
Corticon.js Integration

Copyright

Visit the following page online to see Progress Software Corporation’s current Product Documentation Copyright
Notice/Trademark Legend: https://www.progress.com/legal/documentation-copyright.

Last updated with new content: Corticon.js 2.0

Updated: 2023/06/28

3Progress Corticon.js: Corticon.js Integration: Version 2.0

https://www.progress.com/legal/documentation-copyright

Progress Corticon.js: Corticon.js Integration: Version 2.04

Copyright

Table of Contents

About Corticon.js integration..7
Node.js platform..11
AWS Lambda platform..12
Azure Functions platform..12
Google Cloud Functions platform...12
Browser platform...13

Working with Corticon.js samples and configurations............................17

Customized data access operators..21

Implementation of custom functions for runtime.....................................27

Helper functions ..31

JSON payloads and results in Corticon.js...37

Rule statements and Rule messages in Corticon.js.................................47

How to test deployed rules..51

How to use the Corticon.js utilities..53

Config options..55

How to use logging and diagnostics..57

5Progress Corticon.js: Corticon.js Integration: Version 2.0

Contents

Progress Corticon.js: Corticon.js Integration: Version 2.06

Contents

1
About Corticon.js integration

Corticon.js enables you to deploy rules on any JavaScript platform:

• Rules deployed as serverless functions on AWS Lambda, or Microsoft Azure Functions

• Rules integrated into a cloud work flow such as AWS Step Functions or Microsoft Flow

• Rules run on your own back end as part of your Node.js platform

• Rules bundled in a mobile app created with Xamarin, React, Vue.js, or other toolkits

• Rules executed in a browser as part of a web application

After you have created and tested your rules in the Corticon.js Studio Ruletests, you are ready to package
them for deployment. When you package your rules, Corticon generates a self-contained JavaScript bundle:

• Self-contained means that it has no dependencies on other Corticon components at runtime.

• JavaScript means that it will be compatible with any JavaScript platform.

• Bundle means that the complete set of rules are produced in the scope of the Ruleflow to include all its
Rulesheets and enclosed Ruleflows in a single JavaScript file.

7Progress Corticon.js: Corticon.js Integration: Version 2.0

Each bundle sets the top-level Ruleflow as the entry point to your Decision Service, tailored for the selected
platform, with a wrapper that you can customize, and the rules in an obfuscated JavaScript file.

How to package rules for JavaScript deployment
When you package rules for deployment, you select the target platform.

Note: See the Corticon.js Supported Platforms Matrix to review the supported JavaScript and web platforms,
and mobile apps. You are not limited to these JavaScript platforms. The API for integrating rules in your
JavaScript application allows you to develop your own wrapper or integration code that calls rules.

Corticon will generate a JavaScript bundle with your rules and a wrapper specific to the target platform. The
available target platforms are:

• AWS Lambda

• Azure Functions

• Browser

• Google Cloud Functions

• Node.js

Selecting AWS Lambda, Azure Functions, or Google Cloud Functions as the target platform generates the
rules and a wrapper ready for deployment as a serverless function. After the rules are deployed, you can use
them on your cloud platform—for example, to expose the decision service through a REST endpoint, to respond
to a database update, or to integrate into a cloud vendor workflow system such as AWS step functions.

The Node.js target can be used for running decision services in Node server and as well to run them in Mobile
applications created with NativeScript and ReactNative.

Selecting Browser generates the decision service and simple example code that demonstrates how to integrate
the rules into your application.

Installing the sample project
After installing Corticon.js, setup the sample project as follows:

1. Launch Corticon.js Studio.

2. Choose Help > Samples, and then click Open.

3. Click OK.

The tutorial sample is installed with both its Vocabulary that is the starting point for the Corticon.js Studio
Tutorial: Basic Rule Modeling as well as the completed tutorial files.

Progress Corticon.js: Corticon.js Integration: Version 2.08

Chapter 1: About Corticon.js integration

https://docs.progress.com/bundle/corticon-js-supported-platforms/page/Corticon.js-2.0-Supported-Platforms-Matrix.html

To create a Corticon JavaScript package:

1. In Corticon.js Studio, select a project, and then select Project > Package Rules for Deployment. The
Package Rules for Deployment dialog box opens:

2. Select the Ruleflow for your application.

3. Choose the Target Platform:

4. Enter a preferredBundle name so that you produce your package in a distinctly named folder. Each Ruleflow
selected generates a separate package.

5. Enter a preferred to Directory where your package will be placed.

6. Click Next. The second panel of the dialog opens:

9Progress Corticon.js: Corticon.js Integration: Version 2.0

7. Choose the top-level entities for this package. In our example, only the Cargo entity is referenced so just
that entity is selected.

8. Click Finish to generate the packaged JavaScript as a Decision Service plus everything you need to deploy
it. The packaging process generates a single JavaScript bundle that is the entry point for the rules, which
contain all the decision logic in its enclosed components for the selected Ruleflow. The generated bundle
is compressed and obfuscated. It is valid, executable JavaScript, but it is not readable and cannot be edited.

How to use the JavaScript rules API
All five platform wrappers have a lot in common. Their fundamental difference is the flow of the operations on
each platform. Each of the sample.js wrappers is self-documented.

The integration of the bundle with your JavaScript application is a simple API, not much more than a call to
execute against the bundle. The following sample code is taken from the node.sample.js file:

1. Include the generated rule bundle:

const decisionService = require('./decisionServiceBundle');

2. Get the JSON payload from your application:

const payload = readPayload(payloadFileName);

3. Set the configuration:

const configuration = { logLevel: 0 };

4. Execute the rules on the payload:

const result = await decisionService.execute(payload, configuration);

Customizing the wrapper
The wrappers generated by Corticon.js are sample code with extensive comments. You are free to modify
them to meet your needs, or use them as reference for integrating Corticon.js rules with other code.

Progress Corticon.js: Corticon.js Integration: Version 2.010

Chapter 1: About Corticon.js integration

At their core, the wrappers all do the same things:

• Get the JSON payload to be processed.

• Execute rules on the payload.

• Do something with the result JSON payload.

In your custom code you could:

• Transform the payload, for example to make it suitable to pass to Corticon.

• Enrich the payload, for example with data you read from a database

• Store the result payload, saving the output of rule processing

• Process the result payload, for example passing it to REST service or another step in a workflow

What you do is up to you.

Each of the wrapper samples provides the same logging and error handling template. You can also define a
preferred logger, and set logging to debug mode. See How to use logging and diagnostics on page 57 for
details.

Service contracts
A service contract for a decision service shows the inputs you need to pass to the decision service as part of
the input payload, and the output you can expect to receive as part of the result JSON payload.

For details, see the following topics:

• Node.js platform

• AWS Lambda platform

• Azure Functions platform

• Google Cloud Functions platform

• Browser platform

Node.js platform
When packaging for Node deployment, Corticon.js will generate the files:

• decisionServiceBundle.js: Your obfuscated rules

• node.sample.js: Sample Node.js wrapper

The wrapper, node.sample.js, is pure sample code demonstrating how to embed rules in a Node.js
application. How you invoke rules from your own Node.js application depends on your needs.

You need to define a file named payload.json that contains the decision service request. You can export
the data from Corticon rule tester. To do so, open the Ruletest file (.ert) file, and then choose the menu option:
Rulesheet->RuleTest -> Data -> Input -> Export Request JSON

The sample wrapper reads the file payload.json, passes it to your rules, and writes the result to
result.json.

See the Node.js documentation for details on deploying serverless functions.

11Progress Corticon.js: Corticon.js Integration: Version 2.0

Node.js platform

https://nodejs.org/en/docs/

AWS Lambda platform
When packaging for AWS Lambda deployment, Corticon.js generates the files:

• decisionServiceBundle.js: Your rules, obfuscated

• index.js: Sample AWS Lambda wrapper

• lambda.zip: Zip file with both .js files to simplify deployment.

The wrapper, index.js, implements the AWS Lambda API to be invoked as a serverless function and returns
the results of its execution.

When invoked, the AWS Lambda function is passed a JSON payload. Examples of how this could be triggered
include using a REST API gateway to call your function, and using the function as a step in an AWS Step
Functions workflow. Once deployed as a serverless function, your rules are available to the AWS ecosystem.

The wrapper is a complete, ready-to-deploy, Lambda function but you can also modify it to meet the specific
needs of your application.

The lambda.zip file is generated as a convenience. AWS makes it easy to deploy a Lambda function in one
step using a .zip file.

See the AWS Lambda documentation for details on deploying serverless functions.

Azure Functions platform
When packaging for Microsoft Azure Functions deployment, Corticon.js generates the files:

• decisionServiceBundle.js: Your rules, obfuscated

• azure.sample.js: Sample Azure Functions wrapper

The wrapper, azure.sample.js, implements the Azure Functions API for responding to HTTP triggers.

When invoked the Azure function is passed a JSON payload. This is most likely triggered by a REST call to
invoke the function.

The wrapper is a complete, ready-to-run, Azure function, yet you can also modify it to meet the specific needs
of your application. The Azure functions API has different signatures for different triggers. You can modify the
wrapper to meet the needs of different triggers.

See the Azure Functions documentation for details on deploying serverless functions.

Google Cloud Functions platform
When packaging for Google Cloud Functions deployment, Corticon.js generates the files:

• decisionServiceBundle.js: Your rules, obfuscated

• index.js: Sample Google Cloud Functions wrapper

The wrapper, index.js, implements the Google Cloud Functions API for responding to HTTP triggers.

Progress Corticon.js: Corticon.js Integration: Version 2.012

Chapter 1: About Corticon.js integration

https://docs.aws.amazon.com/lambda/index.html
https://docs.microsoft.com/en-us/azure/azure-functions/

When invoked, the Google Cloud function is passed a JSON payload. This is most likely triggered by a REST
call to invoke the function.

The wrapper is a complete, ready-to-run, Google Cloud function, yet you can also modify it to meet the specific
needs of your application. The Google Cloud functions API has different signatures for different triggers. You
can modify the wrapper to meet the needs of different triggers.

See the Google Cloud Functions documentation for details on deploying serverless functions.

Browser platform
When packaging for browser deployment, Corticon.js generates the files:

• decisionServiceBundle.js: Your obfuscated rules

• browser.sample.js: Sample code demonstrating calling Corticon.js rules

• browser.sample.html: Sample HTML page for testing browser deployment

The HTML page, browser.sample.html, present a simple form where you can provide a JSON payload,
invoke your rules, and see the resulting JSON.

The wrapper, browser.sample.js, simply invokes the rules with the payload input provided in the form.

The HTML page and wrapper are pure sample code. They just demonstrate how Corticon.js rules can be
embedded into a JavaScript application running in a browser.

The browser.sample.html is ready to run a simple page in a browser.

13Progress Corticon.js: Corticon.js Integration: Version 2.0

Browser platform

https://cloud.google.com/functions/docs

Paste in the JSON you exported from Studio tester into the left panel, and then click Run Decision Service.
The results in the right panel as shown:

In the preceding image, note that the rules replaced the default shipping mode and added a message.
You can tailor browser.sample.html to build your UI around the Decision Service that you have now
validated.

Progress Corticon.js: Corticon.js Integration: Version 2.014

Chapter 1: About Corticon.js integration

Multiple decision services on a browser page
An integrator can put more than one Decision Services on a single HTML page so that a set of Corticon engine
execution functions are created with one execute function per included Decision Service. In the browser bundle,
the file browser.sample.multipleDS.html provides the format for multiple decision services. In it, you
see the array property corticonEngines. Each entry in the array contains an object literal with the execute
function. The script inclusion order determines where in the array a specific decision is located. The first included
Decision Service is available at index 0 window.corticonEngines[0].execute):

<script type="text/javascript" src="decisionServiceBundle.js" </script>
<script type="text/javascript" src="decisionServiceBundle2.js" </script>
const result1 = await window.corticonEngines[0].execute(payload1, configuration);
const result2 = await window.corticonEngines[1].execute(payload2, configuration);

Notice the use of the await asynchronous programming pattern.

You could specify a different configuration for each of the services.

To set up multiple Decision Services to run in one browser instance

1. In Studio, generate the first package as a bundle.

2. Generate the second package as a bundle with a different bundle name.

3. In the second bundle's folder, rename decisionServiceBundle.js to decisionServiceBundle2.js,
and then copy it to the browser folder of the first bundle.

4. Opening browser.sample.multipleDS.html opens with two input and output areas for the Decision
Services.

Note: If you want to add additional Decision Services, follow the pattern of steps two and three, and then
revise browser.sample.multipleDS.html to specify each of the added Decision Services.

When you include only one decision service, you can access the execute function with either of the following
code excerpts:

// Using the first array element
const result = await window.corticonEngines[0].execute(payload, configuration);

// Using the last included one
const result = await window.corticonEngine.execute(payload, configuration)

15Progress Corticon.js: Corticon.js Integration: Version 2.0

Browser platform

Progress Corticon.js: Corticon.js Integration: Version 2.016

Chapter 1: About Corticon.js integration

2
Working with Corticon.js samples and
configurations

Progress Software provides a GitHub repository of Corticon.js sample projects at
https://github.com/corticon/corticon.js-samples. You will see several references to samples in the Corticon.js
documentation.

Accessing sample JavaScript (.js) files
Corticon.js JavaScript files are easily downloaded from their repository location. They might be updated
occasionally as that examples listed in the documentation might have changed.

17Progress Corticon.js: Corticon.js Integration: Version 2.0

https://github.com/corticon/corticon.js-samples

To access a sample's configuration file:

1. For a configuration file, click on the active link noted as CODE, as illustrated in a PDF file:

2. The link opens github.com at the file's location in the repository:

3. Click Raw to open the file as a .js file:

4. Save the file locally, and then open it for editing in your preferred text editor.

Progress Corticon.js: Corticon.js Integration: Version 2.018

Chapter 2: Working with Corticon.js samples and configurations

Accessing sample Corticon.js projects
Corticon projects are a collection of several asset types. The samples repository includes several projects.

1. Connect to the repository at https://github.com/corticon/corticon.js-samples

2. On the repository's page, click Code, and then click Download ZIP, as illustrated:

3. Expand the downloaded ZIP file into a staging area on your local machine

4. In Corticon.js Studio, choose File > New > Rule Project, and give it your preferred name, such as bar.

5. In the file system, locate the project you want to import. Drill into the tree until you have a list of files that
include a Vocabulary, an .ecore file.

6. Select all the files at that location, and then drag to the empty project, bar, and drop them there.

7. In the Studio:

a. Right-click on the project, and then choose Properties.

b. Choose Corticon.js Extensions, and then click Add From Project. In the left panel, click the checkbox
to select all resources. Click OK, and click Apply and Close.

c. Right-click on the project, and then choose Upgrade Rule Assets.

d. Right-click on the project, and then choose Validate Project.

8. It is a good practice to open the sample's Ruletest (.ert) file, and then run it. After taking a few seconds
for the first compile, the Output should match the Expected.

The project is loaded. Double-click any file in the project to open it in its appropriate editor.

19Progress Corticon.js: Corticon.js Integration: Version 2.0

https://github.com/corticon/corticon.js-samples

Progress Corticon.js: Corticon.js Integration: Version 2.020

Chapter 2: Working with Corticon.js samples and configurations

3
Customized data access operators

Corticon.js provides data access operators in a mechanism that will execute custom JavaScript functions. The
custom functions are accessed as a group of built-in operators available from Studio's Rule operator tree under
General > Functions as standalone GET and SET operators for each Corticon.js data type:

Each get operator works the same way; only the returned data type is different. Each set operator works in
a fashion similar to the get operators yet each has an additional parameter, the value to set. Set operators do
not return any data as they are void operators.

21Progress Corticon.js: Corticon.js Integration: Version 2.0

The project for SampleJS Get Set Operators
The sample JavaScript project you use provides examples of the operators as well as Rulesheets, a Ruleflow,
and a Ruletest that demonstrate the features. To setup the project:

1. Perform the tasks in Accessing sample Corticon.js projects.

2. In Studio, create a new Rule Project, and name it GetSetOperators.

3. Choose File > Import > Existing Projects into Workspace.

4. In your staging location, navigate to ExtendedOperators > BasicSampleGetSetOperators.

5. Select all the files at that location, and then drag the files to copy them into your Rule Project.

The sample's Rulesheet getData
A custom get function takes two parameters:

1. The name of the custom function to call.

2. A string parameter. For multiple parameters, the JSON string can encapsulate all the parameters to pass
to the custom function.

The sample Rulesheet getData.ers shows each data type with data to fetch.

For example, to call the custom function getData with parameter key2 using the getString operator, the
result is stored in the string attribute, Ent1.str2.

Progress Corticon.js: Corticon.js Integration: Version 2.022

Chapter 3: Customized data access operators

The sample's Rulesheet setData

A custom set function takes three parameters:

1. The name of the custom function to call.

2. A string parameter. If you need to pass more than one parameter, the JSON string can encapsulate all the
parameters to pass to the custom function.

3. The value to set. The type of this parameter corresponds to the operator name. For example, setDateTime,
requires a DateTime object.

How to set a mock implementation for the Studio tester
Studio tester runs the Ruleflows and Rulesheets in the context of a local Node.js process. Consequently, it is
possible that:

• the production environment data may not be available

• the production context is not available. For example, in studio tester the browser session context or the
Serverless function context is not available .

However, you can specify a mock implementation to run local unit tests by appending the implementation to
the project. The configuration of the extensions is in the sample's configuration file:

23Progress Corticon.js: Corticon.js Integration: Version 2.0

CODE: getSetData.js

const sessionData = new Map();

function getVarData(helper, name) {
return name;

}

function getSessionData(helper, name) {
// First we verify value exists for the key
if (!sessionData.has(name))

return 'ERROR - no session data for ' + name;

//Second we verify if the key exists but value is null
if (sessionData.get(name) == null)

return null;

// We are returning the value as is except for items like Date, DateTime or Decimal

// as these are stored in a text representation and as Corticon.js expects them
// as specific objects.
if (name === 'key4') // example showing how to construct a DateTime

return helper.dateTime.constructDateTime(sessionData.get(name));
else if (name === 'key6') // example showing how to construct a Date

return helper.date.constructDate(sessionData.get(name));
else if (name === 'key5') // example showing how to construct a Decimal

return helper.decimal.constructDecimal(sessionData.get(name));
else

return sessionData.get(name);
}

function setSessionData(helper, name, value) {
console.log("Custom function setSessionData called for " + name);
if (value === null) {

sessionData.delete(name);
sessionData.set(name, value);

} else {
if (name === 'key4') // example showing how to construct a DateTime

sessionData.set('key4', helper.dateTime.outputToJson(value));
if (name === 'key6') // example showing how to construct a Date

sessionData.set('key6', helper.date.outputToJson(value));
else if (name === 'key5') // example showing how to construct a Decimal

sessionData.set('key5', helper.decimal.outputToJson(value));
else

sessionData.delete(name);

sessionData.set(name, value);
}

}

// This is where we specify the public names to be used in Corticon.js studio when using
// either the get or set operators.
module.exports = {

getSessionData,
setSessionData: setSessionData

};

Note: For example, to call the custom decimal function setData with the parameter key5 using the
setDecimal operator, use the action sessionData.set('key5',
helper.decimal.outputToJson(value) as shown in the mock implementation. The result is stored in
the string attribute, Ent1.decimal1.

The functions from the configuration file are needed for testing as well bundling into production packaging.

Progress Corticon.js: Corticon.js Integration: Version 2.024

Chapter 3: Customized data access operators

https://github.com/corticon/corticon.js-samples/blob/master/ExtendedOperators/BasicSampleGetSetOperators/getSetData.js

To append the extension file to the project:

1. In Corticon.js Studio, open your project.

2. Click on your project, and then select Properties.

3. Select Corticon.js Extensions.

4. Click Add, and then select your .js implementation file, as illustrated:

5. Click Apply and Close.

Running the sample's Ruletest
A Ruleflow puts the setters Rulesheet to process ahead of the getters Rulesheet:

25Progress Corticon.js: Corticon.js Integration: Version 2.0

Open the sample Ruletest, getSetDataTest.ert, and then run it:

Progress Corticon.js: Corticon.js Integration: Version 2.026

Chapter 3: Customized data access operators

4
Implementation of custom functions for
runtime

At runtime, the wrapper that calls the decision service uses the configured custom functions. You export them
using the following syntax:

module.exports={name of function as used in rulesheet:reference to custom function};

For example:

module.exports={getSessionData:getSessionData};

which can be abbreviated as module.exports ={getSessionData};

The following code shows a more complete example with two custom functions:

const sessionData = new Map();
sessionData.set('key1', true);
sessionData.set('key2', 'my session string');
sessionData.set('key3', 12);

function getSessionData (helper, name) {
if (!sessionData.has(name))

return 'ERROR - no session data for ' + name;
else

return sessionData.get(name);
}

function getMoreData (helper, name) {
return name;

}

module.exports = { getSessionData, "from session data": getMoreData };

27Progress Corticon.js: Corticon.js Integration: Version 2.0

These definitions enable you to use getSessionData from session data as custom function names in
any of the simplified extended operators.

The custom functions can be:

• Shared across several decision services.

• Developed and managed with your own build pipeline.

The custom functions are specified in the implementation object using the attribute "customFunctions".

This attribute points to an array of object literals. Each object literal contains the information for one custom
function.

The syntax of the object literal is:

{ <name of function as used in rulesheet>: <reference to custom function> }

For example, here is the implementation file for the custom function examples in previous section:

const sessionData = new Map();
sessionData.set('key1', true);
sessionData.set('key2', 'my session string');
sessionData.set('key3', 12);
sessionData.set('key4', '2021-02-10T00:00:00.000Z');
sessionData.set('key5', 10.23);

function getSessionData (helper, name) {
console.log("Custom function called for " + name);
if (name === 'key4') // example showing how to construct a DateTime

return helper.dateTime.constructDateTime(sessionData.get(name));
else if (name === 'key5') {// example showing how to construct a Decimal

return helper.decimal.constructDecimal(sessionData.get(name));
}
else if (!sessionData.has(name))

return 'ERROR - no session data for ' + name;
else

return sessionData.get(name);
}

function setSessionData (helper, name, value) {
if (name === 'key4') // example showing how to construct a DateTime

sessionData.set('key4', helper.dateTime.outputToJson(value));
else if (name === 'key5') {// example showing how to construct a Decimal

sessionData.set('key5', helper.decimal.outputToJson(value));
}
else

sessionData.set(name, value);
}

For example, the following is a implementation for the custom function example:

const configuration = {
logLevel: 0,
customFunctions: [{"getSessionData": getSessionData},

{"from data store":getMoreData}
]

};

Get custom function signature
A custom function must have the following signature:

Progress Corticon.js: Corticon.js Integration: Version 2.028

Chapter 4: Implementation of custom functions for runtime

function <functionName> (helper, name)

The name parameter contains the second argument string as entered in the Rulesheet editor.

For example, in the Rulesheet editor:

Ent1.str1 = getString('getSessionData','key2')

The getSessionData custom function name parameter will contain the string key2.

The helper function is an object literal containing references to Decimal and DateTime operators.

It has the following syntax:

helper={'decimal': <all decimal operators>,
'dateTime': <all dateTime operators> }

How to write the implementation of custom functions for runtime
You can implement the body of a custom function with whatever logic your use case requires.

The only constraints are:

• The custom function has the proper signature.

• You return the proper object type. A getDecimal call needs to return a Decimal, likewise a getDateTime
needs to return a DateTime.

• You use the helper object to create or operate on Decimal and DateTime objects.

Custom GET functions
The following code shows how to construct and return a decimal and a dateTime:

const sessionData = new Map();
sessionData.set('key1', true);
sessionData.set('key2', 'my session string');
sessionData.set('key3', 12);

function getSessionData (helper, name) {
if (name === 'key4') { // example showing how to construct a DateTime

return helper.dateTime.constructDateTime('2021-02-10T00:00:00.000Z');
}
else if (name === 'key5') { // example showing how to construct a Decimal

return helper.decimal.constructDecimal('10.23');
}
else if (name === 'key6') { // example showing how to use additional built-in

operators like now and addDays
const dt = helper.dateTime.now();
const dt2 = helper.dateTime.addDays(dt, 7);
return dt2;

}
else if (!sessionData.has(name))

return 'ERROR - no session data for ' + name;
else

return sessionData.get(name);
}
function getMoreData (helper, name) {

return name;
}
module.exports = { getSessionData, "from session data": getMoreData };

29Progress Corticon.js: Corticon.js Integration: Version 2.0

Progress Corticon.js: Corticon.js Integration: Version 2.030

Chapter 4: Implementation of custom functions for runtime

5
Helper functions

A helper function is an object literal containing references to decimal, date, and dateTime operators. It has the
following syntax:

helper = { 'decimal': <all decimal operators>, 'dateTime': <all dateTime operators>,
'date': <all date operators> }

The list of operators is identical to list in the Corticon.js Studio operator tree.

Note: The list of operators is nearly identical to the one listed in the studio operator tree. See "DateTime" and
"Decimal" in the Corticon.js Rule Language Guide.

The lists of helper functions are documented in the Studio's Rule Operator view. Exceptions are distinguished
at the bottom of each list.

Decimal helper functions

The helper Decimal functions are as follows:

• multiply

• divide

• negated

• exponent

• add

• minus

• absVal

• floor

31Progress Corticon.js: Corticon.js Integration: Version 2.0

• ceiling

• ln

• log

• logBase

• lessThan

• lessThanOrEqual

• equal

• different

• greaterThan

• greaterThanOrEqual

• min

• max

• random

• toString

• toInteger

• round

Exceptions:

• isDecimal returns a boolean true if the object is a Decimal else returns false

• constructDecimal returns a Decimal object. It accepts number or strings as parameter. For example,
constructDecimal(10.5) or constructDecimal("100000000000000000000000.56789")

• outputToJson returns a string representation suitable for inclusion in a JSON payload.

DateTime helper functions
The helper DateTime functions are as follows:

• lessThan

• lessThanOrEqual

• equal

• different

• greaterThan

• greaterThanOrEqual

• addYears

• addMonths

• addDays

• addHours

• addMinutes

• addSeconds

• yearsBetween

Progress Corticon.js: Corticon.js Integration: Version 2.032

Chapter 5: Helper functions

• monthsBetween

• weeksBetween

• daysBetween

• hoursBetween

• minutesBetween

• secondsBetween

• year

• month

• day

• hour

• min

• sec

• now

• dayOfWeek

• dayOfYear

• getMilliseconds

• weekOfMonth

• weekOfYear

• afterDate

• beforeDate

• isSameDate

• afterTime

• beforeTime

• isSameTime

Exceptions:

• constructDateTime create a DateTime object. It accepts either a string which has to be an ISO-8601
representation of a DateTime or a long value which represents the time since epoch in milliseconds.

• isDateTime returns a boolean true if the object is a DateTime else returns false

• outputToJson returns a string representation in ISO-8601 format as UTC. The string is suitable for
inclusion in a JSON payload.

Date helper functions
The helper Date functions are as follows:

• lessThan

• lessThanOrEqual

• equal

• different

33Progress Corticon.js: Corticon.js Integration: Version 2.0

• greaterThan

• greaterThanOrEqual

• addYears

• addMonths

• addDays

• addHours

• addMinutes

• addSeconds

• yearsBetween

• monthsBetween

• weeksBetween

• daysBetween

• hoursBetween

• minutesBetween

• secondsBetween

• year

• month

• day

• hour

• min

• sec

• now

• toDate

• dayOfWeek

• dayOfYear

• getMilliseconds

• weekOfMonth

• weekOfYear

• afterDate

• beforeDate

• isSameDate

• afterTime

• beforeTime

• isSameTime

Exceptions:

Progress Corticon.js: Corticon.js Integration: Version 2.034

Chapter 5: Helper functions

• constructDate create a Date object. It accepts either a string which has to be an ISO-8601 representation
of a Date or a long value which represents the time since epoch in milliseconds.

• isDate returns a boolean true if the object is a Date else returns false

• outputToJson returns a string representation in ISO-8601 format as UTC. The string is suitable for
inclusion in a JSON payload.

35Progress Corticon.js: Corticon.js Integration: Version 2.0

Progress Corticon.js: Corticon.js Integration: Version 2.036

Chapter 5: Helper functions

6
JSON payloads and results in Corticon.js

When deployed or integrated into your application your Corticon.js decision services execute by accepting a
JSON payload and returning a JSON result. The JSON payload contains the item or items your rules are to
execute on—for example, a mortgage application to be evaluated or a set of sales leads to be routed. When
your rules execute, they will update or add to the input payload—for example, adding a determination for a
mortgage application or assigning the sales rep for each sales lead. The JSON result returned from the decision
service will contain the state of the payload after rule execution.

37Progress Corticon.js: Corticon.js Integration: Version 2.0

Corticon.js accepts most well-formatted JSON as the input payload. The result JSON will reflect the input
payload plus any changes made by the rules. In addition, it will contain information about the rule execution,
such as status indicating if rule execution was successful.

As a very simple example, consider a mortgage approval application where the JSON payload to your decision
service is as follows:

The rules in the decision service look at the mortgage application information to determine if the applicant
should be approved, how much they are approved for, and at what rate. The rules in the decision service set
the attributes approved, mortgageRate and mortgageAmount on the application. The result payload would
be similar to:

The result payload has the same data as was in the input payload plus the attributes set by the rules. In this
case the applicant has been approved for $350,000 at 3.5%.

The result payload also contains a corticon object that has the timestamp of when the rules were run plus
the status, success, of the execution. The corticon object contains additional information about the execution
of your rules.

Note: JSON payloads must represent decimal values using the period character as the decimal separator.
The Corticon.js runtime does not support localized decimal separators.

Progress Corticon.js: Corticon.js Integration: Version 2.038

Chapter 6: JSON payloads and results in Corticon.js

JSON to vocabulary mapping
When your decision service is invoked, Corticon maps the JSON payload to the internal data model of your
Corticon vocabulary to enable the rules to execute on it. To perform this mapping, Corticon must first examine
the JSON payload to identify the top-level objects in the JSON and the vocabulary entities they correspond to.

In our simple mortgage application example, the vocabulary could be defined as:

This is a very simple vocabulary with a single entity, Application. Our JSON payload is equally simple:

Here the JSON payload represents a single application and Corticon would map it to the Application entity.
In a real application your Corticon vocabulary and JSON payload are likely to be much more complex.

39Progress Corticon.js: Corticon.js Integration: Version 2.0

Once the top-level objects in the JSON payload are mapped to the vocabulary model, Corticon can map any
nested objects in the JSON to associations in the vocabulary. Let’s expand our mortgage sample to have a
slightly more complex vocabulary:

Here the mortgage application was defined to have an Application entity with a one-to-many association
to a CreditReport entity and a one-to-one association to a Mortgage entity. This is more reflective of a real
Corticon vocabulary. A real vocabulary is likely to have many entities and associations. A JSON payload for
this vocabulary may look like:

Once Corticon has mapped the root object in the JSON to the Application entity, it can use the knowledge
that the Application entity has an association to a CreditReport entity to map the nested creditReport
in the JSON. Corticon will set the association on the Application entity to this CreditReport entity.

JSON Path and JSON Element Name
Corticon employs two strategies to map a JSON payload to the vocabulary. First, it will use the knowledge it
has of the vocabulary to identify how to perform the mapping. When this information is insufficient, Corticon
will use a "best match" strategy to perform the mapping.

In your Corticon vocabulary, you can define properties on entities, attributes, and associations to provide
guidance for Corticon when mapping a JSON payload to the vocabulary. If fully utilized, Corticon may need to
perform no "best match" mapping.

Progress Corticon.js: Corticon.js Integration: Version 2.040

Chapter 6: JSON payloads and results in Corticon.js

In the Corticon Studio vocabulary, you can set the JSON Path property on entities and the JSON Element
Name property on attributes and associations.

The JSON Path property defines the path to the entity in the JSON payload. When JSON payload is passed
to a decision service, Corticon can use this information to map entities in the payload to the vocabulary.

The JSON Element Name property defines the attribute a field in the JSON payload is mapped to or the
association a nested object in the payload is mapped to.

Both JSON Path and JSON Element name can be set in the Corticon.js vocabulary editor but the easiest,
and least error prone, way to set them in your vocabulary is to generate your vocabulary using the Corticon.js
Populate Vocabulary form JSON wizard. See "Generate a Vocabulary" in the Corticon.js Rule Modeling
Guide.

Given this JSON:

Corticon would generate this vocabulary:

41Progress Corticon.js: Corticon.js Integration: Version 2.0

This is similar to the previous vocabulary, the only differences are that the application entity is named Root
and the creditReport association is one-to-one.Where the root entity in JSON doesn’t have a name, Corticon
names it Root. It is common to rename this to somethingmoremeaningful to rule modelers. The creditReport
association is one-to-one because there was only one credit report in the JSON.

Let’s examine how JSON Path would be set in this vocabulary:

JSON PathEntity

$Application (aka Root)

$[*].creditReportCreditReport

$[*].mortgageMortgage

JSON Path is a robust syntax for defining the path to elements in a JSON file. In our example the JSON Path
element $ indicates the root of the document. Where Application is the root entity in the JSON, its JSON
Path is simply $. A period, ., Is used to identify a nested entity.

The JSONPath syntax can be complex but fortunately Corticon.js can set it for you when populating a vocabulary
from a JSON file. In most cases, all you need set is the JSON Path for the root entities in the JSON.

Now let’s examine how JSON Element Name would be set in this vocabulary:

JSON Element NameEntity

firstNameApplication.firstName

lastNameApplication.lastName

incomeApplication.income

agencyCreditReport.agency

scoreCreditReport.score

amountMortgage.amount

rateMortgage.rate

approvedMortgage.approved

JSON Element NameAssociation

creditReportApplication.creditReport

mortgageApplication.mortgage

The JSON Element Name is the name of the field or nested object in the JSON. You can rename attributes
and associations in your vocabulary to be a name more meaningful to a rule modeler. If specified, the JSON
Element Name must match the JSON payload.

Best Match Mapping

Progress Corticon.js: Corticon.js Integration: Version 2.042

Chapter 6: JSON payloads and results in Corticon.js

You don’t have to specify JSON Path or JSON Element Name in your vocabulary. When not specified,
Corticon.js will use a "best match" algorithm to map JSON payload to your vocabulary. This algorithm is
dependent on the object and field names in your JSON closely matching the entity, attribute, and association
names in your vocabulary.

You also don’t have to specify the top-level objects in the JSON payload. When not specified, Corticon.js will
examine the attributes on the top-level objects in the JSON payload and use them to map to the best matching
entity.

Corticon.js "best matching" is very effective in most use cases. The negative aspect is that the mapping is
slower. For performance critical applications or those processing large JSON payloads, this performance impact
may be significant.

At minimum, you should have JSON Path specified for the top-level entities in your JSON payload and identify
these as the top-level entities when packaging your rules for deployment.

Identifying Top-Level Entities

When you package your rules for deployment, you can specify the top-level entities of interest in the JSON
payload that will be processed when integrated with your application. This information can then be used by
Corticon.js to optimize the mapping of JSON payloads to your vocabulary. It is not uncommon for a Corticon
vocabulary to have hundreds of entities. If only one of these entities will be at the top-level, identifying the entity
allows Corticon.js to map payloads to the vocabulary much more efficiently.

In Corticon.js Studio, the Package Rules for Deployment wizard provides a dialog where you can select the
top-level entities.

43Progress Corticon.js: Corticon.js Integration: Version 2.0

In this example, the vocabulary was expanded to have many more entities as would be typical in a real
application. Here, Application is selected to indicate that Application is the top-level entity in the JSON
payloads the decision service will process.

Top-level entities do not need to be at the root of your JSON payload. Often the objects of interest to your rules
may be nested in a larger JSON document.

Here the mortgage application is nested in a JSON document where the other information is not needed by
the rules. Setting JSON Path for the Application entity to $.FDO.application will let Corticon know where
it is within the JSON document. It and its nested objects are the only portions of the JSON that need to be
mapped to the vocabulary.

Corticon.js allows the top-level entities to be identified when a Ruleflow is packaged for deployment. The
integration API allows you to override this within your application. See "Config options" in this guide.

Unmapped JSON Payload

Any objects or fields in the JSON payload that are not mapped to your vocabulary are preserved and included
in the result payload.

Error handling
If there is an error during the execution of the decision service, the status "error" is returned to the user
along with the description of the error which will be part of the "corticon" JSON object as follows:

{
"corticon": {

"status": "error",
"description": "<error message>"

}
}

Progress Corticon.js: Corticon.js Integration: Version 2.044

Chapter 6: JSON payloads and results in Corticon.js

Note: The pattern for an error was different in V1.2 where the status "error" and description were returned in
the root JSON response as follows:

{
"status" : "error",
"description" : "<error message>"

}

45Progress Corticon.js: Corticon.js Integration: Version 2.0

Progress Corticon.js: Corticon.js Integration: Version 2.046

Chapter 6: JSON payloads and results in Corticon.js

7
Rule statements and Rule messages in
Corticon.js

In Studio you can add rule statements to rules. Rule statements allow you to add a message to individual rules
that will be returned with the result payload from a call to the decision service. Rule statements allow you to
capture "why" a decision was made. They are often used to debug rules or to capture an audit trail. Example:

When these rules execute, they produce the corresponding types of rule messages:

47Progress Corticon.js: Corticon.js Integration: Version 2.0

Configuration
Each of the target platform wrappers provide the information for implementing and managing rule messaging,
as shown:

/*

Configuration Properties for Rule Messages

*/
const configuration = {

logLevel: 0,
ruleMessages: {

executionProperties: {
restrictInfoRuleMessages: true,
// If true Restricts Info Rule Messages
restrictWarningRuleMessages: true,
// If true Restricts Warning Rule Messages
restrictViolationRuleMessages: true,
// If true Restricts Violation Rule Messages

restrictResponseToRuleMessagesOnly: true,
// If true the response returned has only rule messages

},
},

};*/

Progress Corticon.js: Corticon.js Integration: Version 2.048

Chapter 7: Rule statements and Rule messages in Corticon.js

Setting a configuration
The syntax of a configuration might look like this when we want to suppress violation messages, and put
messages in the log:

const configuration = {logLevel:0,ruleMessages:
{restrictViolationRuleMessages:true,logRuleMessages:true} };

49Progress Corticon.js: Corticon.js Integration: Version 2.0

Progress Corticon.js: Corticon.js Integration: Version 2.050

Chapter 7: Rule statements and Rule messages in Corticon.js

8
How to test deployed rules

Corticon.js Studio lets you create tests that will exercise your rulesheets and ruleflows. The best practice is to
create ruletests as part of the development of your rule projects.

To help you test your rules once they are deployed, Corticon.js provides a way to export the input data from
your ruletests as JSON that you can then use as input to test on your deployed platform. In Corticon.js Studio,
open a ruletest, and then right-click to choose Export JSON (or Export JSON to Clipboard) to export the
JSON data for testing.

Your rules should execute the same way on your JavaScript deployment as they do in the Corticon.js Studio
tester.

51Progress Corticon.js: Corticon.js Integration: Version 2.0

Progress Corticon.js: Corticon.js Integration: Version 2.052

Chapter 8: How to test deployed rules

9
How to use the Corticon.js utilities

You can script continuous integration and continuous delivery (CI/CD) when you use the Corticon.js utilities to
make changes to software rapidly and iteratively. You can use the corticonjs command line utility with the
following options and sub-options:

• Package rules for deployment

• Generate rule reports

• Run rule tests

53Progress Corticon.js: Corticon.js Integration: Version 2.0

The utility is bundled with the Corticon JavaScript Studio installation in its Utilities directory.

corticonJS.bat options

usage: corticonJS
-c,--compile compile a ruleflow into a decision service
-h,--help print this message
-r,--report generate the report for a Corticon asset
-t,--test execute tests for a set of ruleflows or rulesheets

--compile options

usage: compile
-b,--bundle <name> the name of the decision service bundle
-h,--help print this message
-i,--input <file> ruleflow (.erf file) to compile
-o,--output <folder> folder to place the decision service Javascript bundle in
-p,--platform <target platform> target platform

(Azure, Browser, Google, Lambda, Node)
-t,--top <entities> space separated list of entity names

that are expected at the root of the payload

--report options

usage: report
-c,--css <CSS file> CSS file to use in report
-h,--help print this message
-i,--input <file> Corticon asset (.ecore, .ers, .erf, .ert) to report
-if,--image <image folder> image folder to copy to output folder
-o,--output <folder> folder to place the report files in
-p,--project <project name> Corticon project name to use in report
-x,--xslt <XSLT file> XSLT file to use in report

The files for generating reports are in your Corticon Work directory's Reports folder.

--test options

usage: test
-a,--all run all test sheets in the ruletest
-dj,--dependentjs <dependentJS> comma separated list of dependent javascript files
-h,--help print this message
-i,--input <file> comma separated list of input (.ert) files to run,

wildcards allowed
-o,--output <file> file to contain output of test run
-s,--sheet <Sheet names> comma separated list of test sheets to run

Note: The test option requires a valid JavaScript enabled license file (CcLicense.jar) in the
Utilities/lib folder.

Progress Corticon.js: Corticon.js Integration: Version 2.054

Chapter 9: How to use the Corticon.js utilities

10
Config options

A config option you can use at run time defines the topLevelEntities, a JSON Object.

const config ={
topLevelEntities:

{ "JSON PATH" : "Entities @ the JSON PATH specified"
},

};

For example, where the Patient Entity is at root:

topLevelEntities: { "$" : "Patient" }

In another example, there are three top-level entities, so you use a comma-separated array:

topLevelEntities: { "$" : ["Cargo", "FlightPlan", "Aircraft"]}

55Progress Corticon.js: Corticon.js Integration: Version 2.0

Progress Corticon.js: Corticon.js Integration: Version 2.056

Chapter 10: Config options

11
How to use logging and diagnostics

Default logging
Corticon.js decisions services will, by default, log messages to the default output of the platform, which is, for
most JavaScript platforms, the JavaScript console. On other platforms, it is a context or similar object that the
platform provides for directing logging. For the browser example where the platform is HTML, the
browser.sample.html file has lines:

Log settings
const configuration = { logLevel: 0};
//const configuration = { logLevel: 1 };

Custom logger configuration
You can set the logger configuration to control what, if anything, gets logged.

// logLevel: 0: only error gets logged (default), 1: debugging info gets logged
// logIsOn: when false, do not log. True by default, you can override dynamically

to log data only for certain calls (for example by checking for a specific payload)
// logPerfData: when true, will log performance data
// logRulesStatements: when true, will write rule statements to the log
// logFunction: Used to implement your own logger. When defined this function

is called with a string message to log and an error level.

const configuration = { logLevel: 0 };

57Progress Corticon.js: Corticon.js Integration: Version 2.0

Custom logger
Each sample includes a simple logger where 1: log error and 2: log debug data. Your might want to log to a
preferred destination, such as into a database. To do that, you specify a custom logger:

function myLogger(msg, logLevel) {
if (logLevel === 0)

console.error(`**CUSTOM ERROR LOGGER: ${msg}`);
else

console.info(`**CUSTOM DEBUG LOGGER: ${msg}`);
}

Then you declare that you want to use a custom logger with the logFunction setting:

/*
const configuration = logFunction; { logLevel: 1 }

Basic logging
Each wrapper includes a sample configuration for logger that is a function you can override dynamically when
to log data. It is useful for tracing only certain calls (for example by checking for a specific payload) This function
is optional. When you pass a simple configuration without the logIsOn property you do not need to define
this function.

Logging has just two levels: 0: only errors get logged (default), 1: debugging info gets logged.

Filtered logging
Log entries can produce a lot of data, especially in debug mode. You can dynamically override when to log
data, such as tracing only certain calls or payload attribute values. When you pass a simple configuration
without the logIsOn property you don't need to define this property.

/*
function isLogOnForThisPayload(payload) {

let flag;
try {

if (payload.Objects[0]['int1'] === 1)
flag = true;

else
flag = false;

}
catch (e) {

console.log (`Error in isLogOnForThisPayload: ${e}\n`);
flag = true;

}
console.log(`isLogOnForThisPayload: ${flag}\n`);
return flag;

}

Progress Corticon.js: Corticon.js Integration: Version 2.058

Chapter 11: How to use logging and diagnostics

	Copyright
	Table of Contents
	About Corticon.js integration
	Node.js platform
	AWS Lambda platform
	Azure Functions platform
	Google Cloud Functions platform
	Browser platform

	Working with Corticon.js samples and configurations
	Customized data access operators
	Implementation of custom functions for runtime
	Helper functions
	JSON payloads and results in Corticon.js
	Rule statements and Rule messages in Corticon.js
	How to test deployed rules
	How to use the Corticon.js utilities
	Config options
	How to use logging and diagnostics

