: Rule Language: Version 2.0

For all

<Collection> ->forAll(<Expression1> or <Expression2> or …)

DESCRIPTION
Returns a value of true if every <Expression> holds true for every element of <Collection>. <Collection>
must be expressed as a unique alias. Multiple <Expressions> are optional, but at least one is required.

Both AND (indicated by commas between <Expressions>) and OR syntax (indicated by or between
<Expressions>) is supported within the parentheses (..). However, take care to ensure invariant expressions
are not inadvertently created. For example:

<Collection> -> forAll(integer1=5, integer1=8)

will always evaluate to false because no single integer1 value can be both 5 AND 8 simultaneously, let
alone all of them.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->forAll to check for the existence of an element in collection1whose string1
value equals New, and assigns a value to decimal1 based on the results of the test. Note the use of unique
alias collection1 to represent the collection of Entity2 associated with Entity1.

SAMPLE RULETEST
A sample Ruletest provides 2 separate collections of Entity2 elements and Entity1.decimal1 values.
The following illustration shows Input and Output panel

Progress Corticon.js: Rule Language: Version 2.098

Chapter 5: Rule operator details and examples

Get Milliseconds
SYNTAX
<DateTime>.getMilliseconds

DESCRIPTION
Returns the number of milliseconds elapsed since the epoch: January 1, 1970.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .getMilliSeconds in a Nonconditional rule to evaluate the number of milliseconds
between the epoch and dateTime1, and return the number as integer1.

99Progress Corticon.js: Rule Language: Version 2.0

Get Milliseconds

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below.

Greater than
SYNTAX

<DateTime1> > <DateTime2>DateTime*

<Number1> > <Number2>Number

<String1> > <String2>String

Progress Corticon.js: Rule Language: Version 2.0100

Chapter 5: Rule operator details and examples

DESCRIPTION

Returns a value of true if <DateTime1> is greater
than or equal to <DateTime2>. This is equivalent to
<DateTime1> occurring after <DateTime2>

DateTime*

Returns a value of true if <Number1> is greater than
<Number2>. Different numeric data types may be
compared in the same expression.

Number

Returns a value of true if <String1> is greater than
<String2>.

String

*includes DateTime and Date data types

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions applies, with the following exception: greater
thanmay also be used in Conditional Value Sets & Cells (section 5 in Sections of Rulesheet that correlate with
usage restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses greater than to test whether string1 is greater than string2, and assigns
YES or NO to string3.

SAMPLE RULETEST
A sample Ruletest provides three examples. Input and Output panels are shown below:

101Progress Corticon.js: Rule Language: Version 2.0

Greater than

Greater than or equal to
SYNTAX

<DateTime1> >= <DateTime2>DateTime*

<Number1> >= <Number2>Number

<String1> >= <String2>String

DESCRIPTION

Returns a value of true if <DateTime1> is greater
than or equal to <DateTime2>. This is equivalent to
<DateTime1> occurring on or after <DateTime2>

DateTime*

Returns a value of true if <Number1> is greater than
or equal to <Number2>. Different numeric data types
may be compared in the same expression.

Number

Returns a value of true if <String1> is greater than
or equal to <String2>.

String

*includes DateTime and Date data types

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions applies, with the following exception: greater
than or equal to may also be used in Conditional Value Sets & Cells (section 5 in Sections of Rulesheet that
correlate with usage restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses greater than or equal to to test whether string1 is greater than or equal to
string2, and assigns YES or NO to string3.

Progress Corticon.js: Rule Language: Version 2.0102

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Hour
SYNTAX
<DateTime>.hour

DESCRIPTION
Returns the hour portion of <DateTime>. The returned value is based on a 24-hour clock. For example,
10:00 PM (22:00 hours) is returned as 22.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

103Progress Corticon.js: Rule Language: Version 2.0

Hour

RULESHEET EXAMPLE
The following Rulesheet uses .hour to evaluate dateTime1 and assign the hour value to integer1.

SAMPLE RULETEST
A sample Ruletest provides three examples of dateTime1. Input and Output panels are shown below. Notice
that the hour returned is dependent upon the timezone of the machine executing the rule. The hour returned
is independent of the machine running the Ruletest and only depends on the locale/timezone of the data itself.

Hours between
SYNTAX
<DateTime1>.hoursBetween(<DateTime2>)

DESCRIPTION
Returns the Integer number of hours between any two DateTimes. The function calculates the number of
milliseconds between the two values and divides that number by 3,600,000 (the number of milliseconds in an
hour). The decimal portion is then truncated. If the two dates differ by less than a full hour, the value is zero. This
function returns a positive number if <DateTime2> is later than <DateTime1>.

Progress Corticon.js: Rule Language: Version 2.0104

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .hoursBetween to determine the number of hours that have elapsed between
dateTime1 and dateTime2, compare it to the Values set, and assign a value to string1.

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

105Progress Corticon.js: Rule Language: Version 2.0

Hours between

In LIST
SYNTAX

<Date1> in {<Date2>,<Date3>,...}Date

<DateTime1> in {<DateTime2>,<DateTime3>,...}DateTime

<Decimal1> in {<Decimal2>,<Decimal3>,...}Decimal

<Integer1> in {<Integer2>,<Integer3>,...}Integer

<String1> in {<String2>,<String3>,...}String

DESCRIPTION
Returns the value true if the attribute type is contained in the set of valid values for the attribute.

USAGE RESTRICTIONS
• The set of values is always enclosed in braces: { }

• For integer and decimal data types, a list of literals or enumerated values without labels requires that the
values are not in single quotes, such as {3,1,2}.

• For date and String data types, a list of literals or enumerated values without labels requires that the values
are in single quotes, such as {'B','A','C'}.

• The list can be in any order.

• Duplicate values or labels in a list are tolerated.

When enumerated datatypes with labels are used:

• The labels are listed without delimiters, such as {B,A,C}

• Values and labels can be mixed, such as {A,B,'C_value'}.

Note: While literal values in the enumeration table are accepted in a list, only existing label values will be
exposed and accepted as valid.

The Operators row of the table in Vocabulary Usage Restriction does not apply. The in operator can be used
in Conditions and Filters, but not in Actions.

Progress Corticon.js: Rule Language: Version 2.0106

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The example's Vocabulary defined an enumerated list:

The following Rulesheet uses in to filter certain labels to be tested against request data:

SAMPLE TEST
A sample Ruletest provides examples. Input and Output panels are shown below.

107Progress Corticon.js: Rule Language: Version 2.0

In LIST

In RANGE
SYNTAX

<Date1> in (<earlierDate2>..<laterDate3>)Date

<DateTime1> in (<earlierDateTime2>..<laterDateTime3>)DateTime

<Decimal1> in (<smallerDecimal2>..<largerDecimal3>)Decimal

<Integer1> in (<smallerInteger2>..<largerInteger3>)Integer

<String1> in (<startString2>..<endString3>)String

A square bracket on either end of the expression indicates that the start or end value is to be included in the
range.

DESCRIPTION
Returns the value true if the attribute type is contained in the range of valid values for the attribute.

USAGE RESTRICTIONS
• For integer and decimal data types, the range of values are not in single quotes. For example, (1..3).

• For date and String data types, the range of values are in single quotes. For example, ('A'..'C').

The Operators row of the table in Vocabulary Usage Restriction does not apply. The in operator can be used
in Conditions and Filters, but not in Actions.

Progress Corticon.js: Rule Language: Version 2.0108

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses in ranges for three data types OR'ed together in a filter to be tested against
request data:

SAMPLE TEST
A sample Ruletest provides examples. Input and Output panels are shown below.

109Progress Corticon.js: Rule Language: Version 2.0

In RANGE

Increment
SYNTAX
<Number1> += <Number2>

DESCRIPTION
Increments <Number1> by the value of <Number2>. The data type of <Number1> must accommodate the
addition of <Number2>. In other words, an Integer may not be incremented by a Decimal without using another
operator (such as .toInteger or Floor on page 96.floor) to first convert the Decimal to an Integer.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: increment
may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage restrictions).

RULESHEET EXAMPLE
This sample Rulesheet uses increment to increment integer1 by the value of integer2 when boolean1
is true.

SAMPLE RULETEST
A sample Ruletest provides three examples of integer1, integer2, and boolean1. Input and Output panels
are shown below.

Progress Corticon.js: Rule Language: Version 2.0110

Chapter 5: Rule operator details and examples

Index of
SYNTAX
<String1>.indexOf(<String2>)

DESCRIPTION
Determines if <String2> is contained within <String1> and returns an Integer value equal to the beginning
character position of the first occurrence of <String2> within <String1>. If <String1> does not contain
<String2>, then a value of 0 (zero) is returned. This operator is similar to .contains but returns different
results. A 0 result from .indexOf is equivalent to a false value returned by the .contains operator.

If <String1> contains more than one occurrence of <String2>, .indexOf returns the first character position
of the first occurrence. For example: If <String1> holds the String value ‘Mississippi’ and <String2>
holds the String value ‘ss’, then the .indexOf operator returns 3. The second occurrence of ‘ss’ beginning
at position 6 is not identified.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .indexOf to evaluate whether string1 includes the characters silver and
assigns a value to integer1 corresponding to the beginning character position of the first occurrence.

111Progress Corticon.js: Rule Language: Version 2.0

Index of

SAMPLE RULETEST
A sample Ruletest provides string1 values for three examples. Input and Output panels are shown below.
Notice sensitivity to case in example 1.

Is empty
SYNTAX
<Collection> ->isEmpty

DESCRIPTION
Returns a value of true if <Collection> contains no elements (that is, has no children). ->isEmpty does
not check for an empty or null value of an attribute, but instead checks for existence of elements within the
collection. As such, a unique alias must be used to represent the <Collection> being tested.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0112

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
This sample Rulesheet uses ->isEmpty to determine if collection1 has any elements. Note the use of
unique alias collection1 to represent the collection of Entity2 associated with Entity1.

SAMPLE RULETEST
A sample Ruletest provides two example collection1. The following illustration shows Input and Output
panels

Is integer
SYNTAX
<String>.isInteger

DESCRIPTION
Returns true if string is an integer

113Progress Corticon.js: Rule Language: Version 2.0

Is integer

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses isInteger.

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a string11 value. Input and Output
panels are shown below.

Last
SYNTAX
<Sequence> ->last.<Attribute1>

Progress Corticon.js: Rule Language: Version 2.0114

Chapter 5: Rule operator details and examples

DESCRIPTION
Returns the value of <Attribute1> of the last element in <Sequence>. Another operator, such as ->sortedBy,
must be used to transform a <Collection> into a <Sequence> before ->last may be used. <Sequence>
must be expressed as a unique alias. <Attribute1> may be of any data type. See "Advanced collection
sorting syntax" in the Rule Modeling Guide for more examples of usage.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->last to identify the last element of the sequence created by applying ->sortedBy
to collection1. Once identified, the value of the string1 attribute belonging to this last element is evaluated.
If the value of string1 is Joe, then boolean1 attribute of Entity1 is assigned the value of true.

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

115Progress Corticon.js: Rule Language: Version 2.0

Last

Is same date
SYNTAX
<DateTime1>.isSameDate(<DateTime2>)

DESCRIPTION
Returns boolean. True if the DateTime1 is the same as DateTime2, ignoring the time part.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .isSameDate to determine whether two dateTime values are the same date.

Progress Corticon.js: Rule Language: Version 2.0116

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Is same time
SYNTAX
<DateTime1>.isSameTime(<DateTime2>)

DESCRIPTION
Returns boolean. True if DateTime1 is the same as DateTime2, ignoring the date part.

117Progress Corticon.js: Rule Language: Version 2.0

Is same time

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .isSameTime to determine whether two dateTime values are the same time.

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Progress Corticon.js: Rule Language: Version 2.0118

Chapter 5: Rule operator details and examples

Less than
SYNTAX

<DateTime1> < <DateTime2>DateTime*

<Number1> < <Number2>Number

<String1> < <String2>String

119Progress Corticon.js: Rule Language: Version 2.0

Less than

DESCRIPTION

Returns a value of true if <DateTime1> is less than
<DateTime2>. This is equivalent to <DateTime1>
occurring “before” <DateTime2>

DateTime*

Returns a value of true if <Number1> is less than
<Number2>. Different numeric data types may be
compared in the same expression.

Number

Returns a value of true if <String1> is less than
<String2>.

String

* includes DateTime and Date data types

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restrictionless than may also be
used in Conditional Value Sets & Cells (section 5 in applies, with the following exception: Sections of Rulesheet:
Numbers Correlate with Table Above).

RULESHEET EXAMPLE
The following Rulesheet uses less than to test whether string1 is less than string2.

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Progress Corticon.js: Rule Language: Version 2.0120

Chapter 5: Rule operator details and examples

Less than or equal to
SYNTAX

<DateTime1> <= <DateTime2>DateTime*

<Number1> <= <Number2>Number

<String1> <= <String2>String

DESCRIPTION

Returns a value of true if <DateTime1> is less than
or equal to <DateTime2>. This is equivalent to
<DateTime1> occurring “on or before” <DateTime2>

DateTime*

Returns a value of true if <Number1> is less than or
equal to <Number2>. Different numeric data types
may be compared in the same expression.

Number

Returns a value of true if <String1> is less than or
equal to <String2>.

String

* includes DateTime and Date data types

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies, with the following
exception: less than or equal to may also be used in Conditional Value Sets & Cells (section 5 of Sections
of Rulesheet that correlate with usage restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses less than or equal to to test whether string1 is less than or equal to string2.

121Progress Corticon.js: Rule Language: Version 2.0

Less than or equal to

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Logarithm BASE 10
SYNTAX
<Number>.log

DESCRIPTION
Returns a Decimal value equal to the logarithm (base 10) of <Number>. If <Number> is equal to 0 (zero) an
error is returned when the rule is executed.

Progress Corticon.js: Rule Language: Version 2.0122

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .log to calculate the logarithm (base 10) of integer1 and assign it to decimal1.

SAMPLE RULETEST
A sample Ruletest provides results for three examples of integer1. Input and Output panels are shown below:

Note: In a case where the rule encounters log(0), it throws an exception that halts execution. That's because
the value of log(0) is undefined. If the rule is executing against multiple entities, the arbitrary order of execution
might be different on subsequent runs before execution is halted.

Logarithm BASE X
SYNTAX
<Number>.log(<Decimal>)

123Progress Corticon.js: Rule Language: Version 2.0

Logarithm BASE X

DESCRIPTION
Returns a Decimal value equal to the logarithm (base <Decimal>) of <Number>. If <Number> is equal to 0
(zero) an error is returned when the rule is executed.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .log to calculate the logarithm (base 7.0) of integer1 and assign it to decimal1.

SAMPLE RULETEST
A sample Ruletest provides results for three examples of integer1. Input and Output panels are shown below:

Note: In a case where the rule encounters log(0), it throws an exception that halts execution. That's because
the value of log(0) is undefined. If the rule is executing against multiple entities, the arbitrary order of execution
might be different on subsequent runs before execution is halted.

Progress Corticon.js: Rule Language: Version 2.0124

Chapter 5: Rule operator details and examples

Lowercase
SYNTAX
<String>.toLower

DESCRIPTION
Converts all characters in <String> to lowercase characters.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toLower to convert string1 to lowercase, compare its value with string2,
and assign a value to boolean1 based on the results of the comparison.

SAMPLE RULETEST
A sample Ruletest provides three examples of string1 and string2. Input and Output panels are shown
below:

125Progress Corticon.js: Rule Language: Version 2.0

Lowercase

Matches
SYNTAX
<String>.matches(regularExpression:String)

<String>.matches(regularExpression:String,flags:<String>)

DESCRIPTION
Returns true if the regular expression matches the String.

FLAGS
The characters gis, when one or more are added to the expression with no separator, represent:

• g global, replace more than first match (the default)

• i ignore case

• s match line terminator ("newline") characters in a string, which it would not match otherwise. See
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/dotAll.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLES
This sample Rulesheet uses matches in non-conditional actions:

Progress Corticon.js: Rule Language: Version 2.0126

Chapter 5: Rule operator details and examples

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/dotAll

Action A: Determine whether a String is a valid identifier - A String must contain an item identification with
the following pattern:

1. Characters 1-5: alphabetic.

2. Characters 6-10: numeric.

3. Character 11: alphabetic.

Action B: Check whether an email address is valid - An email address must have alphanumeric characters
and certain special characters before and after an @ and a dot.

SAMPLE RULETEST
A sample Ruletest provides various valid and invalid Strings that are evaluated by the two regular expression
examples.

127Progress Corticon.js: Rule Language: Version 2.0

Matches

Maximum value
SYNTAX
<Number1>.max(<Number2>)

DESCRIPTION
Returns either <Number1> or <Number2>, whichever is greater.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .max to compare the values of decimal1 and decimal2, and integer1 and
integer2, and posts a message based on their size relative to 5.0 and 8, respectively.

SAMPLE RULETEST
A sample Ruletest provides four examples, two using decimal1 and decimal2, and two using integer1
and integer2 as input data.

Progress Corticon.js: Rule Language: Version 2.0128

Chapter 5: Rule operator details and examples

Maximum value COLLECTION
SYNTAX
<Collection.attribute> -> max

DESCRIPTION
Returns the highest value of <attribute> for all elements in <Collection>. <attribute> must be a
numeric data type. <Collection> must be expressed as a unique alias.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses ->max to identify the highest value of decimal1 in all elements of collection1,
then assign it to Entity1.decimal1.

129Progress Corticon.js: Rule Language: Version 2.0

Maximum value COLLECTION

SAMPLE RULETEST
A sample collection contains five elements, each with a value of decimal1.

Minimum value
SYNTAX
<Number1>.min(<Number2>)

DESCRIPTION
Returns either <Number1> or <Number2>, whichever is smaller.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0130

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses .min to compare the values of decimal1 and decimal2, and integer1 and
integer2, and posts a message based on their size relative to 5.0 and 8, respectively.

SAMPLE RULETEST
A sample Ruletest provides four examples, two using decimal inputs, and two using integers.

131Progress Corticon.js: Rule Language: Version 2.0

Minimum value

Minimum value COLLECTION
SYNTAX
<Collection.attribute> -> min

DESCRIPTION
Returns the lowest value of <attribute> for all elements in <Collection>. <attribute> must be a
numeric data type. <Collection> must be expressed as a unique alias.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses ->min to identify the lowest value of decimal1 in all elements of collection1,
then assign it to Entity1.decimal1.

SAMPLE RULETEST
A sample collection contains five elements, each with a value of decimal1.

Progress Corticon.js: Rule Language: Version 2.0132

Chapter 5: Rule operator details and examples

Minute
SYNTAX
<DateTime>.min

DESCRIPTION
Returns the minute portion of <DateTime> as an Integer between 0 and 59.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .min to evaluate dateTime1 and assign the minute value to integer1.

133Progress Corticon.js: Rule Language: Version 2.0

Minute

SAMPLE RULETEST
A sample Ruletest provides three examples of dateTime1. Input and Output panels are shown below:

Minutes between
SYNTAX
<DateTime1>.minsBetween(<DateTime2>)

DESCRIPTION
Returns the Integer number of minutes between DateTimes. The function calculates the number of milliseconds
between the two dates and divides that number by 60,000 (the number of milliseconds in a minute). The decimal
portion is then truncated. If the two dates differ by less than a full minute, the returned value is zero. This
function returns a positive number if <DateTime2> is later than <DateTime1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .minsBetween to determine the number of minutes that have elapsed between
dateTime1 and dateTime2, compare it to the Values set, and assign a value to string1.

Progress Corticon.js: Rule Language: Version 2.0134

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Mod
SYNTAX
<Integer1>.mod(<Integer2>)

DESCRIPTION
Returns the whole number remainder that results from dividing <Integer1> by <Integer2>. If the remainder
is a fraction, then 0 (zero) is returned.

135Progress Corticon.js: Rule Language: Version 2.0

Mod

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet > uses .mod to calculate the whole number remainder resulting from the division of
integer2 by 3. The result is assigned to integer1.

SAMPLE RULETEST
A sample Ruletest provides three examples of integer2. Input and Output panels are shown below.

Month
SYNTAX
<DateTime>.month

<Date>.month

DESCRIPTION
Returns the month in <DateTime> or Date as an Integer between 1 and 12.

Progress Corticon.js: Rule Language: Version 2.0136

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .month to evaluate dateTime1 and dateTime2 and assign the month value
to integer1 and integer2, respectively.

SAMPLE RULETEST
A sample Ruletest provides two examples with dateTime1 and dateTime2. Input and Output panels are
shown below.

137Progress Corticon.js: Rule Language: Version 2.0

Month

Months between
SYNTAX
<DateTime1>.monthsBetween(<DateTime2>)

<Date1>.monthsBetween(<Date2>)

DESCRIPTION
Returns the Integer number of months between DateTimes or between Dates. The month and year portions
of the date data are subtracted to calculate the number of elapsed months. The day portions are ignored. If
the month and year portions are the same, the result is zero. This function returns a positive number if
<DateTime2> is later than <DateTime1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .monthsBetween to determine the number of months that have elapsed between
dateTime1 and dateTime2, compare it to the values in the Condition Cells, and assign a value to string1.

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Progress Corticon.js: Rule Language: Version 2.0138

Chapter 5: Rule operator details and examples

Multiply
SYNTAX
<Number1> * <Number2>

DESCRIPTION
Multiplies <Number1> by <Number2>. The resulting data type is the more expansive of those of <Number1>
and <Number2>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses multiply to multiply integer1 and integer2 and compare the result to 100

139Progress Corticon.js: Rule Language: Version 2.0

Multiply

SAMPLE RULETEST
A sample Ruletest provides three examples of integer1 and integer2. Input and Output panels are shown
below.

Natural logarithm
SYNTAX
<Number>.ln

DESCRIPTION
Returns a Decimal value equal to the natural logarithm (base e) of <Number>. If <Number> is equal to 0 (zero),
an error is returned when the rule is executed. This error will halt execution for all data present.

Progress Corticon.js: Rule Language: Version 2.0140

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .ln to calculate the natural logarithm of decimal2 and assign it to decimal1.

SAMPLE RULETEST
A sample Ruletest provides results for three examples of decimal2. Input and Output panels are shown below:

Note: In a case where the rule encounters 0.ln, it throws an exception that halts execution. That's because
the value of 0.ln is undefined. If the rule is executing against multiple entities, the arbitrary order of execution
might be different on subsequent runs before execution is halted.

New
SYNTAX
<Entity>.new[<Expression1>,<Expression2>…]

141Progress Corticon.js: Rule Language: Version 2.0

New

DESCRIPTION
creates a new <Entity> with attribute values defined by optional <Expression>. Expressions (when present)
should be written as assignments in the form: attribute = value. The attribute used in <Expression> (when
present) must be an attribute of <Entity>.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: newmay only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage
restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses .new to create a new Entity2 element in collection1 when Entity1 has
a string1 value equal to “PO 123-ABC”. An alias is not required by the .new operator, because it is possible
to create a new entity at the root level, without inserting it into a collection. The collection1 alias used here
is required by the += (Associate Element to collection) operator.

SAMPLE RULETEST
A sample Ruletest provides 2 collections of Entity1. Input and Output panels are illustrated below:

Behavior of the .new operator
The .new operator does not consider implied conditions of non-mandatory attributes (from the initialize
expressions) during execution (in other words, a .new operator always fires when explicit conditions are met).

Progress Corticon.js: Rule Language: Version 2.0142

Chapter 5: Rule operator details and examples

Each initialize expression within a .new… expression will be executed (or not) depending upon implied conditions;
that is, if any input to the expression is null, the target attribute remains null. Another case where an implied
condition would prevent a .new operator for executing is where the new entity is a target to an association
assignment and the parent of that association does not exist.

The following examples assume that all attributes are not mandatory.

• Rule 1:

IF entity1.attr1 > 10 THEN Entity2.new[attr1 = entity1.attr2]

Executes only if entity1 exists, entity1.attr1 is not null, and entity1.attr1 > 10. The
newEntity2.attr1 will be left as null if entity1.attr2 is null.

• Rule 2:

Entity2.new[attr1 = entity1.attr1 + entity1.attr2]

Will always execute. Entity2.attr1 will remain null if entity1 does not exist, or entity1.attr1 is
null, or entity1.attr2 is null.

• Rule 3:

entity1.assoc2 += Entity2.new[attr1 = entity1.attr1]

Will execute only if entity1 exists. Entity2.attr1 will remain null if entity1.attr1 is null.

• Rule 4:

Entity2.new[attr1 = entity1.assoc1.attr1]

This action will always fire. entity2.attr1will remain null if entity1 does not exist, or entity1.assoc1
does not exist, or entity1.assoc1.attr1 is null. Note that this action will fire multiple times if
entity1.assoc1 contains multiple entities (once for each entity contained in the entity1.assoc1
collection).

New unique
SYNTAX
<Entity>.newUnique[<Expression1>,<Expression2>…]

DESCRIPTION
newUnique is an unusual operator in that it contains both action and condition logic. When an Action containing
this operator is executed, a new <Entity> will be created only if no other entity exists with the characteristics
defined by <Expression1> and <Expression2>, etc. <Expression1> and <Expression2> are optional. If
no expression is present within the square brackets [..], the newUnique operator will create a new entity
only if none currently exists in memory.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: newUnique may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate
with usage restrictions).

There is some restriction to using newUnique with associations. newUnique is valid for associations of
multiplicity One to One or Many to One, but is invalid for associations One to Many or Many to Many, as
illustrated:

143Progress Corticon.js: Rule Language: Version 2.0

New unique

RULESHEET EXAMPLE
The following Rulesheet uses .newUnique to create a new Entity2 element with string1=“item1”, and
add it to collection1 only if no existing Entity2 already has string1=“item1”. A collection alias is not
required by the .newUnique operator because it is possible to create a new entity at the root level, without
inserting it into a collection. The collection alias used here is required by the += (Associate Element to collection)
operator.

SAMPLE RULETEST 1
Each of three sample tests provides different combinations of Entity1 and Entity2. Input and Output panels
are illustrated below:

Progress Corticon.js: Rule Language: Version 2.0144

Chapter 5: Rule operator details and examples

Not
SYNTAX
not <Expression>

DESCRIPTION
Returns the negation of the truth value of <Expression>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies, with the following
special exception: not may also be used in Conditional Cells.

RULESHEET EXAMPLE
The following Rulesheet uses not to negate the value of A in the Condition Cell of rule 2. Notmay only be used
in this manner if there is at least one other value (including other or null) present in the Condition Cells values
drop-down list (in other words, there must be at least one alternative to the value negated by not).

145Progress Corticon.js: Rule Language: Version 2.0

Not

SAMPLE RULETEST
A sample Ruletest provides three examples of string1. Input and Output panels are shown below:

Limitations to using NOT in a Conditional cell
When you use not in a Conditional cell with an attribute name, the form is not valueSet which evaluates
as true when the condition is not a member of an entry in the valueSet. Such entries in the valueSet must be
literals (or partial expressions containing only literals); no variables or attributes may be included. Inclusion of
an attribute reference in the valueSet is not valid.
Although not attribute is unsupported, it is not determined that it is invalid until it does not process. Then,
it indicates that it is invalid.

Consider the following examples:

Table 1: Valid usage

Cell valueCondition

not 'red'foo.color

<> 'red'foo.color

<> bar.colorfoo.color

Progress Corticon.js: Rule Language: Version 2.0146

Chapter 5: Rule operator details and examples

Table 2: Invalid usage

Cell valueCondition

not bar.colorfoo.color

Not empty
SYNTAX
<Collection> ->notEmpty

DESCRIPTION
Returns a value of true if <Collection> contains at least one element. ->notEmpty does not check for
attribute values, but instead checks for the existence of elements within a collection. As such, it requires the
use of a unique alias to represent the collection being tested.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses the ->notEmpty function to determine if collection1 has elements. Note the
use of unique alias collection1 to represent the collection of Entity2 associated with Entity1.

SAMPLE RULETEST
A sample Ruletest provides two collections. The following illustration shows Input and Output panels

147Progress Corticon.js: Rule Language: Version 2.0

Not empty

Not equal to
SYNTAX

<Expression1> <> <Expression2>Boolean

<DateTime1> <> <DateTime2>DateTime*

<Number1> <> <Number2>Number

<String1> <> <String2>String

DESCRIPTION

Returns a value of true if <Expression1> does not
have the same truth value as <Expression2>.

Boolean

Returns a value of true if <DateTime1> does not equal
<DateTime2>. This is equivalent to <DateTime1>
not occurring “on” <DateTime2>

DateTime

Returns a value of true if <Number1> is not equal to
<Number2>. Different numeric data types may be
compared in the same expression.

Number

Returns a value of true if <String1> is not equal to
<String2>.

String

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0148

Chapter 5: Rule operator details and examples

Note: Use of < > when using custom data types - If your Vocabulary uses custom data types, there are
limits to the validity of < > in cells. In the following illustration, the not operator will validly work against a custom
data type label, a value where a label is in use, and the value of a value-only definition. However, only the
value where a label is in use is valid when < > is used.

RULESHEET EXAMPLE
The following Rulesheet uses not equal to to test whether decimal1 equals decimal2, and assign a value
to string1 based on the result of the comparison.

149Progress Corticon.js: Rule Language: Version 2.0

Not equal to

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Now
SYNTAX
now

DESCRIPTION
Returns the current system date and time when the rule is executed. This DateTime value is assigned the first
time now is used in a Decision Service, then remains constant until the Decision Service finishes execution,
regardless of how many additional times it is used. This means that every rule in a Ruleflow containing now
will use the same DateTime value.

USAGE RESTRICTIONS
The Literals row in the table of Summary Table of Vocabulary Usage Restriction applies. No special exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses now to determine how many hours have elapsed between now and dateTime1
(See .hoursBetween for more details on this operator), and assign a value to string1 based on the result.

Progress Corticon.js: Rule Language: Version 2.0150

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides two examples of dateTime1. Assume now is equal to May 9, 2021 14:20:00
EST. Note that a future date in example 2 results in a negative value and therefore is under 2 hours. Input and
Output panels are shown below.

Null
SYNTAX
null

DESCRIPTION
The null value corresponds to one of three different scenarios:

1. the absence of an attribute in a Ruletest Input pane or request message

2. the absence of data for an attribute in a Ruletest (the value zero counts as data)

3. a business object (supplied by an external application) that has an instance variable of null

A null value is different from an empty String (for String data types) or zero for numeric data types. An empty
String is represented in a Ruletest as [] -- open then close square brackets. Any attribute value, including any
empty strings, may be reset to null in a Ruletest by right-clicking the attribute and choosing Set to null.
Mandatory attributes (property set in the Vocabulary) may not have a null value.

USAGE RESTRICTIONS
The Literals row in the table of Summary Table of Vocabulary Usage Restriction applies. No special exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses null to test for the existence of a real value in decimal1, and assign a value to
boolean1 as a result.

151Progress Corticon.js: Rule Language: Version 2.0

Null

SAMPLE TEST
A sample Ruletest provides four examples of decimal1. Input and Output panels are illustrated below. Posted
messages are not shown.

Progress Corticon.js: Rule Language: Version 2.0152

Chapter 5: Rule operator details and examples

Other
SYNTAX
other

DESCRIPTION
When included in a condition's Values set (the drop-down list of values available in a Conditions Cell), other
represents any value not explicitly included in the set, including null. If null is explicitly included in the Values
set, then other does not include null.

USAGE RESTRICTIONS
The Literals row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exception: other may only be used in Condition Cells (section 4 of the Sections of Rulesheet that correlate
with usage restrictions) because it is a non-specific value used in comparisons.

RULESHEET EXAMPLE
The following Rulesheet uses other to test the value of decimal1. If decimal1 has any value other than null,
boolean1 is assigned the value of false.

SAMPLE TEST
A sample Ruletest provides three examples of decimal1. Ruletest Input and Output panels are shown below:

153Progress Corticon.js: Rule Language: Version 2.0

Other

Or
SYNTAX
<Expression1> or <Expression2> or ….

DESCRIPTION
Returns a value of true if either <Expression1> or <Expression2> evaluates to true. When used between
two or more expressions in the Preconditions section, creates a compound filter for the Rulesheet that
follows. See Rule Modeling Guide for details on using Preconditions as filters. OR is not available in the
Conditions section because the logicalOR construction is implemented using multiple Columns in the decision
table, or by value sets in Conditions Cells.

USAGE RESTRICTIONS
The Literals row in the table of Sections of Rulesheet that correlate with usage restrictions does not apply.
Special exception: or may only be used in the Filters section of the Rulesheet to join 2 or more expressions,
as shown above.

RULESHEET EXAMPLE
The following Rulesheet uses or to test the value of integer1, boolean1, and string1 to set the value of
boolean2

Progress Corticon.js: Rule Language: Version 2.0154

Chapter 5: Rule operator details and examples

SAMPLE TEST
A sample Ruletest provides three examples. Input and Output panels are shown below:

Random
SYNTAX
<IntegerAttribute>.random(minRange,maxRange)

<DecimalAttribute>.random(minRange,maxRange)

DESCRIPTION
Returns a random value between minRange and maxRange. Either range can be a numeric value of the same
datatype, or numeric attributes of the same type; in which case, the attributes can have arithmetic operators,
absoluteValue, and unary negative applied.

155Progress Corticon.js: Rule Language: Version 2.0

Random

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLES
This sample Rulesheet uses random in non-conditional actions:

SAMPLE RULETEST
A sample Ruletest requires values for Entity1 although they have no impact on the output. As the result is
random, there cannot be an expected value.

Progress Corticon.js: Rule Language: Version 2.0156

Chapter 5: Rule operator details and examples

Regular expression to replace String
SYNTAX
<String>.regexReplaceString(regularExpression,replacementString)

<String>.regexReplaceString(regularExpression,replacementString,regexFlag:<String>)

DESCRIPTION
Returns a new String where the strings matching the regular expression are replaced by the replacement string.

Note: Regular expressions are a well-established technique that uses a sequence of characters to define a
search pattern. For more information, seeWikipedia, as well one of the many sites that provide examples, such
as regular-expresssions.info, and others that analyze the expressions you create.

157Progress Corticon.js: Rule Language: Version 2.0

Regular expression to replace String

FLAGS
The characters gis, when one or more are added to the expression with no separator, represent:

• g global, replace more than first match (the default)

• i ignore case

• s match line terminator ("newline") characters in a string, which it would not match otherwise. See
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/dotAll.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses regexReplaceString in non-conditional actions as follows:

• regexReplaceString("[0-9]", "X")

• regexReplaceString(" {2,}", " "): Replace all instances of digits with the
character X - Replace all instances of multiple spaces with a single space

• regexReplaceString("[aeiou]", ".") - Replace all vowels with a dot .

• regexReplaceString("[^aeiou]", ".") - Replace all non-vowel characters with a dot.

• regexReplaceString("[c-v]", ".") - Replace each character in the range from c to v with a dot.

• regexReplaceString('^[\t]+|[\t]+$', '') - Strip off leading and trailing spaces.

SAMPLE RULETEST
A sample Ruletest shows the regexReplaceString effect in output.

Progress Corticon.js: Rule Language: Version 2.0158

Chapter 5: Rule operator details and examples

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/dotAll

Remove element
SYNTAX
<Entity>.remove
<Collection>.remove

DESCRIPTION
Removes <Entity> or removes elements from <Collection> and deletes it/them. If removing from a
collection, then using a unique alias to represent the collection is optional since .remove is not a collection
operator. If any elements in <Collection> have one-to-many associations with other entities, then those
entities will also be deleted.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: .remove may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with
usage restrictions).

EXAMPLE 1: Remove an element from a collection
RULESHEET 1
This Rulesheet uses the operator to remove elements from collection1 whose decimal1 value is greater
than 5. Note the optional use of unique alias collection1 to represent the collection of Entity2 elements
associated with Entity1.

159Progress Corticon.js: Rule Language: Version 2.0

Remove element

RULETEST 1

A sample Ruletest provides a collection with two elements. The illustration shows Ruletest Input and Output
panels

EXAMPLE 2: Remove an entity then promote its children
RULESHEET 2
This Rulesheet uses the operator with its (false) parameter to remove only the specified elements from
Entity1.entity2whose decimal1 value is greater than 5. Note no unique alias has been used to represent
the collection of Entity2 elements associated with Entity1.

Progress Corticon.js: Rule Language: Version 2.0160

Chapter 5: Rule operator details and examples

RULETEST 2

A sample Ruletest provides an Entity1 with two entity2, each of which has an entity3 child of its own.
The illustration shows Ruletest Input and Output panels. Note that when an entity2 is removed, its associated
entity3 is promoted to root level.

Replace elements
SYNTAX
<Collection1> = <Collection2>
<Collection> = <Entity>

DESCRIPTION
Replaces all elements in <Collection1> with the elements in <Collection2>, provided the association
between the two is permitted by the Business Vocabulary. In the second syntax, <Entity> is associated with
<Collection>, replacing the <Entity> already associated, when the association between the two is
“one-to-one” in the Business Vocabulary. All collections must be expressed as unique aliases.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: replace elements may only be used in Action Rows (section 5 in Sections of Rulesheet that
correlate with usage restrictions).

RULESHEET EXAMPLE
This sample Rulesheet uses the replace element operator to add Entity3 to collection1 if its boolean1
value is true. Note the use of unique alias collection1 to represent the collection of Entity3 elements
associated with Entity2. The association between Entity2 and Entity3 has a cardinality of “one-to-one”. If
multiple Entity3 are present, only one will be added to collection1.

161Progress Corticon.js: Rule Language: Version 2.0

Replace elements

SAMPLE TEST
Three sample tests provide scenarios of two elements which share a one-to-one association. Input and Output
panels are illustrated below:

Progress Corticon.js: Rule Language: Version 2.0162

Chapter 5: Rule operator details and examples

Replace String
SYNTAX
<String>.replaceString(stringToBeReplaced,replacementString)

DESCRIPTION
Returns a new string where the instances of the String to be replaced are replaced by the value of the
replacement String.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses replaceString in non-conditional actions.

SAMPLE RULETEST
A sample Ruletest shows the replaceString effect in output.

163Progress Corticon.js: Rule Language: Version 2.0

Replace String

Round
SYNTAX
<Decimal>.round

<Decimal>.round(<Integer>)

<Decimal>.round(<Integer>, roundingMode: <Integer>)

DESCRIPTION
• When <Integer> is not provided, <Decimal> is rounded to the nearest whole number of type Decimal.

• When <Integer> is provided , <Decimal> is rounded to the number of decimal places specified by
<Integer>. Standard rounding conventions apply, meaning numbers ending with significant digits of 5 or
more round up and numbers ending with significant digits less than 5 round down.

• When <Integer> and roundingMode: <Integer> are provided , then <Decimal> is rounded to the
number of decimal places specified by the mode:

• 0 - Rounds away from zero

• 1 - Rounds towards zero

• 2 - Rounds towards Infinity

• 3 - Rounds towards -Infinity

• 4 - Rounds towards nearest neighbor; if equidistant, rounds away from zero

• 5 - Rounds towards nearest neighbor; if equidistant, rounds towards zero

• 6 - Rounds towards nearest neighbor; if equidistant, rounds towards even neighbor

• 7 - Rounds towards nearest neighbor; if equidistant, rounds towards Infinity

• 8 - Rounds towards nearest neighbor; if equidistant, rounds towards -Infinity

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0164

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses .round to round the value of decimal2 to the second decimal place, and assigns
it to decimal1.

SAMPLE TEST
A sample Ruletest provides results for five examples of decimal2.

SAMPLES OF ROUNDING USING DIFFERENT MODES
0 (ROUND UP) Rounds away from zero

10.123 -> 10.13

1 (ROUND DOWN) Rounds towards zero

10.123 -> 10.12

2 (ROUND CEIL) 2 Rounds towards Infinity

10.123 -> 10.13

165Progress Corticon.js: Rule Language: Version 2.0

Round

3 (ROUND_FLOOR) Rounds towards -Infinity

10.123 -> 10.12

4 (ROUND_HALF_UP) Rounds towards nearest neighbor. If equidistant, rounds away from zero

10.123 -> 10.12
10.126 -> 10.13
10.125 -> 10.13

5 (ROUND_HALF_DOWN) Rounds towards nearest neighbor. If equidistant, rounds towards zero

10.123 -> 10.12
10.126 -> 10.13
10.125 -> 10.12

6 (ROUND_HALF_EVEN) Rounds towards nearest neighbor. If equidistant, rounds towards even neighbor

See Round to Even (Banker's Rounding) https://www.mathsisfun.com/numbers/rounding-methods.html and
https://en.wikipedia.org/wiki/Rounding

8.123 -> 8.12
9.126 -> 9.13
// variation from other modes: go to nearest even number
10.125 -> 10.12
11.135 -> 11.14

7 (ROUND_HALF_CEIL) Rounds towards nearest neighbor. If equidistant, rounds towards Infinity

9.123 -> 9.12
10.126 -> 10.1
11.125 -> 11.13

8 (ROUND_HALF_FLOOR) Rounds towards nearest neighbor. If equidistant, rounds towards -Infinity

9.123 -> 9.12
10.126 -> 10.13
11.125 -> 11.12

Second
SYNTAX
<DateTime>.sec

DESCRIPTION
Returns the seconds portion of <DateTime>. The returned value is an Integer between 0 and 59.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses the .sec function to evaluate dateTime1, return the seconds value, and assign
it to integer1.

Progress Corticon.js: Rule Language: Version 2.0166

Chapter 5: Rule operator details and examples

https://www.mathsisfun.com/numbers/rounding-methods.html
https://en.wikipedia.org/wiki/Rounding

SAMPLE TEST
A sample Ruletest provides results for two examples of dateTime1.

Seconds between
SYNTAX
<DateTime1>.secsBetween(<DateTime2>)

167Progress Corticon.js: Rule Language: Version 2.0

Seconds between

DESCRIPTION
Returns the Integer number of seconds between DateTimes. The number of milliseconds in <DateTime1> is
subtracted from that in <DateTime2>, and the result divided by 1000 (the number of milliseconds in a
second). The result is truncated. This function returns a positive number if <DateTime2> is later than
<DateTime1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .secsBetween to determine the number of seconds that have elapsed between
dateTime1 and dateTime2, compare it to the Values set, and assign a value to string1.

SAMPLE TEST
A sample Ruletest provides dateTime1 and dateTime2 for three examples. Input and Output panels are
shown below.

Progress Corticon.js: Rule Language: Version 2.0168

Chapter 5: Rule operator details and examples

Size of collection
SYNTAX
<Collection> ->size

DESCRIPTION
Returns the Integer number of elements in <Collection>. <Collection> must be expressed as a unique
alias.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->size to count the number of elements in collection1, and assign a value to
boolean2. Note the use of unique alias collection1 to represent the collection of Entity2 associated
with Entity1.

SAMPLE TEST
A sample Ruletest provides three examples of collection1. Input and Output panels are shown below.

169Progress Corticon.js: Rule Language: Version 2.0

Size of collection

Size of string
SYNTAX
<String>.size

DESCRIPTION
Returns the Integer number of characters in <String>. All characters, numbers, symbols, and punctuation
marks are counted, including spaces before, within, and after words.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0170

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses the .size function to determine the length of string1 and assign it to integer1

SAMPLE TEST
A sample Ruletest provides three examples. Input and Output panels are shown below:

Sorted by
SYNTAX
<Collection> ->sortedBy(<Attribute2>) -> sequence operator.<Attribute1>

DESCRIPTION
Sequences the elements of <Collection> in ascending order, using the value of <Attribute2> as the
index, and returns the <Attribute1> value of the element in the sequence position determined by the
sequence operator. A sequence must be created before any sequence operator (->first, ->last, or ->at) is
used to identify a particular element. <Attribute1> and <Attribute2>must be attributes of <Collection>.

<Attribute2> may be any data type except Boolean. Strings are sorted according to character
precedence. <Collection> must be expressed as a unique alias.

See "Advanced collection sorting syntax" in the Rule Modeling Guide for more examples of usage.

171Progress Corticon.js: Rule Language: Version 2.0

Sorted by

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE 1 - USED IN A CONDITION
This sample Rulesheet uses ->sortedBy in a conditional expression to create an ascending sequence from
collection with decimal1 as the index. ->first.string1 is used to return the value of the string1
attribute of the first element of the sequence. If the value of string1 is Joe, then boolean1 attribute of
Entity1 is assigned the value of true.

SAMPLE RULETEST 1
A sample Ruletest provides a collection of three elements, each with a decimal1 and string1 value. Input
and Output panels are shown below.

Progress Corticon.js: Rule Language: Version 2.0172

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE 2 – USED IN AN ACTION
This sample Rulesheet uses ->sortedBy in an action expression to create an ascending sequence from
collection with decimal1 as the index. ->first.string1 is used to return the value of the string1
attribute of the first element of the sequence. The value of string1 is assigned the value of Joe if boolean1
attribute of Entity1 is true, if false it is assigned the value of Mary.

SAMPLE RULETEST 2
A sample Ruletest provides a collection of three elements, each with a decimal1 and string1 value. Input
and Output panels are shown below.

Sorted by descending
SYNTAX
<Collection> ->sortedByDesc(<Attribute2>) -> sequence operator.<Attribute1>

173Progress Corticon.js: Rule Language: Version 2.0

Sorted by descending

DESCRIPTION
Sequences the elements of <Collection> in descending order, using the value of <Attribute2> as the
index, and returns the <Attribute1> value of the element in the sequence position determined by the
sequence operator. A sequence must be created before any sequence operator (->first, ->last, or ->at) is
used to identify a particular element. <Attribute1> and <Attribute2>must be attributes of <Collection>.

<Attribute2> may be any data type except Boolean. Strings are sorted according to their ISO character
precedence. <Collection> must be expressed as a unique alias.

See "Advanced collection sorting syntax" in the Rule Modeling Guide for more examples of usage.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE 1 - USED IN A CONDITION
This sample Rulesheet uses -> sortedByDesc in a conditional expression to create an descending sequence
from collection with decimal1 as the index. ->first.string1 is used to return the value of the
string1 attribute of the first element of the sequence. If the value of string1 is Joe, then boolean1 attribute
of Entity1 is assigned the value of true.

SAMPLE RULETEST 1
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

Progress Corticon.js: Rule Language: Version 2.0174

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE 2 – USED IN AN ACTION
This sample Rulesheet uses �sortedByDesc in an action expression to create an descending sequence from
collection with decimal1 as the index. ->first.string1 is used to return the value of the string1
attribute of the first element of the sequence. The value of string1 is assigned the value of Joe if boolean1
attribute of Entity1 is true, if false it is assigned the value of Mary.

SAMPLE RULETEST 2
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

175Progress Corticon.js: Rule Language: Version 2.0

Sorted by descending

Starts with
SYNTAX
<String1>.startsWith(<String2>)

DESCRIPTION
Returns a value of true if <String1> begins with the characters specified in <String2>. Comparisons are
case-sensitive.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .startsWith to evaluate whether string1 begins with the value of string2
and assigns a different value to boolean1 for each outcome.

Progress Corticon.js: Rule Language: Version 2.0176

Chapter 5: Rule operator details and examples

SAMPLE TEST
A sample Ruletest provides string1 and string2 values for four examples. Input and Output panels are
shown below.

Substring
SYNTAX
<String>.substring(<Integer1>, <Integer2>)

DESCRIPTION
Returns the portion of <String> beginning with the character in position <Integer1> and ending with the
character in position <Integer2>. The number of characters in <String> must be at least equal to
<Integer2>, otherwise an error will be produced. Both <Integer1> and <Integer2> must be positive
integers, and <Integer2> must be greater than <Integer1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .substring to return those characters of string1 between positions 4 and 7
(inclusive), and assign the resulting value to string2.

177Progress Corticon.js: Rule Language: Version 2.0

Substring

SAMPLE RULETEST
A sample Ruletest provides string1 values for four examples. Input and Output panels are shown below.

Subtract
SYNTAX
<Number1> - <Number2>

DESCRIPTION
Subtracts the value of <Number2> from that of <Number1>. The resulting data type is the more expansive of
those of <Number1> and <Number2>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0178

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
This sample Rulesheet uses subtract to reduce the value of decimal1 by decimal2, compare the resulting
value to zero, and assign a value to boolean1

SAMPLE TEST
A Ruletest provides three examples of decimal1 and decimal2. Input and Output panels are shown below.

Sum
SYNTAX
<Collection.attribute> ->sum

DESCRIPTION
Sums the values of the specified <attribute> for all elements in <Collection>. <attribute> must be
a numeric data type. <Collection> must be expressed as a unique alias.

179Progress Corticon.js: Rule Language: Version 2.0

Sum

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This Rulesheet uses the ->sum function to add all decimal1 attributes within collection1. Note the use
of unique alias collection1 to represent the collection of Entity2 associated with Entity1

SAMPLE TEST
A sample Ruletest provides 3 elements in collection1. Input and Output panels are shown below.

Progress Corticon.js: Rule Language: Version 2.0180

Chapter 5: Rule operator details and examples

Today
SYNTAX
today

DESCRIPTION
Returns the current system date when the rule is executed. This Date Only value is assigned the first time
today is used in a Decision Service, then remains constant until the Decision Service finishes execution,
regardless of how many additional times it is used. This means that every rule in a Rule Set using today will
use the same Date Only value. No time portion is assigned

USAGE RESTRICTIONS
The Literals row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses today to determine howmany days have elapsed between today and dateTime1,
and assign a value to string1 based on the result.

SAMPLE TEST
A sample Ruletest provides three examples of dateOnly1. Assume today is equal to August 9, 2020.
Input and Output panels are shown below:

181Progress Corticon.js: Rule Language: Version 2.0

Today

To dateTime
SYNTAX
<String>.toDateTime

DESCRIPTION
Converts the value in <String> to data type DateTime ONLY if date is an ISO8601 string or millisecs since
epoch as a string. An invalid casting results in a null.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDateTime to convert string1 to type DateTime and assign the value to
dateTime1.

Progress Corticon.js: Rule Language: Version 2.0182

Chapter 5: Rule operator details and examples

SAMPLE TEST

To date Casting a dateTime to a date
SYNTAX
<DateTime>.toDate

DESCRIPTION
Converts the value in <DateTime> to a Date datatype, containing only the date portion of the DateTime. If
<DateTime> contains no date information, then the system epoch is used.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDate to convert dateTime1 and DateTime2 to Date datatypes and assign
the values to dateTime1 and dateTime2.

183Progress Corticon.js: Rule Language: Version 2.0

To date Casting a dateTime to a date

SAMPLE TEST

To dateTime Casting a string to a dateTime
SYNTAX
<String>.toDateTime

DESCRIPTION
Converts the value in <String> to data type DateTime ONLY if all characters in <String> correspond to a
valid Date, Time, or DateTime mask (format). For complete details on DateTime masks, see Rule Modeling
Guide.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0184

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses .toDateTime to convert string1 to type DateTime and assign the value to
dateTime1.

SAMPLE TEST

To dateTime Casting a date to a dateTime
SYNTAX
<Date>.toDateTime

DESCRIPTION
Converts the value in <Date> to data type DateTime. The date portion is the same as the <Date> value and
the time portion is set to 00:00:00 AM in the current timezone.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

185Progress Corticon.js: Rule Language: Version 2.0

To dateTime Casting a date to a dateTime

RULESHEET EXAMPLE
The following Rulesheet uses .toDateTime to convert dateOnly1 to type DateTime and assign the value to
dateTime1.

SAMPLE TEST

To dateTime Timezone offset
SYNTAX
<Date>.toDateTime(<String>)

DESCRIPTION
Converts the value in <Date> to data type DateTime ONLY if all characters in <Date> correspond to a valid
DateTime mask (format). The date portion is the same as the <Date> value and the time portion is set to
00:00:00 in the timezone specified by <String>, which is the timeZoneOffset. The timeZoneOffset must
take the form of a valid, signed timezone offset such as '-08:00', '+03:30', '+01:45’.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0186

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses .toDateTime to convert dateOnly1 to type DateTime and assign the value to
dateTime1, with a timezone offset of -01:45.

SAMPLE TEST

To decimal
SYNTAX
<Integer>.toDecimal

<String>.toDecimal

187Progress Corticon.js: Rule Language: Version 2.0

To decimal

DESCRIPTION
Converts the value in <Integer> or all characters in <String> to data type Decimal. Converts a String to
Decimal ONLY if all characters in <String> are numeric and contain not more than one decimal point. If any
non-numeric characters are present in <String> (other than the single decimal point or a leading minus sign),
no value is returned by the function.

Note: Integer values may be assigned directly to Decimal data types without using the .toDecimal operator
because a Decimal data type is more expansive than an Integer.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDecimal to convert integer1 and string1 to type Decimal and assign
them to decimal1 and decimal2, respectively.

SAMPLE TEST

Progress Corticon.js: Rule Language: Version 2.0188

Chapter 5: Rule operator details and examples

To integer
SYNTAX
<Decimal>.toInteger

<String>.toInteger

DESCRIPTION
Converts the value in <Decimal> or all characters in <String> to data type Integer. All decimals have
fractional portions truncated during the conversion. Strings are converted ONLY if all characters in <String>
are numeric, without a decimal point. If any non-numeric characters (with the sole exception of a single leading
minus sign for negative numbers) are present in <String>, no value is returned by the function. Do not use
on String values of null or empty String ('') -- a pair of single quote marks -- as that will generate an error
message.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toInteger to convert decimal1 and string1 to type Integer and assign them
to integer1 and integer2, respectively.

189Progress Corticon.js: Rule Language: Version 2.0

To integer

SAMPLE TEST

Cases when the toInteger operator accepts null and empty values for string attributes
There are two factors:

1. Prior to evaluating a rule, Corticon checks if any attribute values used in the expressions in the rule are null
and, if so, does not execute the rule.

2. During expression evaluation, Corticon protects against null pointer exceptions. The expression
"test.string.toInteger" will return null if the string is not an integer. However, the expression "test.string.toInteger
+ 3" will return “3” if the string is not a number – the value 0 being used as the result of the toInteger.

Progress Corticon.js: Rule Language: Version 2.0190

Chapter 5: Rule operator details and examples

Consider the action expression:

test.integer =test.string.toInteger

Here is the Ruletest output for three tests:

How this Ruletest was processed:

• In test 1, the string is empty but not a null value so the expression evaluates and assigns null to integer.

• In test 2, the string is null so the pre-check for null values does not pass and the expression is not evaluated
and the value of integer is unchanged

• In test 3, the string is the string “null” but not a null value so the expression evaluates and assigns null to
integer. (Note the value “null” here is a string, it could have just as well been “foo”).

Now change the action expression to:

test.integer =test.string.toInteger + 3

Here is the Ruletest output now:

How this Ruletest was processed now:

• In test 1, the string is empty but not a null value so the expression evaluates. To prevent a NPE during
evaluation, the value 0 is used as the result of the toInteger resulting in the expression being “0 + 3” so
integer is assigned a value of 3.

• In test 2, the string is null so the pre-check for null values does not pass and the expression is not evaluated
and the value of integer is unchanged.

191Progress Corticon.js: Rule Language: Version 2.0

To integer

• In test 3, the string is the string “null” but not a null value so the expression evaluates in the same fashion
as 1, that is, “0 + 3” and assigns a value of 3.

You might argue that you cannot assume a value of 0 when doing toString on a non-number string. However,
to protect a business user against runtime exceptions, Corticon makes logical substitutions during rule evaluation
to protect against null values.

To string
SYNTAX
<Decimal>.toString

<Integer>.toString

DESCRIPTION
Converts a value to a data type of String.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toString to convert numeric data types to strings.

Progress Corticon.js: Rule Language: Version 2.0192

Chapter 5: Rule operator details and examples

SAMPLE TEST

Trim spaces
SYNTAX
<String>.trimSpaces

DESCRIPTION
Returns <String>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses trimSpaces.

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a String value. Input and Output panels
are shown below.

Note: As the Studio Tester trims spaces in the input area, you cannot really test this operation here!

193Progress Corticon.js: Rule Language: Version 2.0

Trim spaces

True
SYNTAX
true or T

DESCRIPTION
Represents Boolean value true. Recall from the discussion oftruth values that an <expression> is evaluated
for its truth value, so the expression Entity1.boolean1=truewill evaluate to true only if boolean1=true.
But since boolean1 is Boolean and has a truth value all by itself without any additional syntax, we do not
actually need the “=true” piece of the expression. Many examples in the documentation use explicit syntax
like boolean1=true or boolean2=false for clarity and consistency, even though boolean1 or not
boolean2 are equivalent logical expressions.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses true in a Precondition to Ruletest whether boolean1 is true, and perform the
Nonconditional computation if it is. As discussed above, the alternative expression Entity1.boolean1 is
logically equivalent.

Progress Corticon.js: Rule Language: Version 2.0194

Chapter 5: Rule operator details and examples

SAMPLE TEST
A sample Ruletest provides three examples. Assume decimal2=10.0 and integer1=5 for all examples.
Input and Output panels are shown below:

Truncate
SYNTAX
<Decimal>.truncate

DESCRIPTION
Truncates "this" Decimal value to an integer by removing the fractional portion.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

195Progress Corticon.js: Rule Language: Version 2.0

Truncate

RULESHEET EXAMPLE
This sample Rulesheet uses .truncate to produce the integer value of decimal1 and assign it to integer1

SAMPLE RULETEST
A sample Ruletest provides decimal1 values for two scenarios. Input and Output panels are shown below.

Uppercase
SYNTAX
<String>.toUpper

DESCRIPTION
Converts all characters in <String> to uppercase.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toUpper to convert string2 to uppercase and assign it to string1.

Progress Corticon.js: Rule Language: Version 2.0196

Chapter 5: Rule operator details and examples

SAMPLE TEST
A sample Ruletest provides three examples. Input and Output panels are shown below:

Week of month
SYNTAX
<DateTime>.weekOfMonth

DESCRIPTION
Returns an Integer from 1 to 6, equal to the week number within the month in <DateTime>. A week begins
on Sunday and ends on Saturday.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .weekOfMonth to assign a value to integer1.

197Progress Corticon.js: Rule Language: Version 2.0

Week of month

SAMPLE TEST

Week of year
SYNTAX
<DateTime>.weekOfYear

DESCRIPTION
Returns an Integer from 1 to 52, equal to the week number within the year in <DateTime>. A week begins on
Sunday and ends on Saturday. When a year ends between Sunday and the next Friday, or in other words
when a new year begins between Monday and the next Saturday, the final day(s) of December will be included
in week 1 of the new year. For example, 12/29/2013 fell on a Sunday, so 12/29-31 are included in week 1 of
2014.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon.js: Rule Language: Version 2.0198

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses .weekOfYear to assign a value to integer1.

SAMPLE TEST

Weeks between
SYNTAX
<DateTime1>.weeksBetween(<DateTime2>)

DESCRIPTION
Returns the Integer number of weeks between DateTimes. This function calculates the number of milliseconds
between the date values and divides that number by 86,400,000 (the number of milliseconds in a day). Any
fraction is truncated, leaving an Integer result. If the two dates differ by less than a full 24-hour period, the value
returned is zero. A positive Integer value is returned when <DateTime2> occurs after <DateTime1>.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

199Progress Corticon.js: Rule Language: Version 2.0

Weeks between

RULESHEET EXAMPLE
The following Rulesheet uses .weeksBetween to determine the number of weeks that have elapsed between
dateTime1 and dateTime2, compare it to the values in the Condition cells, and assign a value to string1.

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Year
SYNTAX
<DateTime>.year

DESCRIPTION
Returns the century/year portion of <DateTime>. The returned value is a four digit Integer.

Progress Corticon.js: Rule Language: Version 2.0200

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .year to evaluate dateTime1 and dateTime2 and assign the year values to
integer1 and integer2, respectively.

SAMPLE TEST
A sample Ruletest provides two examples of dateTime1 and dateTime2. Input and Output panels are shown
below:

Years between
SYNTAX
<DateTime1>.yearsBetween(<DateTime2>)

201Progress Corticon.js: Rule Language: Version 2.0

Years between

DESCRIPTION
Returns the Integer number of years between DateTimes. The number of months in <DateTime2> is subtracted
from the number of months in <DateTime1>, and the result is divided by 12 and truncated. This function
returns a positive number if <DateTime2> is later than <DateTime1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .yearsBetween to determine the number of years that have elapsed between
dateTime1 and dateTime2, compare it to the Values set, and assign a value to string1.

SAMPLE TEST
A sample Ruletest provides dateTime1 and dateTime2 for three examples. Input and Output panels are
shown below.

Progress Corticon.js: Rule Language: Version 2.0202

Chapter 5: Rule operator details and examples

A
Standard Boolean constructions

The topics in this section presents several standard truth tables (AND, NAND, OR, XOR, NOR, and XNOR)
with examples of usage in a Rulesheet.

For details, see the following topics:

• Boolean AND

• Boolean NAND

• Boolean OR

• Boolean XOR

• Boolean NOR

• Boolean XNOR

Boolean AND
In a decision table, a rule with AND’ed Conditions is expressed as a single column, with values for each
Condition aligned vertically in that column. For example:

203Progress Corticon.js: Rule Language: Version 2.0

In this scenario, each Condition has a set of 2 possible values:

person is 45 or older: {true, false}

person is a smoker: {true, false}

and the outcome may also have two possible values:

person’s risk rating: {low, high}

These Conditions and Actions yield the following truth table:

risk ratingsmokerage >= 45

hightruetrue

falsetrue

truefalse

falsefalse

Note that we have only filled in a single value of risk rating, because the business rule above only covers a
single scenario: where age >= 45 and smoker = true. Running The completeness checker as described
in the Rule Modeling section quickly identifies the remaining three scenarios:

Progress Corticon.js: Rule Language: Version 2.0204

Appendix A: Standard Boolean constructions

Completing the truth table and the Rulesheet requires the definition of 2 additional business rules:

and updating the truth table, we recognize the classic AND Boolean function.

risk ratingsmokerage >= 45

hightruetrue

lowfalsetrue

lowtruefalse

lowfalsefalse

Once the basic truth table framework has been established in the Rulesheet by the Completeness Checker –
in other words, all logical combinations of Conditions have been explicitly entered as separate columns in the
Rulesheet – we can alter the outcomes to implement other standard Boolean constructions. For example, the
NAND construction has the following truth table:

205Progress Corticon.js: Rule Language: Version 2.0

Boolean AND

Boolean NAND
risk ratingsmokerage >= 45

lowtruetrue

highfalsetrue

hightruefalse

highfalsefalse

Also known as “Not And”, this construction is shown in the following Rulesheet:

Boolean OR
risk ratingsmokerage >= 45

hightruetrue

highfalsetrue

hightruefalse

lowfalsefalse

Progress Corticon.js: Rule Language: Version 2.0206

Appendix A: Standard Boolean constructions

Boolean XOR
Using “Exclusive Or” logic, riskRating is high whenever the age or smoker test, but not both, is satisfied.
This construction is shown in the following Rulesheet:

risk ratingsmokerage >= 45

lowtruetrue

highfalsetrue

hightruefalse

lowfalsefalse

207Progress Corticon.js: Rule Language: Version 2.0

Boolean XOR

Boolean NOR
Also known as “Not Or”, this construction is shown in the following Rulesheet:

risk ratingsmokerage >= 45

lowtruetrue

lowfalsetrue

lowtruefalse

highfalsefalse

Progress Corticon.js: Rule Language: Version 2.0208

Appendix A: Standard Boolean constructions

Boolean XNOR
Also known as “Exclusive NOR”, this construction is shown in the following Rulesheet:

risk ratingsmokerage >= 45

hightruetrue

lowfalsetrue

lowtruefalse

highfalsefalse

209Progress Corticon.js: Rule Language: Version 2.0

Boolean XNOR

Progress Corticon.js: Rule Language: Version 2.0210

Appendix A: Standard Boolean constructions

B

211Progress Corticon.js: Rule Language: Version 2.0

Precedence of rule operators

The precedence of operators affects the grouping and evaluation of expressions. Expressions with
higher-precedence operators are evaluated first. Where several operators have equal precedence, they are
evaluated from left to right. The following table summarizes Corticon.js's operator precedence.

ExampleOperator NameOperatorOperator
precedence

(5.5 / 10)Parenthetic expression()1

-10Unary negative-2

not 10Boolean testnot

5.5 * 10Arithmetic: Multiplication*3

5.5 / 10Arithmetic: Division/

5 ** 2

25 ** 0.5

125 ** (1.0/3.0)

Arithmetic: Exponentiation (Powers and Roots)**

5.5 + 10Arithmetic: Addition+4

10.0 – 5.5Arithmetic: Subtraction-

5.5 < 10Relational: Less Than<5

5.5 <= 5.5Relational: Less Than Or Equal To<=

10 > 5.5Relational: Greater Than>

10 >= 10Relational: Greater Than Or Equal To>=

5.5=5.5Relational: Equal=

5.5 <> 10Relational: Not Equal<>

(ent1.dec1 > 5.5 and
ent1.dec1 < 10)

Logical: AND(expression and
expression)

6

(ent1.dec1 > 5.5 or
ent1.dec1 < 10)

Logical: OR(expression or
expression)

Progress Corticon.js: Rule Language: Version 2.0212

Appendix B: Precedence of rule operators

Note: While expressions within parentheses that are separated by logical AND / OR operators are valid, the
component expressions are not evaluated individually when testing for completeness, and might cause
unintended side effects during rule execution. Best practice within a Corticon.js Rulesheet is to represent AND
conditions as separate condition rows and OR conditions as separate rules -- doing so allows you to get the
full benefit of Corticon.js’s logical analysis.

Note: It is recommended that you place arithmetic exponentiation expressions in parentheses.

213Progress Corticon.js: Rule Language: Version 2.0

Progress Corticon.js: Rule Language: Version 2.0214

Appendix B: Precedence of rule operators

C
Formats for date and dateTime in Corticon.js
Studio tester

When you have Ruletests in your Corticon.js project, they require adherence to dates and dateTimes that are
ISO 8601 compliant, or as the number of milliseconds since the epoch. For testing , the Corticon.js Studio
Tester lets you enter a more permissive date and dateTime as Input values; however, the Output values are
always strict ISO 8601, as illustrated:

215Progress Corticon.js: Rule Language: Version 2.0

The default date mask in the brms.properties file is:

Default DateMask to be applied to DateTime values in Tester Output Tree
Default is yyyy-MM-dd'T'HH:mm:ssZ (e.g. 2020-01-01T00:00:00-0000)
com.corticon.javascript.studio.tester.dateformat=yyyy-MM-dd'T'HH:mm:ssZ

Progress Corticon.js: Rule Language: Version 2.0216

Appendix C: Formats for date and dateTime in Corticon.js Studio tester

D
Formats for date and dateTime in JSON
payloads

Date and DateTime values in a Corticon.js payload must conform to the ISO 8601 standard, or as the number
of milliseconds since the epoch. The Corticon.js runtime does all its computation using UTC as the time
reference. At runtime, Corticon.js always returns date or dateTime formatted as ISO 8601 regardless of the
input format you used.

Date and dateTime values that are passed into Corticon.js at runtime must conform to the ISO 8601 standard.
If a non-ISO 8601 date or dateTime is passed inside the payload to the Decision Service, the JavaScript runtime
will fail to parse it, and the execution will terminate.

There are many different formats included in the ISO 8601 standard, not limited to, “Date”, “Date and Time”,
and “Date and Time with Time Zone offset”. When you use a full Date and Time with Time Zone offset value
inside your payload, you remove any potential misinterpretation of the dateTime value in the JavaScript runtime,
which may influence how certain Rules will fire. If Time is missing, it defaults to midnight (00:00:00). If Time
Zone is missing, it defaults to the Time Zone of the machine running the JavaScript runtime.

If you wanted to pass the date time (UTC) “Thursday, July 30, 2020 6:00:00 PM” into a decision service as a
JSON payload, you could format it as:

1. 2020-07-30T18:00:00.000Z—This represents the dateTime as ISO 8601 directly with the UTC reference
(that is, with no time zone specified).

2. 2020-07-30T14:00:00.000-04—This represents the dateTime as ISO 8601 with a time zone (notice instead
of 18 hour, it is 14). This format is accepted as input but will not return the results in the same notation.

3. 1596132000000—This format represents the dateTime as the number of milliseconds since the epoch,
1/1/1970.

217Progress Corticon.js: Rule Language: Version 2.0

When you package the project for JS deployment as Browser, and then Run Decision Service, you get the
following HTML output:

Note: For more information, see the blogs Dealing With Date and Time With Corticon.js and Understanding
ISO 8601 Date and Time Format

Progress Corticon.js: Rule Language: Version 2.0218

Appendix D: Formats for date and dateTime in JSON payloads

https://www.progress.com/blogs/dealing-with-date-time-with-corticonjs
https://www.progress.com/blogs/understanding-iso-8601-date-and-time-format
https://www.progress.com/blogs/understanding-iso-8601-date-and-time-format

	Copyright
	Table of Contents
	Introduction to Corticon.js Rule Language
	Rule structure
	Basic data types
	Truth values
	Collection operators
	Language operators
	Vocabulary used in this Language Guide

	How to access rule operators
	Usage restrictions
	Rule operators
	Attribute operators
	Boolean
	Date
	DateTime
	Decimal
	Integer
	String

	Entity and Association operators
	Collection
	Entity
	Sequence

	General terms

	Rule operator details and examples
	Absolute value
	Add numbers
	Add strings
	Add days
	Add hours
	Add minutes
	Add months
	Add seconds
	Add years
	After date
	After time
	Associate elements
	At
	Average
	Before date
	Before time
	Ceiling
	CellValue
	Character at
	Clone
	Concatenate
	Contains
	Day
	Day of week
	Day of year
	Days between
	Decrement
	Disassociate elements
	Divide
	Ends with
	Equals ignoring case
	Equals when used as an assignment
	Equals when used as a comparison
	Equals when using Strings
	Exists
	Exponent
	False
	First
	Floor
	For all
	Get Milliseconds
	Greater than
	Greater than or equal to
	Hour
	Hours between
	In LIST
	In RANGE
	Increment
	Index of
	Is empty
	Is integer
	Last
	Is same date
	Is same time
	Less than
	Less than or equal to
	Logarithm BASE 10
	Logarithm BASE X
	Lowercase
	Matches
	Maximum value
	Maximum value COLLECTION
	Minimum value
	Minimum value COLLECTION
	Minute
	Minutes between
	Mod
	Month
	Months between
	Multiply
	Natural logarithm
	New
	New unique
	Not
	Not empty
	Not equal to
	Now
	Null
	Other
	Or
	Random
	Regular expression to replace String
	Remove element
	Replace elements
	Replace String
	Round
	Second
	Seconds between
	Size of collection
	Size of string
	Sorted by
	Sorted by descending
	Starts with
	Substring
	Subtract
	Sum
	Today
	To dateTime
	To date Casting a dateTime to a date
	To dateTime Casting a string to a dateTime
	To dateTime Casting a date to a dateTime
	To dateTime Timezone offset
	To decimal
	To integer
	To string
	Trim spaces
	True
	Truncate
	Uppercase
	Week of month
	Week of year
	Weeks between
	Year
	Years between

	Standard Boolean constructions
	Boolean AND
	Boolean NAND
	Boolean OR
	Boolean XOR
	Boolean NOR
	Boolean XNOR

	Precedence of rule operators
	Formats for date and dateTime in Corticon.js Studio tester
	Formats for date and dateTime in JSON payloads

