
Corticon.js
Rule Modeling

Copyright

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress
®

software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo UI, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Apache and Kafka are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. Any other marks contained herein may be trademarks of their
respective owners.

Please refer to the NOTICE.txt or Release Notes – Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Last updated with new content: Corticon.js 1.4

Updated: 2022/05/19

3Progress Corticon.js: Rule Modeling: Version 1.4

Progress Corticon.js: Rule Modeling: Version 1.44

Copyright

Table of Contents

Introduction to Corticon.js rule modeling ...9

Create the Vocabulary..11
Generate a Vocabulary...12

Use JSON to generate a vocabulary..12
Use JSON Schema to generate a vocabulary...21

Build a Vocabulary by hand ...27
Extend a Vocabulary...31

Enumerations...31
Domains...39

Rule scope and context...43
Rule scope..50
Aliases...53
Scope and perspectives in the vocabulary tree..54

How to use roles..56

Rule writing techniques...63
How to work with rules and filters in natural language..63
Filters versus conditions...66
Qualify rules with ranges and lists..67

Ranges and lists in conditions and filters...68
Ranges and value sets in condition cells...69

How to use standard Boolean constructions...82
How to embed attributes in posted rule statements..82
How to include apostrophes in strings..84
How to initialize null attributes...84
How to handle nulls in compare operations..84

Collections..87
How Corticon Studio handles collections..87
How to visualize collections..88
A basic collection operator..89
How to filter collections...90
How to use aliases to represent collections..90
Advanced collection sorting syntax...96

5Progress Corticon.js: Rule Modeling: Version 1.4

Contents

Using sorts to find the first or last in grandchild collections..97
Singletons...97
Special collection operators..100

Universal quantifier..101
Existential quantifier...103
Another example using the existential quantifier..107

Rules containing calculations and equations...115
Operator precedence and order of evaluation..116
Data type compatibility and casting..118

Data type of an expression..121
Defeating the parser...122
Manipulating JS datatypes with casting operators...123

Supported uses of calculation expressions...123
Calculation as a comparison in a precondition...125
Calculation as an assignment in a noncondition..126
Calculation as a comparison in a condition..126
Calculation as an assignment in an action...128

Unsupported uses of calculation expressions...128

Rule dependency in chaining..131

Filters...133
Full filters...135
Limiting filters..137
Filters that use OR..142
What is a precondition ...142

Summary of filter and preconditions behaviors..146
Performance implications of the precondition behavior...146

How to use collection operators in a filter...148
Location matters...150
Multiple filters on collections..152

How to recognize and model parameterized rules.................................157
Parameterized rule where a specific attribute is a variable or parameter within a general business

rule...157
Parameterized rule where a specific business rule is a parameter within a generic business rule....159

Logical analysis and optimization..161
Test, validate, and optimize your rules..161

Scenario testing...162

Progress Corticon.js: Rule Modeling: Version 1.46

Contents

Rulesheet analysis and optimization..162
Traditional methods of analyzing logic..163

Flowcharts..164
Test suites..166

Validate and test Rulesheets in Corticon Studio...169
How to expand rules..169
The conflict checker...171
The completeness checker..175
Logical loop detection..181

Test rule scenarios in the Ruletest Expected panel..182
How to navigate in Ruletest Expected comparison results..182
Review test results when using the Expected panel..182
Techniques that refine rule testing...186

How to optimize Rulesheets...191
The compress tool..191
How to produce characteristic Rulesheet patterns...194
Compression creates subrule redundancy...197
Effect of compression on Decision Service performance...197

Precise location of problem markers in editors...198

Advanced Ruleflow techniques and tools...199
How to use a Ruleflow in another Ruleflow..199
Conditional branching in Ruleflows...200

Example of branching based on a Boolean...203
Example of branching based on an enumeration...208
Logical analysis of a branch container...213
How branches in a Ruleflow are processed...217

How to generate Ruleflow dependency graphs..218

Troubleshooting Corticon.js Studio problems..225
Where did the problem occur..227
Use Corticon Studio to reproduce the behavior..227

Analyze Ruletest results...227
Trace rule execution...227
Identify the breakpoint..230
At the breakpoint..231

How to compare and report on Rulesheet differences..233

Appendix A: Customize Corticon.js Studio...237

7Progress Corticon.js: Rule Modeling: Version 1.4

Contents

Progress Corticon.js: Rule Modeling: Version 1.48

Contents

1
Introduction to Corticon.js rule modeling

Corticon enables business users and domain experts to define rules for automating critical business decisions.
Corticon has long been a leader in decision automation for Java and .NET applications. Corticon.js provides
a new deployment option, JavaScript. With Corticon.js you can define rules and package them into fully
self-contained JavaScript bundles which can be deployed to any compatible JavaScript platform. Example
usages include:

• Rules deployed as serverless functions on AWS Lambda or Azure Functions

• Rules integrated into a cloud work flow such as AWS Step Functions, Google Cloud Functions, and Azure
Flow

• Rules run on your own backend as part of your Node.js platform

• Rules bundled in a mobile app with Xamarin, React, Vue or other toolkit

• Rules executed in a browser as part of a web application

This guide introduces you to Corticon.js Studio for defining business rules and packaging them for deployment.
Like Corticon, Corticon.js provides an easy to use spreadsheet metaphor for defining business rules as well
as tools to define your rule vocabulary, rule flows and to test them. Corticon frees you from dependence on
your IT department writing code for your automated business decisions.

The topics here are supported by guides to the rule modeling language and a quick reference for the Corticon.js
Studio user interface. If you are new to Corticon, you will benefit from the Basic and Advanced Rule Modeling
tutorials on the Corticon Information Hub.

9Progress Corticon.js: Rule Modeling: Version 1.4

Progress Corticon.js: Rule Modeling: Version 1.410

Chapter 1: Introduction to Corticon.js rule modeling

2
Create the Vocabulary

Rule projects are based a vocabulary so you must create one, either by building one by hand, or by generating
one. This section describes the concepts and purposes of a Corticon.js Vocabulary. You see how to create a
Vocabulary from general business concepts and relationships.

For the rule modeler, the Vocabulary terms represent business objects, people, or other items. These could
be customers, mortgage applications, purchase orders or any other thing that can automate decisions.
Throughout the documentation, these things are referred to as entities, and properties or characteristics of
these things are referred to as attributes.

Scope

An important point about a Vocabulary: there does not need to be a one-to-one correlation between terms in
the Vocabulary and terms in the enterprise data model. In other words, there may be terms in the data model
that are not included in or referenced by rules—such terms do not need be included in the Vocabulary.

For details, see the following topics:

• Generate a Vocabulary

• Build a Vocabulary by hand

• Extend a Vocabulary

11Progress Corticon.js: Rule Modeling: Version 1.4

Generate a Vocabulary
Overview
Corticon.js makes it easy to start your rule projects by letting you generate the Vocabulary directly from the
JSON that your rules will process. This technique accelerates development, so that you can quickly get started
writing rules, and ensures your vocabulary matches the JSON payloads that will be passed as input to your
rules when deployed.

To generate a vocabulary, select a JSON file that is representative of the range of objects and fields (entities
and attributes) that could be passed to your rules when deployed.

You need not be concerned if your JSON data model changes. Corticon.js lets you easily update your vocabulary
by reimporting JSON, or by editing your Vocabulary by hand.

Note: JSON or JSON schema as a source?—JSON schema is more common when working with
industry-standard data models, and has benefits because it more fully describes a data model, but JSON
schema is not widely used. In most projects, all you will have is JSON, in which case, try to have JSON that
represents all the entities and attributes that might occur in rule requests and output.

This topic has the following sections:

• Use JSON to generate a vocabulary on page 12

• Use JSON Schema to generate a vocabulary on page 21

Use JSON to generate a vocabulary

Create a Vocabulary from a JSON payload
Suppose you are writing rules for a B2B e-commerce application that will determine what, if any, discounts
should be applied to an order. An order contains contact information about the customer, their partnership
status ('elite' or 'standard') and the items in the order. Your rules will examine this information to determine a
discount rate for the order in line with the promotions being offered by your company. For example, 'elite'
customers might get 15% off on orders over $10,000.

Progress Corticon.js: Rule Modeling: Version 1.412

Chapter 2: Create the Vocabulary

Working with IT, you've been supplied this sample JSON file representing an order. JSON in this format is used
by other components of your e-commerce application:

{
"orderId": 494748,
"customer": "Acme Industries",
"customerStatus": "elite",

"shippingAddress": {
"address1": "1234 Industrial Lane",
"address2": null,
"city": "Boston",
"state": "MA",
"zip": "01234"

},
"products": [

{
"sku": "XYZ-BB-43",
"unitPrice": 2300.00,
"quantity": 2,
"tags": [

"industrial",
"compressor"

]
}

],
"discount": 0.0

}

To populate a Vocabulary from a JSON payload:
1. Copy the preceding JSON and then save in a temporary file.

2. In Corticon.js Studio, create a new Rule Project named OnlineRetail.

3. In the project, create a Vocabulary named Orders.

4. Click in the Vocabulary edit window, and then select Vocabulary > Populate Vocabulary from JSON.

5. Choose the temporary file with the JSON you saved, and then click Open.

The Vocabulary that the JSON generates is the following:

13Progress Corticon.js: Rule Modeling: Version 1.4

Generate a Vocabulary

Let's take a closer look at the Vocabulary:

• Root entity—The JSON source has an object definition at root, indicated by the JSON starting with initial
brace. You know this root entity is an order. Corticon does not know that, so it named the top-level entity
Root. After vocabulary generation completes you can refactor the root entity name to Order:

• Attributes—Each attribute takes the JSON Element Name that was in the source JSON. The root entity
has five attributes that are added as attributes of Root. You can manually revise the data type as appropriate.
This is the incoming payload identifier that will map to its Vocabulary attribute name:

Progress Corticon.js: Rule Modeling: Version 1.414

Chapter 2: Create the Vocabulary

Note: If an attribute has a null value in the source JSON, the data type String is assumed.

• Non-root entities—Other entities take the name in the source JSON, and specify their JSON Path as
relative to the root:

• Associations: Corticon added the Products entity, and then added an association from Root (Order)
to products:

15Progress Corticon.js: Rule Modeling: Version 1.4

Generate a Vocabulary

• Scalar arrays—A scalar array is handled as an association from the entity with its own identifying Entity.
The JSON Array's relationship shows that products is relative to root ($) and one or more tags are related
to products:

Note: Corticon.js does not support JSON arrays mixing scalar values and objects. For example:

"A": [1,2,3, {"B": {"color" : "red"}}]

This JSON snippet defines an array "A" containing the scalar values 1,2,3 and the object "B". In Corticon.js,
an array must be either all scalar values or all objects.

Update a vocabulary from a JSON payload
Suppose your Sales department wants to enhance the discount program to provide an additional discount to
government agencies and whether an order is marked for expedited handling. In support of this IT has provided
an updated sample JSON the includes the new information.

Progress Corticon.js: Rule Modeling: Version 1.416

Chapter 2: Create the Vocabulary

An update generates new entities, attributes, and associations. The existing entities, attributes, and associations
are not revised by regenerating over the existing Vocabulary. If you want one element to be regenerated, delete
it before you perform the update. You could even delete the vocabulary entirely, and then start fresh. The
original sample payload adds a requirement for Billing Address to the sampleCustomer Vocabulary.

{
"orderId": 494748,
"customer": "Acme Industries",
"customerStatus": "elite",
"governmentAgency": false,

"shippingAddress": {
"address1": "1234 Industrial Lane",
"address2": null,
"city": "Boston",
"state": "MA",
"zip": "01234"

},
"shippingDetails": {

"expedite": true,
"mode": "ground"

},

"products": [
{

"sku": "XYZ-BB-43",
"unitPrice": 2300.00,
"quantity": 2,
"tags": [

"industrial",
"compressor"

]
}

],
"discount": 0.0

}

17Progress Corticon.js: Rule Modeling: Version 1.4

Generate a Vocabulary

When you regenerate your vocabulary from this JSON, it will add new entities, attributes and associations to
your vocabulary for the new items in the JSON. The Vocabulary shows the added entity, attributes, and
association:

Note: If you rename or refactor entity or attribute names, an update from the same source will generate
duplicate entities and attributes for the ones you renamed in the Vocabulary. You will need to delete the
duplicates.

Integrating multiple sources into a Vocabulary
To build a single vocabulary that integrates multiple data feeds, it is convenient to import additional sources
into separate vocabulary domains. Corticon.js enables you to import into an added domain without impacting
the rest of the Vocabulary.

Progress Corticon.js: Rule Modeling: Version 1.418

Chapter 2: Create the Vocabulary

Consider a variation on the customer info so that it identifies a partner:

{
"orderId": 494749,
"partner": "Acme Partners",
"partnerStatus": "elite",
"shippingAddress": {

"address1": "2000 Industrial Ave",
"address2": null,
"city": "Boston",
"state": "MA",
"zip": "01234"

},
"shippingDetails": {

"expedite": true,
"mode": "ground"

}
}
"discount": 25.0
}

In the Vocabulary file, right-click at the root and then choose Add Domain:

Click on the new domain to refactor the name to Partners.

19Progress Corticon.js: Rule Modeling: Version 1.4

Generate a Vocabulary

Right-click on the Partners domain and then choose Populate Domain From JSON:

Choose the file where the preceding listing was saved, and click Open.

The data is added to the Vocabulary.

Note that a reference to an attribute in an added domain requires the domain as a qualifier of the attribute when
used in rules. In this example, the regular ShippingAddress.address1 in a Rulesheet would be differentiated
from Partners.ShippingAddress.address1.

Progress Corticon.js: Rule Modeling: Version 1.420

Chapter 2: Create the Vocabulary

Use JSON Schema to generate a vocabulary

Create a Vocabulary from a JSON schema
Suppose your company belongs to an industry consortium that has defined a standard format for JSON
messages for communication between suppliers and customers. The consortium may opt to define a JSON
schema for the JSON. JSON schema providers a greater ability to define valid content for JSON payloads.

The use of JSON schema is in the early days of being adopted. JSON Schema is primarily used when different
organizations need a formal definition of an agreed upon data model. Using JSON schema has advantages
for vocabulary generation such as options for defining enumerated values and for transcribing comments into
the Vocabulary. Be careful: Some schemas are very large and have more than you need. You may want to cut
the schema down to just what you need before generating the vocabulary.

Note: Corticon uses JSON Schema Draft-07 to infer the patterns in the given source—whether a JSON payload
file or parsing a JSON schema file—to make its best effort to set up the entire Vocabulary complete with
associations. You might be using a different draft. As the specification gets more refined, improvements are
added to the schema.

21Progress Corticon.js: Rule Modeling: Version 1.4

Generate a Vocabulary

https://json-schema.org/draft/2019-09/release-notes.html

• Sample JSON Schema on page 23

• To populate a Vocabulary from a JSON schema on page 24

• How Corticon generates a vocabulary from JSON on page 24

• How descriptions in your schema are handled on page 25

• How references in your schema are handled on page 26

• How enumerations in your schema are handled on page 25

• How to extend type definitions in your schema on page 26

Progress Corticon.js: Rule Modeling: Version 1.422

Chapter 2: Create the Vocabulary

Sample JSON Schema
The following code is an example of a JSON schema:

{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {

"BillingAddress": {
"description": "Address to where a Customer's invoice must go",
"type": "object",
"properties": {

"Zip": {
"type": "string"

},
"State": {

"type": "string"
},
"Address2": {

"type": "string"
},
"Address1": {

"type": "string"
},
"City": {

"type": "string"
}

}
},
"CompanyName": {

"type": "string"
},
"Phone": {

"type": "string"
},
"ShippingAddress": {

"description": "Address to where a Customer's product must go",
"type": "object",
"properties": {

"Zip": {
"type": "string"

},
"State": {

"type": "string"
},
"Address2": {

"type": "string"
},
"Address1": {

"type": "string"
},
"City": {

"type": "string"
}

}
},
"Notes": {

"type": "string"
},
"Contact": {

"type": "string"
}

}
}

23Progress Corticon.js: Rule Modeling: Version 1.4

Generate a Vocabulary

To populate a Vocabulary from a JSON schema
1. Copy the preceding JSON and then save in a temporary file.

2. In Corticon.js Studio, create a new Rule Project named CustomerSchema.

3. In the project, create a Vocabulary named CustomerSchema.

4. Click in the Vocabulary edit window, and then select Vocabulary > Populate Vocabulary from JSON.

5. Select the sample file CustomerSchema.json, and then click Open.

The Vocabulary that the JSON schema generates is the following:

How Corticon generates a vocabulary from JSON
To generate a vocabulary from a JSON schema document, Corticon examines the contents of the document
to identify the entities in the document, their attributes, and their associations. Where data types are not defined
with JSON, Corticon infers the data type of attributes based on the values present.

The process of inferring the schema is essentially as follows:

• Entities: Entity names follow Corticon naming conventions and uppercase the first character of the entity
name.

• The entity Root entity always generated.

• If an existing entity has already been mapped to a JSON object, use that entity.

• If no entity is found, then create a new entity, and set the entity name to the object name.

• Attributes: For each attribute in an Entity:

• If an entity has no attributes, assign it one string attribute with the name item

• Create a new attribute (no duplicate names including case) with attribute name in the Entity

Progress Corticon.js: Rule Modeling: Version 1.424

Chapter 2: Create the Vocabulary

• Data type

• For a JSON schema where a data type is specified, use that data type.

• For a JSON instance:

• For a number that can be successfully converted to a relevant Java Date, set its data type as
DateTime.

• For a number with a decimal point, set its data type as Decimal.

• For a number without a decimal point, set its data type as Integer.

• For a string that is an ISO 8601 value, set its data type as DateTime, else it is a String.

• For an attribute with a data type of null, it is a String.

• For an empty array, it is a String array.

• Associations: Association role names are auto-assigned.

• Arrays are specified as a one-to-many with its corresponding parent entity.

• Associations are not be bidirectional.

• Both ends are not mandatory.

How descriptions in your schema are handled
The JSON Schema specification has description attributes that can be used to document your data structure.
The Vocabulary Generator puts the description fields in the schema into the Vocabulary's Comments tab,
as shown:

How enumerations in your schema are handled
The JSON Schema specification might have enumerations. When the Vocabulary Generator sees an enum
tag, it creates a Custom Data Type of that enumeration and use that as the attributes data type.

When a schema with an enum populates the Vocabulary, it generates a custom data type:

25Progress Corticon.js: Rule Modeling: Version 1.4

Generate a Vocabulary

The type attribute is still String, but its Data Type is now the custom data type TypeEnumeration, as
shown:

How references in your schema are handled
The JSON Schema specification provides for the use of $ref attributes to have a single definition of an object
that can then be incorporated elsewhere in the schema. An example is an address object defined once and
included as part of customer and supplier objects in the schema.

When Corticon generates a vocabulary from JSON schema, associations will be added from the referring entity
to the target entity. In the example, the generated vocabulary would contain Customer, Supplier, and
Address entities. Corticon then adds associations from both Customer and Supplier entities to the Address
entity.

How to extend type definitions in your schema
The JSON Schema specification allows you to specify different validation rules through the use of oneOf,
anyOf, or allOf tags. For the most part, these tags do not effect vocabulary generation except when used
to extend a type definition. In the following example, the Type enumeration was added to the address definition
because it is needed for ShippingAddress. However, it is not needed for other types of addresses, so does
it make sense to include it, optionally, in all addresses? This is where the allOf tag comes in handy. You can
use it to extend the address type only for the ShippingAddress. A schema fragment that uses allOf is
shown:

...
"ShippingAddress": {

"description": "Address to where a Customer's product must go",
"allOf": [

{ "$ref": "#/definitions/address" },
{ "properties":

{ "type":
{
"title": "Address Type Enumeration",

"description": "Specifies if the address is a Business or Residence",

"enum": ["residential", "business"]

Note: Get the complete extend sample.

The difference in the vocabulary generated by this schema and the previous one is that the type attribute will
only be in the ShippingAddress entity and not the BillingAddress entity.

Progress Corticon.js: Rule Modeling: Version 1.426

Chapter 2: Create the Vocabulary

https://community.progress.com/s/question/0D54Q00008TguQjSAJ/generate-a-javascript-vocabulary-schema-extend

Build a Vocabulary by hand
An alternative to generating a vocabulary is to create one by hand. Creating a vocabulary by hand requires
more effort then generating one, yet has the potential advantage of forcing you to carefully consider the elements
to include in your vocabulary.

The first step in creating a Vocabulary is to collect information about the specifics of the business problem you
are trying to solve. This step usually includes research into the more general business context in which the
problem exists. Various resources may be available to you to help in this process, including:

• Interviews—The business users and subject matter experts are often the best source of information about
how business is conducted. They may not know how the process is supposed to work, or how it could work,
but in general, no one knows better how a business process or task is performed than those who actually
perform it.

• Company policies and procedures—Any written policies and procedures are an excellent source of
information about how a process is supposed to work and the rules that govern the process. Understanding
the gaps between what is supposed to happen and what actually happens can provide valuable insight into
problems.

• Existing systems and data sources—Systems address specific business needs, but needs often change
faster than systems can keep up. Understanding what the systems were designed to do versus how they
are actually used often provides clues about the core problems. Also, business logic contained in these
legacy systems often captures business policies and procedures (the business rules!) that are not recorded
anywhere else.

• Forms and reports—Even in heavily automated businesses, forms and reports are often used extensively.
These documents can be very useful for understanding the details of a business process. Reports also
illustrate the expected output from a system, and highlight the information users require.

Analyze the chosen scenario or existing business rules in order to identify the relevant terms and the relationships
among these terms. Statements that express the relevant terms and relationships are called facts, and Progress
recommends developing a Fact Model to more clearly illustrate how they fit together. A simple example shows
you the creation of a Fact Model and its subsequent development into a Vocabulary for use in Corticon.js
Studio.

Follow these steps to create a Corticon.js Vocabulary:

• Step 1: Design the Vocabulary on page 27

• Step 2: Identify the terms on page 28

• Step 3: Separate the generic terms from the specific on page 28

• Step 4: Assemble and relate the terms on page 28

• Step 5: Diagram the Vocabulary on page 29

• Step 6 Modeling the Vocabulary in Corticon.js Studio on page 30

Step 1: Design the Vocabulary
An air cargo company has a manual process for generating flight plans. These flight plans assign cargo
shipments to a specific aircraft. Each flight plan is assigned a flight number. The cargo company owns a small
fleet of three planes: two Boeing 747s and one McDonnell-Douglas DC-10 freighter. Each airplane type has a
maximum cargo weight and volume that cannot be exceeded. Each airplane type also has a tail number that
identifies it. A cargo shipment has characteristics like weight, volume and a manifest number.

27Progress Corticon.js: Rule Modeling: Version 1.4

Build a Vocabulary by hand

Assume that the company wants to build a system that automatically checks flight plans to ensure that no
scheduling rules or guidelines are violated. One of the many business rules that needs to be checked by this
system is:

Step 2: Identify the terms
Identify the terms (entities and attributes) for our Vocabulary by circling or highlighting those nouns that are
used in the business rules you want to automate. Step 1: Design the Vocabulary on page 27 is marked up:

Step 3: Separate the generic terms from the specific
Why circle aircraft and not the names of the aircraft in the fleet? It is because 747 and DC-10 are specific
types of the generic term aircraft. The type of aircraft is an attribute of the generic aircraft entity. Several cargo
shipments and flight plans can exist. Like the specific aircraft, these are instances of their respective generic
terms. For the Vocabulary, you identify the generic (and therefore reusable) terms. But, ultimately, you need
a way to identify specific cargo shipments and flight plans from within the set of all cargo shipments and flight
plans. Assigning values to attributes of a generic entity accomplishes this goal, discussed later.

Step 4: Assemble and relate the terms
None of the circled terms exists in isolation. They all relate to each other in one or more ways. Understanding
these relationships is the next step in Vocabulary construction. The following facts are observed or inferred
from the example:

• An aircraft carries a cargo shipment.

• A flight plan schedules cargo for shipment on an aircraft.

• A cargo shipment has a weight.

• A cargo shipment has a manifest number.

• An aircraft has a tail number.

• An aircraft has a maximum cargo weight.

• A 747 is a type of aircraft.

Notice that some of these facts describe how one term relates to another term; for example, an aircraft carries
a cargo shipment. This type of statement usually provides a clue that the terms in question, aircraft and cargo
shipment, are entities and are two primary terms.

Also notice that a fact “has a” relationship. For example, an aircraft “has a” tail number, or a cargo “has a”
weight. This type of relationship usually identifies the subject (aircraft) as an entity and the object (tail number)
as an attribute of that entity. By continuing the analysis, the Vocabulary contains 3 main entities, each with its
own set of attributes:

Entity: Aircraft

Attributes: aircraft type, max cargo weight, max cargo volume, tail number

Entity: Cargo

Attributes: weight, volume, manifest number, packaging

Progress Corticon.js: Rule Modeling: Version 1.428

Chapter 2: Create the Vocabulary

Entity: FlightPlan

Attributes: flight number

Step 5: Diagram the Vocabulary
Using this breakdown, sketch a simple Fact Model that illustrates the entities and their relationships, or
associations. In the Fact Model, entities are rectangular boxes, associations between entities are straight lines
connecting the entity boxes, and entity-to-attribute relationships are diagonal lines from the associated entity.
The following illustration is the resulting Fact Model:

A unified modeling language (UML) class diagram contains the same type of information, and may be more
familiar to you:

It is not a requirement to construct diagrams or models of the Vocabulary before building it in Corticon. But, it
can be very helpful in organizing and conceptualizing the structures and relationships, especially for very large
and complex Vocabularies. The BRMS Fact Model and UML Class Diagram are appropriate because they
remain sufficiently abstracted from lower-level data models that contain information not typically required in a
Vocabulary.

29Progress Corticon.js: Rule Modeling: Version 1.4

Build a Vocabulary by hand

Step 6 Modeling the Vocabulary in Corticon.js Studio
The next step is to transform the diagram into your Corticon Vocabulary. This can be done in Corticon.js Studio
using its built-in Vocabulary Editor.

In Corticon.js, choose New > Rule Project to create a Rule Project. Click that Rule Project, and then choose
New > Vocabulary. Then create the entities, attributes, and associations that were defined in the diagram.

Note: See "Vocabularies" in the Quick Reference Guide for complete details on building a Vocabulary.

The naming conventions for entities and attributes in the Fact Model will be used in the Vocabulary:

• Attributes: Each attribute must have a data type that is: String, Boolean, DateTime, Integer or Decimal.

• Attributes are classified according to the method by which their values are assigned. They are either:

• Base -- Values are obtained directly from input data or request message, or

• Transient -- Created, derived, or assigned by rules in Studio.

Note:

Transient attributes carry or hold values while rules are executing within a single Rulesheet. Since
messages returned by a Decision Service do not contain transient attributes, these attributes and their
values cannot be used by external components or applications. If an attribute value is used by an external
application or component, it must be a base attribute.

To show the rule modeler which attributes are base and which are transient, Corticon.js Studio adds an
orange bar to transient attributes, as shown here for packDate:

It is a good idea to use a naming convention that distinguishes transient attributes from base attributes.
For example, you could start a transient attribute's name with t_ such as t_packDate. We caution
against modifying the names of terms so that they are cryptic. The intent is to express them in a language
accessible to business users, as well as developers.

• Associations:

• Role names: Relationships between entities have role names that are assigned when you build
associations in the Vocabulary Editor. A default role name mimics the entity name, with the first letter in
lowercase.

• One-way directionality: Associations between entities are directional (one way).

• Cardinality: Associations have cardinality, which indicates how many instances of a given entity can be
associated with another entity.

Progress Corticon.js: Rule Modeling: Version 1.430

Chapter 2: Create the Vocabulary

The Vocabulary must contain all of the entities and attributes needed to build rules, a process that is typically
iterative, with Vocabulary changes made as the rules are built, refined, and tested.
Figure 1: Vocabulary Window in Corticon.js Studio

-->

Extend a Vocabulary
When creating a vocabulary, you can define enumerations to represent valid choices of values and use domains
to segment your vocabulary into logical namespaces.

Enumerations
Enumerations are lists of strictly typed unique values that are the valid values for each attribute that is assigned
the custom data type name as its data type. These lists also prompt Rulesheet and Ruletest designers to use
a specific list of values. Enumerated lists can be maintained directly in the Vocabulary, or retrieved and updated
from a data source.

Each item list can be partnered with a unique label that you select in Rulesheets and Ruletests.

How enumeration labels and values behave
Before you start setting up and using enumerations, you should get acquainted with labels and values.

Note: It is important that you determine whether you want to use labels, because changing a set of enumerations
later to add or remove the labels data will affect any Rulesheets and Ruletests that use that custom data type's
enumerations as you can observe in this topic.

31Progress Corticon.js: Rule Modeling: Version 1.4

Extend a Vocabulary

At the Vocabulary root, you created a String enumeration with only values. The base data type can be any
Corticon.js data type except Boolean. Every line requires a unique entry of its type, and the list must have no
blank lines from the top down to the last line.

The following examples are String values. They can contain spaces and most other characters. It needs to be
set off in plain single quotation marks. If you enter or paste text with the delimiters, they are added for you.
Like this:

If you want to use labels, then the label is always a String of any alphanumeric characters but cannot contain
spaces. Each must be unique and must have a corresponding value. Even when you use labels, the values
must be unique.

Set Glove.color to use the colorUnlabeled data type:

Progress Corticon.js: Rule Modeling: Version 1.432

Chapter 2: Create the Vocabulary

Set Ball.color to use the colorLabeled data type:

When you create a Rulesheet, the list offered at A1 contains the label (Ball.color = red) , while the list
offered at B1 contains the value in qoutes (Glove.color='red').

You add Rule Statements so that you can see how the labeled and unlabeled items are handled.

In a simple Ruletest, add some size tests to see what happens. As shown, the labels and values in the resulting
Output are both unquoted. The Rule Messages tab displays the value when the label was in use and the
value of the value-only enumeration.

33Progress Corticon.js: Rule Modeling: Version 1.4

Extend a Vocabulary

Entry of test values in the Ruletest list the label+value's label:

Progress Corticon.js: Rule Modeling: Version 1.434

Chapter 2: Create the Vocabulary

The value-only list has quoted values:

Both are reconciled to unquoted values in the displayed Input and Output columns:

Note: It is important that you determine in each custom data type whether you want to use labels. Some
enumerations can have labels while others do not. Changing a set of enumerations later, to add or remove the
labels data, affects any Rulesheets and Ruletests that use that custom data type's enumerations as you can
observe in this topic.

Enumerations defined in the Vocabulary
To set up an Enumeration, open the project's Vocabulary, and click its root—Cargo, in this example. Then,
enter a preferred unique name without spaces, and click the Base Data Type cell of the row to choose the data
type (the values are all red until you have added a successful value or label/value pair). Click on the Enumeration
cell to choose Yes. Now, enter a value on the first row, and a label if you want one. All the cells are validated,
and the red markers are cleared. Then, you can add other value or label/value pairs on the next lines.

35Progress Corticon.js: Rule Modeling: Version 1.4

Extend a Vocabulary

When you complete a valid Custom Data Type, choose the attributes in the Vocabulary that will be constrained
to the enumeration.

If your custom data type is a local enumeration, then you enter the enumerated values of the base data type
into the Value column, and, if you intend to use labels, then enter label text into the Labels column.

Note: Pasting in labels and values—If you have the source data in a spreadsheet or text file, you can copy
from the source and paste into the Vocabulary after you define the name, base data type, and chosen yes to
enumeration. When you paste two columns of data, click the first label row. If you have one column of data
you want to use for both the label and the value, paste it in turn into each column. If the data type is String, or
DateTime, the paste action will add the required single quote marks.

The Label column is optional: you enter Labels only when you want to provide an easier-to-use or more intuitive
set of names for your enumerated values.

The Value column is mandatory: you need to enter the enumerations in as many rows of the Value column as
necessary to complete the enumerated set. Be sure to use normal syntax, so custom data types that extend
String, DateTime, base data types must be enclosed in single quote characters.

Progress Corticon.js: Rule Modeling: Version 1.436

Chapter 2: Create the Vocabulary

Here are some examples of enumerated custom data types:

Figure 2: Custom Data Type, example 1

containerType is a String-based, enumerated custom data type with Label/Value pairs.

Figure 3: Custom Data Type, example 2

PrimeNumbers is an Integer-based, enumerated custom data type with Value-only set members.

Figure 4: Custom Data Type, example 3

USHolidays2020 is a DateTime-based, enumerated custom data type with Label/Value pairs.

Figure 5: Custom Data Type, example 4

37Progress Corticon.js: Rule Modeling: Version 1.4

Extend a Vocabulary

ShirtSize is an Integer-based, enumerated custom data type with Label/Value pairs.

Figure 6: Custom Data Type, example 5

RiskProfile is an Integer-based, enumerated custom data type with Label/Value pairs

Figure 7: Custom Data Type, example 6

DevTeam is a String-based, enumerated custom data type with Value-only set members.

Use the Move Up or Move Down toolbar icons to change the order of Label/Value rows in the list.

Use enumerated Custom Data Types in Rulesheets
After an enumeration is defined and assigned to an attribute, its labels are displayed in selection drop-down
lists in both Conditions and Actions expressions, as shown. If Labels are not available (because Labels are
optional in an enumerated custom data type's definition), then Values are shown. The null option in the
drop-down list is only available if the attribute's Mandatory property value is set to No.

Figure 8: Using Custom Data Types in the Rulesheet

Progress Corticon.js: Rule Modeling: Version 1.438

Chapter 2: Create the Vocabulary

You can test a condition bound to an attribute by evaluating the attribute against a custom data type label using
the # tag, as shown:

Figure 9: Using # tag to test a custom data type

Note: Using a dot instead of a # tag works, but if there is custom data type with the same name as an entity,
then the expression will be invalid.

Use enumerated Custom Data Types in Ruletests
An enumeration's Values and Labels are available as selectable inputs in a Ruletest, as shown:

Figure 10: Ruletest selecting container's containerType list

If you want the attribute value to be null, right-click the attribute, and then select Set to Null, as shown:

Domains
Occasionally, it may be necessary to include more than one entity of the same name in a Vocabulary. This can
be accomplished using Domains. Domains allow you to bundle one or more entities in a subset within the
Vocabulary, thus you can reuse entity names as long as the entity names are unique within each
Domain. Additional Domains, referred to as sub-Domains, can be defined within other Domains.

Select Vocabulary > Add Domain, or click from the Studio toolbar.

39Progress Corticon.js: Rule Modeling: Version 1.4

Extend a Vocabulary

A new folder is listed in the Vocabulary tree. Assign it a name. The example in the following figure shows a
Vocabulary with two Domains, US_Fleet and WW_Fleet:

Figure 11: Using domains in the Vocabulary>

Notice that the entity Aircraft appears in each Domain, using the same spelling and containing slightly
different attributes (FAAnumber vs. ICAOnumber). Notice, too, that the association role names from FlightPlan
to Aircraft were named manually to ensure uniqueness: one is now USaircraft and the other is
WWaircraft.

Domains in a Rulesheet
When using entities from domains in a Rulesheet, it is important to ensure uniqueness, which means aliases
must be used to distinguish one entity from another.

Figure 12: Non-unique Entity names prior to defining Aliases

In Non-unique Entity names prior to defining Aliases, both Aircraft entities have been dropped into the
Scope section of the Rulesheet. But because their names are not unique, an error icon appears. Also, the
“fully qualified” domain name has been added after each to distinguish them. By fully qualified, we mean the
::US_Fleet:: designator that follows the first Aircraft and ::WW_Fleet:: that follows the second.

Progress Corticon.js: Rule Modeling: Version 1.440

Chapter 2: Create the Vocabulary

But, it would be inconvenient (and ugly) to use these fully qualified names in Rulesheet expressions. So, you
must define a unique alias for each. The aliases will be used in the Rulesheet expressions, as shown:

Figure 13: Non-unique Entity names after defining Aliases

Domains in a Ruletest
When using Vocabulary terms in a Ruletest, drag and drop them as usual. Notice that they are automatically
labeled with the fully qualified name, as shown:

Figure 14: Domains in a Ruletest

41Progress Corticon.js: Rule Modeling: Version 1.4

Extend a Vocabulary

Progress Corticon.js: Rule Modeling: Version 1.442

Chapter 2: Create the Vocabulary

3
Rule scope and context

The air cargo example that you started in the Vocabulary chapter is continued here to illustrate the important
concepts of scope and context in rule design.

A quick recap of the fact model:

Figure 15: Fact model

43Progress Corticon.js: Rule Modeling: Version 1.4

According to this Vocabulary, an aircraft is related to a cargo shipment through a flight plan. In other words,
it is the flight plan that connects or relates an aircraft to its cargo shipment. The aircraft, by itself, has no direct
relationship to a cargo shipment unless it is scheduled by a flight plan; or, no aircraft may carry a cargo shipment
without a flight plan. Similarly, no cargo shipment can be transported by an aircraft without a flight plan. These
facts constitute business rules in and of themselves and constrain creation of other rules because they define
the Vocabulary you will use to build all subsequent rules in this scenario.

Also recall that the company wants to build a system that automatically checks flight plans to ensure no
scheduling rules or guidelines are violated. One of the many business rules that need to be checked by this
system is:

With your Vocabulary created, you can build this rule in the Studio. As with many tasks in Studio, there is often
more than one way to do something. We will explore two possible ways to build this rule – one correct and one
incorrect.

To begin write your rule using the root-level terms in the Vocabulary. In the following figure, column #1 (the
trueCondition) is the rule you should be most interested in. The false condition in column #2 was added simply
to show a logically complete Rulesheet.

Figure 16: Expressing the rule using root-level Vocabulary terms

You can build a Ruletest to test the rule using the Cargo company's actual data, as follows:

Progress Corticon.js: Rule Modeling: Version 1.444

Chapter 3: Rule scope and context

The company owns 3 Aircraft, 2 747s and a DC-10, each with different tail numbers. Each box represents a
real-life example (or instance) of the Aircraft term from your Vocabulary.

Figure 17: The Cargo Company's 3 Aircraft

These aircraft give the company the ability to schedule 3 cargo shipments each night. Another business rule
is implied:– “an Aircraft cannot be scheduled for more than one flight per night”. This rule is not addressed
now because it is not relevant to the discussion}. On a given night, the cargo shipments look like those shown.
Again, like the Aircraft, these cargo shipments represent specific instances of the generic Cargo term from
the Vocabulary.

Figure 18: The three cargo shipments for the night of June 25th

45Progress Corticon.js: Rule Modeling: Version 1.4

Finally, the sample business process manually matches specific aircraft and cargo shipments together as three
flight plans, as shown below. This organization of data is consistent with the structure and constraints implicit
in the Vocabulary.

Figure 19: The three FlightPlans with their related Aircraft and Cargo instances

You can construct a Ruletest (in the following figure) so that the company's actual data is evaluated by the
rule. Because the rule used root-level Vocabulary terms in its construction, you use root-level terms in the
Ruletest:

Figure 20: Test the rule using root-level Vocabulary terms

Progress Corticon.js: Rule Modeling: Version 1.446

Chapter 3: Rule scope and context

Running the Ruletest:

Figure 21: Results of the Ruletest

47Progress Corticon.js: Rule Modeling: Version 1.4

Note the messages returned by the Ruletest. Recall that the intent of the rule is to verify whether a given
Flightplan is in violation by scheduling a Cargo shipment that is too heavy for the assigned Aircraft.
You already know that there are only three Flightplans. And you also know, from examination of Figure
19: The three FlightPlans with their related Aircraft and Cargo instances on page 46, that the combination of
aircraft N1003 and cargo 625C does not appear in any of the three Flightplans. So, why was this combination,
one that does not actually exist, evaluated? For that matter, why did the rule fire nine times when only three
sets of Aircraft and Cargo were present? The answer is in the way the rule was defined, and in the way the
rules engine evaluated it.

The Ruletest has three instances of both Aircraft and Cargo. Studio treats Aircraft as a collection or
set of these three specific instances. When Studio encounters the term Aircraft in a rule, it applies all
instances of Aircraft found in the Ruletest (all three instances in this example) to the rule. Because both
Aircraft and Cargo have three instances, there are a total of nine possible combinations of the two terms.
In the following figure, the set of these nine possible combinations is called a cross product, Cartesian product,
or tuple set in different disciplines. Progress uses cross-product when describing this outcome.

Figure 22: All possible combinations of Aircraft and Cargo

One pair, the combination of manifest 625B and plane N1003 (shown as the red arrow in the preceding figure),
is illegal, because the plane, a DC-10, can only carry 150,000 kilograms, while the cargo weighs 175,000
kilograms. But, this pairing does not correspond to any of the three FlightPlans created. Many of the other
combinations evaluated (five others) are not represented by real flight plans either. So why did Studio perform
three times the necessary evaluations? It is because the rule, as implemented in Figure 16: Expressing the
rule using root-level Vocabulary terms on page 44, does not capture the essential elements of scope and
context.

You want your rule to express the fact that you are only interested in evaluating the Cargo—Aircraft pair
for each FlightPlan, not for all possible combinations. How do you express this intention in your rule? You
use the associations included in the Vocabulary.

Progress Corticon.js: Rule Modeling: Version 1.448

Chapter 3: Rule scope and context

Refer to the following figure:

Figure 23: Rule expressed using FlightPlan as the Rule Scope

Here, the rule was rewritten using the aircraft and cargo terms from inside the FlightPlan term.

Note: Insidemeans that the Aircraft and Cargo terms that appear when the FlightPlan term is opened
in the Vocabulary tree, as shown by the orange highlights in Rule expressed using FlightPlan as the Rule
Scope.

This is significant. It means that you want the rule to evaluate the Cargo and Aircraft terms only in the
context of a FlightPlan. For example, on a different night, the Cargo company might have eight cargo
shipments assembled, but only the same three planes on which to carry them. In this scenario, three flight
plans would still be created. Should the rule evaluate all eight cargo shipments, or only those three associated
with actual flight plans? From the original business rule, only those cargo shipments in the context of actual
flight plans should be evaluated. To put it differently, the rule's application is limited to only those cargo shipments
assigned to a specific aircraft using a specific flight plan. We express these relationships in the Rulesheet by
including the FlightPlan term in the rule, so that cargo.weight is properly expressed as
FlightPlan.cargo.weight, and Aircraft.maxCargoWeight is properly expressed as
FlightPlan.aircraft.maxCargoWeight. By attaching FlightPlan to the terms
aircraft.maxCargoWeight and cargo.weight, you indicate mandatory traversals of the associations
between FlightPlan and the other two terms, Aircraft and Cargo.This instructs the rules engine to
evaluate the rule using the intended context. When writing rules, it is important to understand the context of a
rule and the scope of the data to which it will be applied.

For details, see the following topics:

• Rule scope

• Aliases

• Scope and perspectives in the vocabulary tree

49Progress Corticon.js: Rule Modeling: Version 1.4

Rule scope
Because the rule evaluates both Cargo and Aircraft in the context of FlightPlan, the rule has scope,
which means that the rule evaluates only that data which matches the rule's scope. This has an interesting
effect on the way the rule is evaluated. When the rule is executed, its scope ensures that the rules evaluates
only to those pairings that match the same FlightPlan. This means that cargo.weight is compared to
aircraft.maxCargoWeight only if both cargo and aircraft share the same FlightPlan. This simplifies
rule expression greatly, because it eliminates the need to specify which FlightPlan is referred to for each
Aircraft-Cargo combination. When a rule has context, the system takes care of this matching automatically
by sending only those aircraft - cargo pairs that share the same flight plan to be evaluated by the rule. And,
because Corticon.js Studio automatically handles multiple instances as collections, it sends all pairs to the rule
for evaluation.

Note: See the Collections topic for a detailed discussion of this subject.

To test this new rule, structure your Ruletest to correspond to the new structure of your rule and reflect the
rule's scope. For more information about the mechanics of creating associations in Ruletests, see and "Add
and edit association nodes and their properties" and "Create associations in the test tree" in the Quick Reference
Guide.

Progress Corticon.js: Rule Modeling: Version 1.450

Chapter 3: Rule scope and context

Finally, one FlightPlan is created for each Aircraft-Cargo pair. This means that a total of three
FlightPlans are generated each night. Using the terms in your Vocabulary and the relationships between
them, Figure 19: The three FlightPlans with their related Aircraft and Cargo instances on page 46 shows the
possibilities. The rule evaluates these combinations and identifies any violations.

Figure 24: New Ruletest using flight plan as the rule scope

What is the expected result from this Ruletest? If the results follow the same pattern as in the first Ruletest,
you might expect the rule to fire nine times (three Aircraft evaluated for each of three Cargo shipments).

51Progress Corticon.js: Rule Modeling: Version 1.4

Rule scope

In the following figure you see that the rule fired only three times, and only for those Aircraft-Cargo pairs
that are related by common flight plans. This is the result that you want. The Ruletest shows that there are no
FlightPlans in violation of the rule.

Figure 25: Ruletest results using scope – note no violations

Progress Corticon.js: Rule Modeling: Version 1.452

Chapter 3: Rule scope and context

One final point about scope: it is critical that the context you choose for your rule supports the intent of the
business decision you are modeling. At the beginning of the example, the purpose of the application was to
check flightplans that have already been created. Therefore, the context of the rule was chosen so that the
rule's design was consistent with this goal: no aircraft-cargo combinations should be evaluated unless they are
already matched up using a common flight plan.

But what if the business purpose was different? What if the problem trying to be solved is modified to: Of all
possible combinations of aircraft and cargo, determine which pairings must not be included in the same flight
plan. The difference here is subtle but important. Before, you were identifying invalid combinations of pre-existing
flight plans. Now, you are trying to identify invalid combinations from all possible cargo-aircraft pairings. This
other rule might be the first step in a screening or filtering process designed to discard all the invalid combinations.
In this case, the original rule you built, root-level context, is the appropriate way to implement the rule, because
now you are looking at all possible combinations prior to creating new flight plans.

Aliases
To clean up and simplify rule expression, Corticon.js Studio allows you to declare aliases in a Rulesheet. Using
an alias to express scope results in a less cluttered Rulesheet.

To define an alias, you need to open the Scope tab on the Rulesheet. Either click the toolbar button to
open the advanced view, or choose the Rulesheet menu toggle Advanced View.

If rules were already modeled in the Rulesheet, then the Scope window contains those Vocabulary terms used
in the rules so far. If rules were not yet modeled, then the Scope window is empty.

To define an alias, double-click the term, and then type a unique name in the entry box, as shown:

Figure 26: Defining an alias in the Scope window

After an alias is defined, any subsequent rule modeling in the Rulesheet automatically substitutes the alias for
the Vocabulary term it represents.

53Progress Corticon.js: Rule Modeling: Version 1.4

Aliases

In the next illustration, notice that the terms in the Condition rows of the Rulesheet do not show the FlightPlan
term. That is because the alias plan substitutes for FlightPlan.

Figure 27: Rulesheet with FlightPlan alias declared in the Scope section

After an alias is defined, any new Vocabulary term dropped onto the Rulesheet is adjusted accordingly. For
example, dragging and dropping FlightPlan.cargo.weight onto the Rulesheet displays as
plan.cargo.weight.

Aliases work in all sections of the Rulesheet, including the Rule Statement section. Modifying an alias name
defined in the Scope section causes the name to update everywhere it is used in the Rulesheet.

Note: Rules modeled without aliases do not update automatically if aliases are defined later. So if you intend
to use aliases, define them as you start your rule modeling. That way, they apply automatically when you drag
and drop from the Vocabulary or Scope windows.

Scope and perspectives in the vocabulary tree
Because the Vocabulary is organized as a tree in Corticon.js Studio, it may be helpful to extend the tree analogy
to better understand what aliases do. The tree view permits us to use the business terms from a number of
different perspectives, each perspective corresponding to one of the root-level terms and an optional set of
one or more branches.

Progress Corticon.js: Rule Modeling: Version 1.454

Chapter 3: Rule scope and context

Table 1: Vocabulary Tree Views and Corresponding Branch Diagrams

Branch DiagramDescriptionVocabulary Tree

This portion of the Vocabulary tree
can be visualized as the branch
diagram shown to the right.
Because this piece of the
Vocabulary begins with the
FlightPlan root, the branches
also originate with the FlightPlan
root or trunk. The FlightPlan's
associated cargo and aircraft
terms are branches from the trunk.

Any rule expression that uses
FlightPlan,
FlightPlan.cargo, or
FlightPlan.aircraft is using
scope from this perspective of the
Vocabulary tree.

This portion of the Vocabulary tree
begins with Aircraft as the root,
with its associated flightPlan
branching from the root. A cargo,
in turn, branches from its associated
flightPlan.

Any rule expression that uses
Aircraft,
Aircraft.flightPlan, or
Aircraft.flightPlan.cargo
is using scope from this perspective
of the Vocabulary tree.

This portion of the Vocabulary tree
begins with Cargo as the root, with
its associated flightPlan
branching from the root. An
aircraft, in turn, branches from
its associated flightPlan.

Any rule expression that uses
Cargo, Cargo.flightPlan, or
Cargo.flightPlan.aircraft
is using scope from this perspective
of the Vocabulary tree.

Scope can also be thought of as hierarchical, meaning that a rule written with scope of Aircraft applies to
all root-level Aircraft data. And other rules using some piece (or branch) of the tree beginning with the root
term Aircraft, including Aircraft.flightPlan and Aircraft.flightPlan.cargo, also apply to this
data and its associated collections. Likewise, a rule written with the scope of Cargo.flightPlan does not
apply to root-level FlightPlan data.

55Progress Corticon.js: Rule Modeling: Version 1.4

Scope and perspectives in the vocabulary tree

This provides an alternative explanation for the different behaviors between the Rulesheets in Expressing the
Rule Using Root-Level Vocabulary Terms and Rule Expressed Using FlightPlan as the Rule Scope. The rules
in the former are written using different root terms and therefore different scopes, whereas the rules in the latter
use the same FlightPlan root and therefore share common scope.

How to use roles
Using roles in the Vocabulary can often help to clarify rule context. To illustrate this point, a slightly different
example will be used. The UML class diagram for a new (but related) sample Vocabulary is as shown:

Figure 28: UML Class Diagram without Roles

As shown in this class diagram, the entities Person and Aircraft are joined by an association. However,
can this single association sufficiently represent multiple relationships between these entities? For example,
a prior Fact Model might state that “a pilot flies an aircraft” and “a passenger rides in an aircraft”. Both pilot and
passenger are descendants of the entity Person. Furthermore, some instances of Person may be pilots and
some may be passengers. This is important because it suggests that some business rules may use Person
in its pilot context, and others may use it in its passenger context. How do you represent this in the Vocabulary
and rules in Corticon.js Studio?

Assume that you want to implement two new rules:

Progress Corticon.js: Rule Modeling: Version 1.456

Chapter 3: Rule scope and context

These rules are called cross-entity because they include more than one entity (both Aircraft and Person)
in the expression. Unfortunately, with the Vocabulary as it is, you have no way to distinguish between pilots
and passengers, so there is no way to unambiguously implement these two rules. This class diagram, when
imported into Corticon.js Studio, looks like this:

Figure 29: Vocabulary without roles

However, there are several ways to modify this Vocabulary to allow you to implement these rules.

Add an attribute to Person
If the two types of Person differ only in their type, then you can add a personType (or similar) attribute to the
entity. In some cases, personType will have the value of pilot, and sometimes it will have the value of
passenger. The advantage of this method is that it is flexible: in the future, a Person of type manager or
bag handler or air marshal can easily be added. Also, this construction may be most consistent with the
actual structure of the employee database or database table, and maintains a normalized model. The
disadvantage comes when the rule modeler needs to refer to a specific type of Person in a rule. While this
can be accomplished using any of the filtering methods discussed in Rule Writing Techniques, they are
sometimes less convenient and clear than the final method, discussed next.

Use roles
A role is a noun that labels one end of an association between two entities. For example, in our
Person–AircraftVocabulary, the Personmay havemore than one role, or more than one kind of relationship,
with Aircraft. An instance of Person may be a pilot or a passenger; each is a different role. To illustrate
this in our UML class diagram, we add labels to the associations as follows:

Figure 30: UML class diagram with roles

57Progress Corticon.js: Rule Modeling: Version 1.4

Scope and perspectives in the vocabulary tree

When the class diagram is imported into Corticon.js Studio, it appears as the Vocabulary below:

Figure 31: Vocabulary with roles

Notice the differences between the two preceding Vocabularies In Vocabulary with Roles, Aircraft contains
2 associations, one labeled passenger and the other pilot, even though both associations relate to the
same Person entity. Also notice that the cardinalities of both Aircraft—Person associations have been
updated to one-to-many.

Written using roles, the first rule is illustrated below. There are a few aspects of the implementation to note:

• Use of aliases for Aircraft and Aircraft.pilot (plane and pilotOfPlane, respectively). Aliases
are just as useful for clarifying rule expressions as they are for shortening them.

• The rule Conditions evaluate data within the context of the plane and pilotOfPlane aliases, while the
Action posts a message to the plane alias. This enables you to act on the Aircraft entity based upon
the attributes of its associated pilots. Note that Condition row b uses a special operator (->size) that
counts the number of pilots associated with a plane. This is called a collection operator, and is explained
in detail in the section on Collections on page 87.

Figure 32: Rule #1 implemented using roles

Progress Corticon.js: Rule Modeling: Version 1.458

Chapter 3: Rule scope and context

To demonstrate how Corticon.js Studio differentiates between entities based on rule scope, construct a new
Ruletest that includes a single instance of Aircraft and 2 Person entities, neither of which has the role of
pilot.

Figure 33: Ruletest with no Person entities in pilot role

Although there are two Person entities, both of whom are members of the Flight Crew department, the
system recognizes that neither of them have the role of pilot (in relation to the Aircraft entity), and therefore
generates the violation message shown.

59Progress Corticon.js: Rule Modeling: Version 1.4

Scope and perspectives in the vocabulary tree

If you create a new Input Ruletest, then this time with both persons in the role of pilot, you see a different result,
as shown:

Figure 34: Ruletest with both Person entities in role of pilot

Progress Corticon.js: Rule Modeling: Version 1.460

Chapter 3: Rule scope and context

Finally, the rules are tested with one pilot and one passenger:

Figure 35: Ruletest with one Person entity in each of pilot and passenger roles

Despite the presence of two Person elements in the collection of test data, only one satisfies the rules' scope:
pilot associated with aircraft. As a result, the rules determine that one pilot is insufficient to fly a 747,
and the violation message is displayed.

These same concepts apply to the DC-10/Passenger business rule, which is not implemented.

61Progress Corticon.js: Rule Modeling: Version 1.4

Scope and perspectives in the vocabulary tree

Progress Corticon.js: Rule Modeling: Version 1.462

Chapter 3: Rule scope and context

4
Rule writing techniques

The Corticon.js Studio Rulesheet is a very flexible device for writing and organizing rules. It is often possible
to express the same business rule multiple ways in a Rulesheet, with all forms producing the same logical
results. Some common examples, as well as their advantages and disadvantages, are discussed in this set
of topics.

For details, see the following topics:

• How to work with rules and filters in natural language

• Filters versus conditions

• Qualify rules with ranges and lists

• How to use standard Boolean constructions

• How to embed attributes in posted rule statements

• How to include apostrophes in strings

• How to initialize null attributes

• How to handle nulls in compare operations

How to work with rules and filters in natural language
Progress Corticon.js lets you use Natural Language (NL) words, phrases, and sentences as substitute terms
in Rulesheet conditions and actions, making it easier to discuss the rules with stakeholders and analysts.

To use natural language on a Rulesheet:

63Progress Corticon.js: Rule Modeling: Version 1.4

1. Right-click within a Rulesheet, and then choose Natural Language.

The Natural Language view opens, and typically places itself above the Rulesheet, as shown:

Note: If the Natural Language window does not open, choose the menu commandWindow>Show
View>Natural Language.

2. Enter plain language descriptive text for each condition and action, as shown:

While your use of natural language might vary, it is good practice to use a consistent, clear style. Here are
some tips:

• Use If in the text for conditions and Then in the text for actions.

• Conditions that are True/False often read better as questions.

• Adding ellipses helps a reader continue the expression with the values in its column cells.

• If you enter no natural language text, then the existing expression is shown.

3. Expose your natural language expressions in the Rulesheet by either clicking the Show Natural Language

toolbar button , or Rulesheet > Show Natural Language. The natural language is displayed as shown:

Progress Corticon.js: Rule Modeling: Version 1.464

Chapter 4: Rule writing techniques

In Natural Languagemode, the values in rule columns can be edited but the Condition and Action expressions
are locked and cannot be edited.

4. Save the Rulesheet to store its expressions as well as its natural language data.

5. You can revert to the actual, editable expressions by clicking the Hide Natural Language toolbar button

, or the menu command Rulesheet > Hide Natural Language.

6. Close the Natural Language view by clicking its close button.

Using natural language as an aid to Rulesheet design

You can create Natural Language phrases for the conditions, actions, and filters before defining those
expressions.

Adding the natural language phrase makes the next line available for additional entries. Then, in the Rulesheet,
define the expression that satisfies the natural language phrase, as shown:

65Progress Corticon.js: Rule Modeling: Version 1.4

How to work with rules and filters in natural language

Filters versus conditions
The Filters section of a Rulesheet can contain one or more master conditional expressions for that Rulesheet.
In other words, other business rules fire if and only if data survives the Filter, and shares the same scope as
the rules. Using the air cargo example from the previous chapter, model the following rule:

Figure 36: Rulesheet using a filter and nonconditional rule

Progress Corticon.js: Rule Modeling: Version 1.466

Chapter 4: Rule writing techniques

Here, the value of an aircraft's maxCargoWeight attribute is assigned by column 0 in the Conditions/Actions
pane (what is sometimes called a nonconditional or action-only rule because it has no conditions). The filter
acts as a master conditional expression because only aircraft that satisfy the filter. In other words, only those
aircraft of aircraftType = '747', successfully “pass through” to be evaluated by rule column 0, and are
assigned a maxCargoWeight of 200000. This effectively filters out all non-747 aircraft from evaluation by
rule column 0.

If this filter were not present, all Aircraft, regardless of aircraftType, would be assigned a
maxCargoWeight of 200000 kilograms. Using this method, additional Rulesheets can be used to assign
different maxCargoWeight values for each aircraftType. The Filters section can be thought of as a
convenient way to quickly add the same conditional expression or constraint to all other rules in the same
Rulesheet.

You can also achieve the same results without using filters. The following figure shows how you use a
Condition/Action rule to duplicate the results of the previous Rulesheet. The rule is restated as an if/then type
of statement: if the aircraftType is 747, then maxCargoWeight equals 200000 kilograms.

Figure 37: Rulesheet using a conditional rule

Regardless of how you choose to express logically equivalent rules in a Rulesheet, the results will be equivalent.
While the logical result may be identical, the time required to produce those results may not be. See How to
optimize Rulesheets on page 191 for information about compression techniques that remove redundancies.

There may be times when it is advantageous to choose one way of expressing a rule over another, at least in
terms of the visual layout, organization, and maintenance of the business rules and Rulesheets. The example
discussed in the preceding paragraphs was very simple because only one action was taken as a result of the
filter or condition. In cases where there are multiple actions that depend on the evaluation of one or more
conditions, it may make the most sense to use the Filters section. Conversely, there may be times when using
a condition makes the most sense, such as the case where there are numerous values for the condition that
each require a different action or set of actions as a result. In the preceding example, there are different types
of aircraft in the company's fleet, and each has a different maxCargoWeight value assigned to it by rules.
This could easily be expressed on one Rulesheet by using a single row in the Conditions section. It would
require many Rulesheets to express these same rules using the Filters section.

Qualify rules with ranges and lists
You can use values for any data type except Boolean in conditions, condition cells, and filters.

These values can be imprecise. They can be in the form of a range expressed in the format: x..y, where x
and y are the starting and ending values for the range.

67Progress Corticon.js: Rule Modeling: Version 1.4

Qualify rules with ranges and lists

The values can also be very specific. They can be in the form of a list expressed in the format {x,z,y}, where
the values are in any order but must adhere to the data type or the defined labels when the data type is bound
to an enumerated list with labels.

Ranges and lists in conditions and filters
Conditions and filters can qualify data by testing for inclusion in a from-to range of values or in a comma-delimited
list. The result returned is true or false. All attribute data types except Boolean can use ranges and lists in
conditions and filters.

Value ranges in condition and filter expressions
You can use value range expressions in conditions or filters.

Syntax of value ranges in conditions and filter rows
When you use the in operator to specify a range of values, you can specify the range in a several ways. The
following illustration shows how you can encapsulate a range:

Figure 38: Rulesheet filters showing ways to encapsulate a range

where:

• Filter 8 does no encapsulation.

• Filter 9 uses braces for encapsulation. Its delimiter in the expression is a comma rather than two dots like
the others. Because this syntax defines a set and overloads the syntax for a list, it is a good practice to not
use it to encapsulate a range.

• Filters 10 through 13 use (and mix) parentheses and brackets, where a bracket on either side expresses
that the value on that side also passes the test.

Examples of value ranges in filter rows
The following value ranges show how the Corticon.js JavaScript data types can be used as Filter expressions.

Figure 39: Rulesheet filters showing the syntax of ranges for each Corticon JavaScript data type

Notice that ranges are always from..to. The examples show that negative decimal and integer values can be
used, and that uppercase and lowercase characters are filtered separately.

Progress Corticon.js: Rule Modeling: Version 1.468

Chapter 4: Rule writing techniques

Value lists in condition and filter expressions
You can use value list expressions in conditions or filters.

Syntax of value list in conditions and filter rows
When you use the in operator to specify a list of values, you can encapsulate the range in only one way:

Figure 40: Rulesheet Filters showing encapsulation of a list

The value list is always enclosed in braces. The order of the items in the comma-delimited list is arbitrary.

Ranges and value sets in condition cells
When using values in condition cells for attributes of any data type except Boolean, the values do not need to
be discreet. They can be in the form of a range. A value range is typically expressed in the following format:
x..y, where x and y are the starting and ending values for the range inclusive of the endpoints if there is no
other notation to indicate otherwise, as illustrated:

Figure 41: Rulesheet using value ranges in the column cells of a condition row

In this example, a maxCargoWeight value is assigned to each Aircraft depending on the flightNumber
value from the FlightPlan that Aircraft is associated with. The value range 101..200 represents all
values (integers in this case) between 101 and 200, including the range endpoints 101 and 200. This is an
inclusive range; the starting and ending values are included in the range.

69Progress Corticon.js: Rule Modeling: Version 1.4

Qualify rules with ranges and lists

Corticon.js Studio also gives you the option of defining value ranges where one or both of the endpoints are
not inclusive, meaning that they are not included in the range of values. This is the same idea as the difference
between greater than and greater than or equal to. The following figure shows the same Rulesheet as in the
previous figure, but with one difference: the value range was changed from 201..300 to (200..300]. The
starting parenthesis (indicates that the starting value for the range, 200, is exclusive; it is not included in the
range. The ending bracket] indicates that the ending value is inclusive. Because flightNumber is an integer
value, and therefore there are no fractional values allowed, so 201..300 and (200..300] are equivalent.

Figure 42: Rulesheet using open-ended value ranges in condition cells

All of the possible combinations of parenthesis and bracket notation for value ranges and their meanings are:

Figure 43: Rulesheet using open-ended value ranges in condition cells

If a value range has no enclosing parentheses or brackets, it is assumed to be inclusive. It is therefore not
necessary to use the [..]notation for a closed range in Corticon.js Studio. However, should either end of a
value range have a parenthesis or a bracket, then the other end must also have a parenthesis or a bracket.
For example, x..y) is not allowed, and is properly expressed as [x..y).

Value ranges can also be used in the Filters section of the Rulesheet. See the Ranges and lists in conditions
and filters on page 68 for details about usage.

Progress Corticon.js: Rule Modeling: Version 1.470

Chapter 4: Rule writing techniques

Boolean condition versus values set
The illustrations in the topic Filters versus conditions on page 66 that show Rulesheet Using a Conditional
Rule and Rulesheet Using a Conditional Rule show simple Boolean conditions that evaluate to either True
or False. The action related to this condition is either selected or not, on or off, meaning the value of
maxCargoWeight is either assigned the value of 200,000 or it is not. (Action statements are activated by
selecting the check box that automatically appears when the cell is clicked.) However, there is another way to
express both Conditions and Actions using Values sets.

Figure 44: Rulesheet Illustrating use of Multiple values in the same Condition Row

By using different values in the column cells of Condition and Action rows in this Rulesheet, you can write
multiple rules (represented as different columns in the table) for different condition-action combinations.
Expressing these same rules using Boolean expressions would require many more condition and action rows,
and would fail to take advantage of the semantic pattern that these three rules share.

71Progress Corticon.js: Rule Modeling: Version 1.4

Qualify rules with ranges and lists

Exclusionary syntax
The following examples are logically equivalent:

Figure 45: Exclusionary logic using Boolean condition, Pt. 1

Figure 46: Exclusionary logic using Boolean condition, Pt. 2

Figure 47: Exclusionary logic using negated value

Progress Corticon.js: Rule Modeling: Version 1.472

Chapter 4: Rule writing techniques

Notice that the last example uses the unary function not, described in more detail in theRule Language Guide,
to negate the value 747 selected from the values set.

Once again, you can see that the same rule can be expressed in different ways on the Rulesheet, with identical
results. The rule modeler decides which way of expressing the rule is preferable in a given situation. Progress
recommends, however, avoiding double negatives. Most people find it easier to understand attribute=T
instead of attribute<>F, even though logically the two expressions are equivalent.

Note: This discussion of Boolean logic assumes bi-value logic. If tri-value logic is assumed (such as, for a
non-mandatory attribute), meaning the null value is available in addition to true and false, then these two
expressions are not equivalent. If attribute = null, then the truth value of attribute<>F is true while that of
attribute=T is false.

How to use other in condition cells
Sometimes it is easier to define values we don't want matched than it is to define those we do. In the example
shown above in Exclusionary Logic Using Negated Value, a maxCargoWeight is assigned when
aircraftType is not a 747. But, what would you write in the Conditions cell if you want to specify any
aircraftType other than those specified in any of the other Conditions cells? For this, you use a special
term in the Operator Vocabulary named other, shown in the following figure:

Figure 48: Literal term other in the Operator Vocabulary

The term other provides a simple way of specifying any value other than any of those specified in other cells
of the same Conditions row. The following figure illustrates how you can use other in the example.

Here, a new rule (column 4) was added that assigns a maxCargoWeight of 50000 to any aircraftType
other than the specific values identified in the cells in Condition row a (for example, a 727). The Rulesheet is
now complete because all possible condition-action combinations are explicitly defined by columns in the
decision table.

73Progress Corticon.js: Rule Modeling: Version 1.4

Qualify rules with ranges and lists

Numeric value ranges in conditions
Figure 49: Rulesheet using numeric value ranges in condition values set

In this example, an integer2 value is assigned to Entity1 depending on its integer1 value. The value
range 101..200 represents all values (integers in this case) between 101 and 200, including 101 and 200.
This is an inclusive range because both the starting and ending values are included in the range.

String value ranges in condition cells
When using value range syntax with String types, be sure to enclose literal values inside single quotation marks,
as shown in the following figure. Corticon.js Studio will add the single quotation marks for you, but always check
to make sure it has interpreted your entries correctly.

Figure 50: Rulesheet using String value ranges in condition values set

Progress Corticon.js: Rule Modeling: Version 1.474

Chapter 4: Rule writing techniques

Value sets in condition cells
Most conditions implemented in the Rules section of the Rulesheet use a single value in a cell, as shown:

Figure 51: Rulesheet with one value selected in condition cell

Sometimes, however, it is useful to combine more than one value in the same cell. You do this by holding
CTRL while clicking multiple values from the Condition cell's drop-down list. Then, pressing ENTER encloses
the resulting set in braces {..} in the cell as shown in the sequence of the next two figures. Additional values
may also be typed into Cells.

Figure 52: Rulesheet with two values selected in condition cell

Figure 53: Rulesheet with value set in condition cell

75Progress Corticon.js: Rule Modeling: Version 1.4

Qualify rules with ranges and lists

The rule implemented in Column 1 of the preceding figure is logically equivalent to the Rulesheet shown in the
following figure:
Figure 54: Rulesheet with two rules instead of a value set

Both are implementations of the following rule statement:

If you write rules using the logical OR operator in separate columns, performing a Compression reduces
the Rulesheet to the fewest number of columns possible by creating value sets in cells wherever possible. Fewer
columns results in faster Rulesheet execution, even when those columns contain value sets. Compressing the
Rulesheet in Rulesheet with two rules instead of a value set results in the Rulesheet in Rulesheet with value
set in condition cell.

Condition cell value sets can also be negated using the NOT operator. To negate a value, type not in front of
the leading brace {, as shown in Negating a Value Set in a Condition Cell. This is an implementation of the
following rule statement:

Given the condition cell's value set, the rule statement is equivalent to:

Figure 55: Negating a value set in a condition cell

Value sets can also be created in the Overrides Cells at the bottom of each column. This allows one rule to
override multiple rules in the same Rulesheet.

Progress Corticon.js: Rule Modeling: Version 1.476

Chapter 4: Rule writing techniques

Variables as condition cell values
You can use a variable as a condition's cell value. However, there are constraints:

• Either all of the rule cell values for a condition row contain references to the same variable (with the exception
of dashes), or none of the rule cell values for a condition row reference any variable.

• Only one variable can be referenced by various rules for the same condition row.

• Logical expressions in the various rules for the same condition row should be logically non-overlapping.

• A condition value that uses a colon, such as A:B, is not valid.

Derived value sets are created by accounting for all logical ranges possible around the variable.

Note: The issue with using multiple attributes in a condition row (or attributes mixed with literals) is a warning,
not an error; as such, analysis functions are not available.

The following Rulesheet uses the Cargo Vocabulary to illustrate the valid and invalid use of variables. Note
that the Vocabulary editor marks invalid values in red.

Derived values when using variables
The following tables abbreviate the attribute references shown in the illustration.

Table 2: Rulesheet columns

Derived Value Set321Conditions

{< C.v, > C.v, C.v}C.v> C.v< C.vA.maxCV

{<= C.v, > C.v }> C.v<= C.vA.maxCV

{< C.v, > C.v, C.v }> C.v< C.vA.maxCV

{< C.v, >= C.v}< C.vA.maxCV

77Progress Corticon.js: Rule Modeling: Version 1.4

Qualify rules with ranges and lists

Incorrect use of variables

Table 3: Rulesheet condition f: Attempt to use multiple variables

321Conditions

C.v> FP.c.v< C.vA.maxCV

Table 4: Rulesheet condition g: Attempt to mix variables and literals

321Conditions

10..155< C.vA.maxCV

Table 5: Rulesheet condition h: Attempt to use logically overlapping expressions

321Conditions

C.v<= C.v< C.vA.maxCV

DateTime value ranges in condition cells
When using value range syntax with date types, be sure to enclose literal date values inside single quotes, as
shown:

Figure 56: Rulesheet using a date value range in condition cells

Progress Corticon.js: Rule Modeling: Version 1.478

Chapter 4: Rule writing techniques

Inclusive and exclusive ranges
Corticon.js Studio also gives you the option of defining value ranges where one or both of the starting and
ending values are not inclusive, meaning that the starting and ending value is not included in the range of
values. Rulesheet using an integer value range in condition values set shows the same Rulesheet as in
Rulesheet using numeric value ranges in condition values set, but with one difference: the value range 201..300
was changed to (200..300]. The starting parenthesis (indicates that the starting value for the range, 200,
is excluded. It is not included in the range of possible values. The ending bracket] indicates that the ending
value is inclusive. Because integer1 is an integer value, and therefore no fractional values are allowed,
201..300 and (200..300] are equivalent, and the values set in Rulesheet using an integer value range in
condition values set is still complete, as it was in Rulesheet using numeric value ranges in condition values
set.

Figure 57: Rulesheet using an integer value range in condition values set

All of the possible combinations of parenthesis and bracket notation for value ranges and their meanings are:

As illustrated in Rulesheet using numeric value ranges in condition values set and Rulesheet using an integer
value range in condition values set, if a value range has no enclosing parentheses or brackets, then it is
assumed to be closed. It is, therefore, not necessary to use the [..] notation for a closed range in Corticon.js
Studio. In fact, if you try to create a closed value range by entering [..], then the brackets are automatically
removed. However, should either end of a value range have a parenthesis or a bracket, then the other end
must also have a parenthesis or a bracket. For example, x..y) is not allowed, and is correctly expressed as
[x..y).

When using range notation, always ensure that x is less than y, that is, an ascending range. A range where x
is greater than y (a descending range) can result in errors during rule execution.

79Progress Corticon.js: Rule Modeling: Version 1.4

Qualify rules with ranges and lists

Value ranges that overlap
One final note about value ranges: they might overlap. In other words, condition cells can contain the two
ranges 0..10 and 5..15. It is important to understand that when overlapping ranges exists in rules, the rules
containing the overlap are frequently ambiguous, and more than one rule may fire for a given set of input
Ruletest data. Rulesheet with Value Range Overlap shows an example of value range overlap.
Figure 58: Rulesheet with value range overlap

Figure 59: Rulesheet expanded with conflict check applied

Progress Corticon.js: Rule Modeling: Version 1.480

Chapter 4: Rule writing techniques

Figure 60: Ruletest showing multiple rules firing for given test data

Alternatives to value ranges
As you might expect, there is another way to express a rule that contains a range of values. One alternative
is to use a series of Boolean conditions that cover the ranges of concern, as illustrated:

Figure 61: Rulesheet using Boolean conditions to express value ranges

The rules here are identical to the rules inRulesheet Using Value Ranges in the ColumnCells of a Condition
Row and Rulesheet Using Open-Ended Value Ranges in Condition Cells, but are expressed using a series
of three Boolean conditions. Recall that in a decision table, values aligned vertically in the same column
represent conditions that use the AND operator. So rule 1, as expressed in column 1, reads:

The following expresses this rule in friendlier, more natural English:

81Progress Corticon.js: Rule Modeling: Version 1.4

Qualify rules with ranges and lists

This is how the rule is expressed in the Rule Statements section in the preceding figure, Rulesheet Using
Boolean Conditions to Express Value Ranges. The same rules can also be expressed using a series of
Rulesheets with the applicable range of flightNumber values constrained by filters. Corticon.js Studio gives
you the flexibility to express and organize your rules any number of possible ways. As long as the rules are
logically equivalent, they produce identical results when executed.

In the case of rules involving numeric value ranges as opposed to discrete numeric values, the value range
option allows you to express your rules in a simple and elegant way. It is especially useful when dealing with
decimal type values.

How to use standard Boolean constructions
A decision table is a graphical method of organizing and formalizing logic. If you have a background in computer
science or formal logic, then you may have seen alternative methods. One such method is called a truth table.

The section "Standard Boolean Constructions" in the Rule Language guide presents several standard truth
tables (AND, NAND, OR, XOR, NOR, and XNOR) with examples of usage in a Rulesheet.

How to embed attributes in posted rule statements
It is frequently useful to embed attribute values within a Rule Statement, so that posted messages contain
actual data. Special syntax must be used to differentiate the static text of the rule statement from the dynamic
value of the attribute. As shown in Sample Rulesheet with Rule Statements Containing Embedded Attributes,
an embedded attribute must be enclosed by braces {..} to distinguish it from the static Rule Statement text.

It may also be helpful to indicate which parts of the posted message are dynamic, so a user seeing a message
knows which part is based on current data and which part is the standard rule statement. As shown in Sample
Rulesheet with Rule Statements Containing Embedded Attributes, brackets are used immediately outside the
braces so that the dynamic values inserted into the message at rule execution are enclosed withing brackets.
The use of these brackets is optional; other characters can be used to achieve the intended visual distinction.

Progress Corticon.js: Rule Modeling: Version 1.482

Chapter 4: Rule writing techniques

Remember, action rows execute in numbered order (from top to bottom in theActions pane), so a rule statement
that contains an embedded attribute value must not be posted before the attribute has a value. Doing so results
in a null value inserted in the posted message.

Figure 62: Sample Rulesheet with rule statements containing embedded attributes

Figure 63: Rule Messages window showing bracketed embedded attributes

When an attribute uses an enumerated Custom Data Type, the dynamic value embedded in the posted rule
message is the value, not the label. See the Rule Modeling Guide, “Building the Vocabulary” chapter for more
information about Custom Data Types.

No expressions in Rule Statements

A reminder about the tables "Usage restrictions" in the Rule Language Guide, which specifies that the only
parts of the Vocabulary that can be embedded in rule statements are attributes. No operators or expressions
are permitted inside rule statements. Often, operators cause error messages when you try to save a Rulesheet.
Sometimes the rule statement turns red. Sometimes an embedded equation executes as you intended, but no
obvious error occurs, but the rule does not execute as intended. Remember that operators and expressions
are not supported in rule statements.

83Progress Corticon.js: Rule Modeling: Version 1.4

How to embed attributes in posted rule statements

How to include apostrophes in strings
String values in Corticon.js Studio are always enclosed in single quotation marks. But occasionally, you may
want the String value to include single quotation marks, or apostrophes. If you enter the following text in
Corticon.js Studio:

entity1.string1='Jane's dog Spot'

The text turns red, because Corticon.js Studio thinks that the string1 value is 'Jane' and the remaining
text s dog Spot' is invalid.

To properly express a String value that includes single quotation marks or apostrophes, you must use the
special character backslash (\) that tells Corticon.js Studio to ignore the apostrophe, as shown:

entity1.string1='Jane\'s dog Spot'

When preceded by the backslash, the second apostrophe is ignored and assumed to be just another character
within the String. This notation works in all sections of the Rulesheet, including values sets. It also works in the
Possible Values section of the Vocabulary Editor.

How to initialize null attributes
Attributes that are used in calculations must have a non-null value to prevent test rule failure. More specifically,
attributes used on the right-hand-side of equations (that is, an attribute on the right side of an assignment
operator, such as = or +=) are initialized prior to performing calculations. It is not necessary for attributes on
the left-hand-side of an equation to be initialized – it is assigned the result of the calculation. For example,
when you are calculating Force=Mass*Acceleration, you must provide values for Mass and Acceleration. Force
is the result of a valid calculation.

Initialization of attributes is often performed in Nonconditional rules, or in rules expressed in Rulesheets that
execute beforehand.

How to handle nulls in compare operations
Unless the application that formed the request ensured that a value was provided before submission, one (or
both) of the attributes used in a comparison test might have a null value. You might need to define rules to
handle such cases. An example that describes the workaround for these cases uses the following Vocabulary:

Progress Corticon.js: Rule Modeling: Version 1.484

Chapter 4: Rule writing techniques

Here are two scenarios:

1. Two dates are passed from the application and one of them is null. When given the rule ‘[If
FilingUnit.theDate is null] or [[FilingUnit.theDate = Null] and
[FilingUnit.theDate >= Person.theDate]]’, then the appropriate action triggers.

2. In Actions, one date value is set to another date's value that happens to be null. If the date is null, then it is
used in the subsequent Rulesheets in their Conditions section. However, because the value is null, a warning
is generated in the Corticon.js logs.

For the first scenario, the logic in subsequent Rulesheets needs to determine whether a value is null, so it can
apply appropriate actions. The following Rulesheet shows that you can avoid the error message by only setting
the preferred date when you have a non-null filing date or person date.

Note: If null values would prevent subsequent rules from continuing reasonable further processing, then
perhaps validation sheets should be used before rule processing to check the data, and then terminate execution
of the decision if the data is bad. That could be accomplished by setting an attribute that can be tested in the
filter section of subsequent Rulesheets. Then, every subsequent Rulesheet is assured of dealing only with
clean data.

85Progress Corticon.js: Rule Modeling: Version 1.4

How to handle nulls in compare operations

For the scenario where both values being compared are null, you could set the resulting value to a default
value or to null, as shown:

As highlighted, Rule 3 explicitly sets the preferred date to null when both incoming dates are null.

Progress Corticon.js: Rule Modeling: Version 1.486

Chapter 4: Rule writing techniques

5
Collections

Collections enable operations to be performed on a set of instances specified by an alias.

For details, see the following topics:

• How Corticon Studio handles collections

• How to visualize collections

• A basic collection operator

• How to filter collections

• How to use aliases to represent collections

• Advanced collection sorting syntax

• Using sorts to find the first or last in grandchild collections

• Singletons

• Special collection operators

How Corticon Studio handles collections
Support for using collections is extensive in Corticon.js Studio. The integration of collection support in the Rule
Language is so seamless and complete that the rule modeler often discovers that rules are performing multiple
evaluations on collections of data beyond what they anticipated! This is partly the point of a declarative
environment. The rule modeler need only be concerned with what the rules do, rather than how they do it. How
the system iterates or cycles through all the available data during rule execution should not be of concern.

87Progress Corticon.js: Rule Modeling: Version 1.4

As you saw in previous examples, a rule with term FlightPlan.aircraft was evaluated for every instance
of FlightPlan.aircraft data delivered to the rule, either by a message or by a Ruletest (which are really
the same thing, because the Ruletest serves as a quick and convenient way to create message payloads and
send them to the rules). A rule is expressed in Corticon.js Studio the same way regardless of how many
instances of data are to be evaluated by it. Contrast this to more traditional procedural programming techniques,
where for-do or while-next type looping syntax is often required to ensure all relevant data is evaluated by the
logic.

How to visualize collections
Collections of data can be visualized as discrete portions, subsets, or branches of the Vocabulary tree. A parent
entity is associated with a set of child entities, which are called call elements of the collection. The collection
of pilots can be illustrated as:

Figure 64: Visualization of a collection of pilots

In this figure, the aircraft entity is the parent of the collection, while each pilot is a child element of the
collection. As you saw in the role example, this collection is expressed as aircraft.pilot in the Corticon.js
Rule Language. It is important to reiterate that this collection contains scope. You are seeing the collection of
pilots as they relate to this aircraft. Or, more simply, you are seeing a plane and its 2 pilots, arranged in a way
that is consistent with the Vocabulary. Whenever a rule exists that contains or uses this same scope, it also
automatically evaluates this collection of data. And, if there are multiple collections with the same scope (for
example, several aircraft, each with its own collection of pilots), then the rule automatically evaluates all those
collections as well. In the Corticon lexicon, evaluate has a different meaning than fire. Evaluate means that a
rule's scope and conditions will be compared to the data to see if they are satisfied. If they are satisfied, then
the rule fires, and its actions are executed.

Progress Corticon.js: Rule Modeling: Version 1.488

Chapter 5: Collections

Collections can be much more complex than this simple pilot example. For instance, a collection can include
more than one type or level of association:

Figure 65: Three-level collection

This collection is expressed as parent.child.grandchild in the Corticon.js Rule Language.

Note: The parent and child nomenclature is a bit arbitrary. Assuming bidirectional associations, a child from
one perspective could also be a parent in another.

A basic collection operator
As an example, use the ->size operator.

For more information, see "Size of collection" in the Corticon.js Rule Language Guide.

This operator returns the number of elements in the collection that it follows in a rule expression. Using the
collection from Visualization a Collection of Pilots:

aircraft.pilot -> size

returns the value of 2. In the expression:

aircraft.crewSize = aircraft.pilot -> size

crewSize (assumed to be an attribute of Aircraft) is assigned the value of 2.

Corticon.js Studio requires that all rules containing collection operators use unique aliases to represent the
collections. How to use aliases to represent collections is described in greater detail in this chapter. A more
accurate expression of the previous rule becomes:

plane.pilot -> size

or

plane.crewsize = plane.pilot -> size

where plane is an alias for the collection of pilots on aircraft.

89Progress Corticon.js: Rule Modeling: Version 1.4

A basic collection operator

How to filter collections
The process of screening specific elements from a collection is known as “filtering”, and the Corticon.js Studio
supports filtering by a special use of Filter expressions. See the Filters on page 133 topic for more details.

How to use aliases to represent collections
Aliases provide a means of using scope to specify elements of a collection; more specifically, you use aliases
(expressed or declared in the Scope section of the Rulesheet) to represent copies of collections. This concept
is important because aliases give you the ability to operate on and compare multiple collections, or even multiple
instances of the same collection. There are situations where such operations and comparisons are required
by business rules. Such rules are not easy (and sometimes not possible) to implement without using aliases.

Note: To ensure that the system knows which collection (or copy) you are referring to in your rules, use a
unique alias to refer to each collection.

For the purposes of illustration, a new scenario and business Vocabulary will be used. This new scenario
involves a financial services company that compares and ranks stocks based on the values of attributes such
as closing price and volume. A model for doing this kind of ranking can get very complex in real life; however,
this example is kept simple. The new Vocabulary is illustrated:

This Vocabulary consists of only two entities:

Security: Represents a security (stock) with attributes like security name (secName), ticker symbol, and
rating.

SecInfo: Is designed to record information for each stock for each business day (busDay); attributes include
values recorded for each stock (closePrice and volume) and values determined by rules (totalWeight
and rank) each business day.

Progress Corticon.js: Rule Modeling: Version 1.490

Chapter 5: Collections

The association between Security and SecInfo is 1..* (one-to-many) because there are multiple instances
of SecInfo data (multiple days of historical data) for each Security.

In this scenario, three rules determine a security's rank:

Finally, rules are used to assign a rank based on the total weight. It is interesting to note that although the rules
refer to a security's closing price, volume, and rule weights, these attributes are actually properties of the
SecInfo entity. The Rulesheet that accomplishes these tasks is this:

Figure 66: Rulesheet with ranking model rules 1 and 2

In the preceding figure, two business rules are expressed in a total of four rule models (one for each possible
outcome of the two business rules). The rules are straightforward, but the shortcuts (alias values) used in these
rules are different than other rules you have seen. In the Scope section, you see that Security is the scope
for the Rulesheet, which is not a new concept. But then, there are two aliases for the SecInfo entities associated
with Security: secinfo1 and secinfo2. Each of these aliases represents a separate but identical collection
of the SecInfo entities associated with Security. In this Rulesheet, you constrain each alias by using filters.
In a later example, you will see how more loosely constrained aliases can represent many different elements
in a collection when the rules engine evaluates rules. In this example, though, one instance of SecInfo
represents the close of the current business day (now), and the other instance represents the close of the
previous business day (now.addDays(-1).)

Note: For details about the .addDays operator, see that topic in the Rule Language Guide.

After the aliases are created and constrained, you can use them in your rules where needed. In the figure
Rulesheet with Ranking Model Rules 1 and 2, you see that the use of aliases in the Conditions section
allows comparison of closePrice and volume values from one specific SecInfo element (the one with
today's date) of the collection with another (the one with yesterday's date).

91Progress Corticon.js: Rule Modeling: Version 1.4

How to use aliases to represent collections

The following figure shows a second Rulesheet that uses a nonconditional rule to calculate the sum of the
partial weights from the model rules determined in the first Rulesheet, and conditional rules to assign a rank
value between 1 and 4 to each security based on the sum of the partial weights. Because you are only dealing
with data from the current day in this Rulesheet (as specified in the filters), only one instance of SecInfo per
Security applies, and we do not need to use aliases.

Figure 67: Rulesheet with total weight calculation and rank determination

You can test your new rules using a Ruleflow to combine the two Rulesheets. In a Ruletest that executes the
Ruleflow, you expect to see the following results:

1. The Security.secInfo collection that contains data for the current business day (the expectation is that
this collection reduces to a single secinfo element, because only one secinfo element exists for each
day) should be assigned to alias secinfo1 for evaluating the model rules.

2. The SecInfo instance that contains data for the previous business day (again, the collection filters to a
single secinfo element for each Security) should be assigned to alias secinfo2 for evaluating the
model rules.

3. The partial weights for each rule, sum of partial weights, and resulting rank value should be assigned to the
appropriate attributes in the current business day's SecInfo element.

Progress Corticon.js: Rule Modeling: Version 1.492

Chapter 5: Collections

A Ruleflow constructed for testing the ranking model rules is as shown:

Figure 68: Ruleflow to test two Rulesheets in succession

Figure 69: Ruletest for testing security ranking model rules

In this figure, one Security object and three associated SecInfo objects were added from the Vocabulary.
The current day at the time of the Ruletest is 11/12/2020, so the three SecInfo objects represent the current
business day and two previous business days. The third business day is included in this Ruletest to verify that
the rules are using only the current and previous business days. None of the data from the third business day
should be used if the rules are executing correctly. Based on the values of closePrice and volume in the
two SecInfo objects being tested, you expect to see the highest rank of 4 assigned to your security in the
current business day's SecInfo object.

Both closePrice and volume were higher than the values for those same attributes; therefore, both
rule1Weight and rule2Weight attributes were assigned their high values by the rules. Accordingly, the
totalWeight value calculated from the sum of the partial weights was the highest possible value, and a rank
of 4 was assigned to this security for the current day.

As previously mentioned, the preceding example was tightly constrained in that the aliases were assigned to
two specific elements of the referenced collections. What about the case where there are multiple instances
of an entity that you would like to evaluate with your rules?

93Progress Corticon.js: Rule Modeling: Version 1.4

How to use aliases to represent collections

The second example is also based on the security ranking scenario, but, in this example, the rank assignment
that was accomplished will be done in a different way. Instead, you will rank a number of securities based on
their relative performance to one another, rather than against a preset ranking scheme. In the rules for the new
example, you compare the totalWeight value that is determined for each security for the current business
day against the totalWeight of every other security, and determine a rank based on this comparison of
totalWeight values. A Rulesheet for this alternate method of ranking securities is shown in the next figure.

Figure 70: Rulesheet with alternate rank determination rules

In these new ranking rules, aliases were created to represent specific instances of Security and their
associated collections of SecInfo. As in the previous example, filters constrain the aliases, most notably in
the case of the SecInfo instances, where secInfo1 and secInfo2 are filtered for a specific value of busDay
(today's date). However, our Security instances were loosely constrained. You have a filter that prevents
the same element of Security from being compared to itself (when sec1 = sec2). No other constraints are
placed on the Security aliases.

Progress Corticon.js: Rule Modeling: Version 1.494

Chapter 5: Collections

Note that single elements of Security are not assigned to our aliases. Instead, the rules engine is instructed
to evaluate all allowable combinations (that is, all those combinations that satisfy the first filter) of Security
elements in the collection in each of the aliases (sec1 and sec2). For each allowable combination of Security
elements, the totalWeight values from the associated SecInfo element for busDay = now are compared,
and increment the rank value for the first SecInfo element (secinfo1) by 1 if its totalWeight is greater
than that of the second SecInfo object (secinfo2). The end result should be the relative performance ranking
of each security.
Figure 71: Input Testsheet for testing alternate security ranking model rules

This figure shows a Ruletest constructed to test these ranking rules. In the data, two Security elements and
an associated secInfo element for each were added. Note that each alias represents all security elements
and their associated secInfo elements. The current day at the time of the Ruletest is 5/7/2022, so each
Security.secInfo.busDay attribute is given the value of 5/7/2022 (if additional secinfo elements in each
collection were added, they would have earlier dates, and therefore would be filtered out by the preconditions
on each alias). Each Security.secInfo.rank was initially set equal to 1 so that the lowest ranked security
still has a value of 1. The lowest ranked security is the one that loses all comparisons with the other securities.
In other words, its weight is less than the weights of all other securities. If a security's weight is less than all
the other security weights, its rank will never be incremented by the rule, so its rank will remain 1. The values
of totalWeight for the SecInfo objects are all different; therefore, each security ranked between 1 and 4
with no identical rank values is expected.

Note: If there were multiple Security.secInfo elements (multiple securities) with the same totalWeight
value for the same day, then the final rank assigned to these objects is expected to be the same as well.
Further, if there were multiple Security.secInfo entities sharing the highest relative totalWeight value
in a given Ruletest, then the highest rank value possible for that Ruletest would be lower than the number of
securities being ranked, assuming all rank values are initialized at 1.

the Ruletest results are as expected. The security with the highest relative totalWeight value ends the
Ruletest with the highest rank value after all rule evaluation is complete. The other securities are also assigned
rank values based on the relative ranking of their totalWeight values. The individual rule firings that resulted
in these outcomes are highlighted in the message section at the bottom of the results sheet.

It is interesting to note that nowhere in the rules is it stated how many security entities will be evaluated. This
is another example of the ability of the declarative approach to produce the intended outcome without requiring
explicit, procedural instructions.

95Progress Corticon.js: Rule Modeling: Version 1.4

How to use aliases to represent collections

Advanced collection sorting syntax
Collection syntax contains some subtleties worth learning. It is helpful when writing collection expressions to
step through them, left to right, as though you were reading a sentence. This helps you better understand how
the pieces combine to create the full expression. It also helps you to know what else you can safely add to the
expression to increase its utility. Use this approach in order to dissect the following expression:

Collection1 -> sortedBy(attribute1) -> last.attribute2

1. Collection1

This expression returns the collection {e1, e2, e3, e4, e5,…en} where ex is an element (an entity) in
Collection1. You already know that alias Collection1 represents the entire collection.

2. Collection1 -> sortedBy(attribute1)

This expression returns the collection {e1, e2, e3, e4, e5,…en} arranged in ascending order based on the
values of attribute1 (call it the index).

3. Collection1 -> sortedBy(attribute1) -> last

This expression returns {en} where en is the last element in Collection1 when sorted by attribute1.

This expression returns a specific entity (element) from Collection1. It does not return a specific value,
but once you identify a specific entity, you can easily reference the value of any attribute it contains, as in
the following, which returns {en.attribute2}:

4. Collection1 -> sortedBy(attribute1) -> last.attribute2

Entity Context

The complete expression not only returns a specific value, but just as important, it also returns the entity to
which the value belongs. This entity context is important because it allows you to do things to the entity
itself, like assign a value to one of its attributes. For example:

Collection1 -> sortedBy(attribute1) -> last.attribute2=‘xyz’

The preceding expression assigns the value of xyz to attribute2 of the entity whose attribute1 is
highest in Collection1. Contrast this with the following:

Collection1.attribute1 -> sortedBy(attribute1) -> last

This expression returns a single integer value, like 14.

Notice that all you have now is a number, a value. You lost the entity context, so you cannot do anything
to the entity that owns the attribute with value of 14. In many cases, this is just fine. Take for example:

Collection1.attribute1 -> sortedBy(attribute1) -> last > 10

In preceding expression, it is not important that you know which element has the highest value of
attribute1, all you want to know is if the highest value (whomever it “belongs” to) is greater than 10.

Understanding the subtleties of collection syntax and the concept of entity context is important because it
helps you use the returned entities or values correctly, for example:

Return the lower of the following two values:

• 12

• The age of the oldest child in the family

Progress Corticon.js: Rule Modeling: Version 1.496

Chapter 5: Collections

What is really being compared here? Do you care which child is oldest? Do you need to know his or her
name? No. You simply need to compare the age of that child (whichever one is oldest) with the value of 12.
So, this is the expression that models this logic:

family.age -> sortedByDesc(age) -> first.min(12)

The .min operator is an operator that acts upon numeric data types (Integer or Decimal). And because
family.age -> sortedByDesc(age) -> first returns a number, it is legal and valid to use .min
at the end of this expression.

What about this scenario: Name the youngest child Junior.

family -> sortedByDesc(age) -> last.name='Junior'

Now return a specific entity – that of the youngest child – and assign to its name a value of Junior. You
need to keep the entity context in order to make this assignment, and the preceding expression accomplishes
this.

Using sorts to find the first or last in grandchild
collections

The SortedBy->first and SortedBy->last constructs work as expected for any first-level collection
regardless of data type, determining the value of the first or last element in a sequence that was derived from
a collection.

When associations are involved, you have to take care that the collection operator is not working at a grandchild
level. You could construct a single collection of multiple children (rather than multiple collections of a single
child) by “bubbling up” the relevant value into the child level, and then sort at that level. Another technique is
to change the scope to treat the root level entity as the collection, and then apply filters so that only the ones
matching the common attribute values across the associations are considered. When you apply
SortedBy->first or SortedBy->last, the intended value is the result.

Singletons
Singletons are collection operations that scan a set to extract one arithmetic value: the first, the last, or the
element at a specified position. This behavior was seen when the sortedAlias found the first and last element
in an iterative list (as well as the elements in between) in the given order.

To examine this feature, the Aircraft entity and its maxCargoWeight is brought into the scope as well as
Cargo (with the alias load) and its attribute weight. The nonconditional action you enter is:

"Show me the maximum cargo weight by examining all the cargo in the load, sorting them by weight from small
to large, and returning the smallest one first."

That is entered as:

Aircraft.maxCargoWeight=load->sortedBy(weight)->first.weight

97Progress Corticon.js: Rule Modeling: Version 1.4

Using sorts to find the first or last in grandchild collections

When you extend the test used for sorted aliases, you need to add an Aircraft with maxCargoWeight to
show the result of the test. The result is as expected: the lightest item passed the test.

Progress Corticon.js: Rule Modeling: Version 1.498

Chapter 5: Collections

The same result is output when you modify the rule to select the last item when you sort the items by descending
weight.

Figure 72:

Now, reverse the test to select the first item when you sort the items by descending weight:

The heaviest item is output:

99Progress Corticon.js: Rule Modeling: Version 1.4

Singletons

Special collection operators
There are two special collection operators available in Corticon.js Studio's Operator Vocabulary that allow you
to evaluate collections for specific conditions. These operators are based on two concepts from the predicate
calculus: the universal quantifier and the existential quantifier. These operators return a result about the
collection, rather than about any particular element within it. Although this is a simple idea, it is actually a very
powerful capability. Some decision logic cannot be expressed without these operators.

Progress Corticon.js: Rule Modeling: Version 1.4100

Chapter 5: Collections

Universal quantifier
The meaning of the universal quantifier is that a condition enclosed by parentheses is evaluated (its truth value
is determined) for all instances of an entity or collection. This is implemented as the ->forAll operator in the
Operator Vocabulary. This operator will be demonstrated with an example created using the Vocabulary from
the security ranking model. Note that these operators act on collections, so all the examples shown will declare
aliases in the Scope section.

Figure 73: Rulesheet with universal quantifier (“for all”) condition

In this figure, you see the following condition:

secinfo ->forAll(secinfo.rank >= 3)

The exact meaning of this condition is that for the collection of SecInfo elements associated with a Security
(represented and abbreviated by the alias secInfo), evaluate if the expression in parentheses (secinfo.rank
>= 3) is true for all elements. The result of this condition is Boolean because it can only return a value of true
or false. Depending on the outcome of the evaluation, a value of either High or Low will be assigned to the
rating attribute of the Security entity, and the corresponding Rule Statement will be posted as a message
to the user.

101Progress Corticon.js: Rule Modeling: Version 1.4

Special collection operators

The following figure shows a Ruletest constructed to test the “for all” condition rules.

Figure 74: Ruletest for testing “for all” condition rules

Progress Corticon.js: Rule Modeling: Version 1.4102

Chapter 5: Collections

In this Ruletest, a collection of three SecInfo elements associated with a Security entity is evaluated.
Because the rank value assigned in each SecInfo object is at least 3, you should expect that the “for all”
condition will evaluate to true, and a rating value of High will be assigned to the Security object when the
Ruletest is run through the rules engine. This outcome is confirmed in the Ruletest results, as shown:

Figure 75: Ruletest for “for all” condition rules

Existential quantifier
The other special operator available is the existential quantifier. The meaning of the existential quantifier is that
there exists at least one element of a collection for which a given condition evaluates to true. This logic is
implemented in the Rulesheet using the ->exists operator in the Operator Vocabulary.

103Progress Corticon.js: Rule Modeling: Version 1.4

Special collection operators

You can construct a Rulesheet to determine the rating value for a Security entity by evaluating a collection
of associated SecInfo elements with the existential quantifier. In this example, volume rather than rank is
used to determine the rating value for the security. The Rulesheet for this example is shown in the following
figure:

Figure 76: Rulesheet with existential quantifier (“exists”) condition

In this Rulesheet, you see the following condition

secinfo ->exists(secinfo.volume >1000)

Notice again the required use of an alias to represent the collection being examined. The exact meaning of
the condition in this example is that for the collection of SecInfo elements associated with a Security (again
represented by the secinfo alias), determine if the expression in parentheses (secinfo.volume > 1000)
holds true for at least one Secinfo element. Depending on the outcome of the exists evaluation, a value
of either High Volume or Normal Volume will be assigned to the rating attribute of the Security object,
and the corresponding Rule Statement will be posted as a message to the user.

Progress Corticon.js: Rule Modeling: Version 1.4104

Chapter 5: Collections

The following figure shows a Ruletest constructed to test the exists condition rules.

Figure 77: Ruletest for testing (“exists”) condition rules

105Progress Corticon.js: Rule Modeling: Version 1.4

Special collection operators

A collection of three SecInfo elements associated with a single Security entity will be evaluated. Because
the volume attribute value assigned in at least one of the SecInfo objects (secInfo[2]) is greater than
1000, you should expect that the exists Condition will evaluate to true and a rating value of High Volume
will be assigned to our Security object when the Ruletest is run through the rules engine. This outcome is
confirmed in the Ruletest shown in the following figure:

Figure 78: Ruletest output for (“exists”) condition rules

Progress Corticon.js: Rule Modeling: Version 1.4106

Chapter 5: Collections

Another example using the existential quantifier
Collection operators are powerful parts of the Corticon.js Rule Language. In some cases, they may be the only
way to implement a particular business rule. For this reason, another example is provided.

Business problem: An auto insurance company has a business process for handling auto claims. Part of this
process involves determining a claim’s validity based on the information submitted on the claim form. For a
claim to be classified as valid, both the driver and vehicle listed on the claim must be covered by the policy
referenced by the claim. Claims that are classified as invalid will be rejected, and will not be processed for
payment.

From this short description, extract the primary business rule statement:

1. A claim is valid if the driver and vehicle involved in a claim are both listed on the policy against which the
claim is submitted.

In order to implement the business rule, the following UML Class Diagram is proposed. Note the following
aspects of the diagram:

107Progress Corticon.js: Rule Modeling: Version 1.4

Special collection operators

• A policy can cover one or more drivers

• A policy can cover one or more vehicles

• A policy can have zero or more claims submitted against it.

• The claim entity was denormalized to include driverName and vehicleVin .

Note: Alternatively, the Claim entity could have referenced Driver.name and Vehicle.vin (by adding
associations between Claim and both Driver and Vehicle), respectively, but the denormalized structure is
probably more representative of a real-world scenario.

Figure 79: UML Class Diagram

Progress Corticon.js: Rule Modeling: Version 1.4108

Chapter 5: Collections

This model is realized in Corticon.js Studio as:
Figure 80: Vocabulary for insurance claims

Model the following rules in Corticon.js Studio, as shown:

109Progress Corticon.js: Rule Modeling: Version 1.4

Special collection operators

1. For a claim to be valid, the driver’s name and vehicle ID listed on the claim must also be listed on the claim’s
policy.

2. If either the driver’s name or vehicle ID on the claim is not listed on the policy, then the claim is not valid.

Figure 81: Rulesheet for insurance claims

Progress Corticon.js: Rule Modeling: Version 1.4110

Chapter 5: Collections

This appears very straightforward. But a problem arises when there are multiple drivers or vehicles listed on
the policy. In other words, when the policy contains a collection of drivers or vehicles. The Vocabulary permits
this scenario because of the cardinalities that were assigned to the various associations. This problem is
demonstrated in the following Ruletest:
Figure 82: Ruletest input for insurance claims

111Progress Corticon.js: Rule Modeling: Version 1.4

Special collection operators

Notice in the Rulestest that there are three drivers and three vehicles listed on (associated with) a single policy.
When you run this Ruletest, you see the results:
Figure 83: Ruletest output for insurance claims

As you can see from the Ruletest results, the way Corticon.js Studio evaluates rules involving comparisons of
multiple collections means that the validClaim attribute may have inconsistent assignments – sometimes
true, sometimes false (as in this Ruletest). It can be seen from the following table below that, given the
Ruletest data, 4 of 5 possible combinations evaluate to false, while only 1 evaluates to true. This conflict
arises because of the nature of the data evaluated, not the rule logic, so Studio’s Conflict Check feature does
not detect it.

validClaimRule 3 firesRule 2 firesRule 1 firesClaim.policy.
vehicle.vin

Claim.
vehicleVin

Claim.policy.
driver.name

Claim.
driverName

TrueX123-ABC123-ABCJoeJoe

FalseXSueJoe

FalseXMaryJoe

Progress Corticon.js: Rule Modeling: Version 1.4112

Chapter 5: Collections

validClaimRule 3 firesRule 2 firesRule 1 firesClaim.policy.
vehicle.vin

Claim.
vehicleVin

Claim.policy.
driver.name

Claim.
driverName

FalseX987-XYZ123-ABC

FalseX456-JKL123-ABC

The existential quantifier will be used to rewrite these rules:
Figure 84: Rulesheet with rules rewritten using the existential quantifier

This logic tests for the existence of matching drivers and vehicles within the two collections. If matches exist
within both, then the validClaim attribute evaluates to true, otherwise validClaim is false.

Now the same Ruletest data as before is used to test these new rules. The following figure shows the results:

113Progress Corticon.js: Rule Modeling: Version 1.4

Special collection operators

Notice that only one rule fired, and that validClaimwas assigned the value of true. This implementation
achieves the intended result.

Progress Corticon.js: Rule Modeling: Version 1.4114

Chapter 5: Collections

6
Rules containing calculations and equations

Rules that contain equations and calculations are no different than any other type of rule. Calculation-containing
rules can be expressed in any of the sections of the Rulesheet.

Terminology that will be used throughout this section
In the simple expression A = B, A is the left-hand side (LHS) of the expression, and B is the right-hand side
(RHS). The equals sign is an operator, and is included in the Operator Vocabulary in Corticon.js Studio. But,
even such a simple expression has its complications. For example, does this expression compare the value
of A to B in order to take some action, or does it instead assign the value of B to A ? In other words, is the
equals operator performing a comparison or an assignment? This is a common problem in programming
languages, where a common solution is to use two different operators to distinguish between the two meanings:
the symbol == might signify a comparison operation, whereas := might signify an assignment.

In Corticon.js Studio, special syntax is unnecessary because the Rulesheet helps to clarify the logical intent
of the rules. For example, typing A=B into a Rulesheet's Condition row (and pressing Enter) automatically
causes the Values set {T,F} to appear in the rule column cell drop-down lists. This indicates that the rule
modeler has written a comparison expression, and Studio expects a value of true or false to result from the
comparison. A=B, in other words, is treated as a test: is A equal to B?

However, when A=B is entered into an Action or Nonconditional row (Actions rows in Column 0), it becomes
an assignment. In an assignment, the RHS of the equation is evaluated and its value is assigned to the LHS
of the equation. In this case, the value of B is assigned to A. As with other actions, you can activate or deactivate
this action for any column in the decision table (numbered columns in the Rulesheet) by checking the box that
automatically appears when the Action's cell is clicked.

In the Rule Language Guide, the equals operator (=) is described separately in both its assignment and
comparison contexts.

115Progress Corticon.js: Rule Modeling: Version 1.4

Note: A Boolean attribute does not reset when non-Boolean input is provided for a non-conditional
rule

While this is the expected behavior in the Corticon.js language, it can cause unexpected results. On input of
a Boolean attribute, if the value of the element is true or 1, Corticon interprets that as a true Boolean value,
otherwise it defaults to a false Boolean value. Attributes in the input document are not modified unless the
value is changed in the rule; that is, setting a true Boolean attribute to the value of true does not modify the
element.
You can have reliable behavior when you use following workaround. To guarantee a modification in the data,
you need to guarantee that the rules change the value of the attribute. For example, instead of action...

Entity_1.booleanAttr1 = T

...first set the value of the attribute to null, and then set it to true:

Entity_1.booleanAttr1 = null
Entity_1.booleanAttr1 = T

For details, see the following topics:

• Operator precedence and order of evaluation

• Data type compatibility and casting

• Supported uses of calculation expressions

• Unsupported uses of calculation expressions

Operator precedence and order of evaluation
Operator precedence is the order in which Corticon.js Studio evaluates multiple operators in an equation.
Operator precedence is described in the following table (also in the Rule Language Guide.) This table specifies
for example, that 2*3+4 evaluates to 10 and not 14 because the multiplication operator * has a higher
precedence than the addition operator +. It is a good practice, however, to include clarifying parentheses even
when Corticon.js Studio does not require it. This equation would be better expressed as (2*3)+4. Note the
addition of parentheses does not change the result. When expressed as 2*(3+4), however, the result is 14.

Progress Corticon.js: Rule Modeling: Version 1.4116

Chapter 6: Rules containing calculations and equations

The precedence of operators affects the grouping and evaluation of expressions. Expressions with
higher-precedence operators are evaluated first. When several operators have equal precedence, they are
evaluated from left to right. The following table summarizes Corticon.js's Rule Operator precedence and their
order of evaluation .

ExampleOperator NameOperatorOperator
precedence

(5.5 / 10)Parenthetic expression()1

-10Unary negative-2

not 10Boolean testnot

5.5 * 10Arithmetic: Multiplication*3

5.5 / 10Arithmetic: Division/

5 ** 2

25 ** 0.5

125 ** (1.0/3.0)

Arithmetic: Exponentiation (Powers and Roots)**

5.5 + 10Arithmetic: Addition+4

10.0 – 5.5Arithmetic: Subtraction-

5.5 < 10Relational: Less Than<5

5.5 <= 5.5Relational: Less Than Or Equal To<=

10 > 5.5Relational: Greater Than>

10 >= 10Relational: Greater Than Or Equal To>=

5.5=5.5Relational: Equal=

5.5 <> 10Relational: Not Equal<>

(ent1.dec1 > 5.5 and
ent1.dec1 < 10)

Logical: AND(expression and
expression)

6

(ent1.dec1 > 5.5 or
ent1.dec1 < 10)

Logical: OR(expression or
expression)

Note: Even though expressions within parentheses that are separated by logical AND/OR operators are valid,
the component expressions are not evaluated individually when testing for completeness, and might cause
unintended side effects during rule execution. The best practice within a Corticon.js Rulesheet is to represent
AND conditions as separate condition rows and OR conditions as separate rules -- doing so allows you to get
the full benefit of Corticon.js’s logical analysis.

Note: It is recommended that you place arithmetic exponentiation expressions in parentheses.

117Progress Corticon.js: Rule Modeling: Version 1.4

Operator precedence and order of evaluation

Data type compatibility and casting
An important prerequisite of any comparison or assignment operation is data type compatibility. In other words,
the data type of the equation's LHS (the data type of A) must be compatible with whatever data type results
from the evaluation of the equation's RHS (the data type of B). For example, if both attributes A and B are
Decimal types, then there will be no problem assigning the Decimal value of attribute B to attribute A.

Similarly, a comparison between the LHS and RHS does not make sense unless both refer to the same kinds
of data. How does one compare orange (a String) to July 4, 2014 12:00:00 (a DateTime)? Or false
(a Boolean) to 247.82 (a Decimal)?

In general, the data type of the LHS must match the data type of the RHS before a comparison or assignment
can be made. (The exception to this rule is the comparison or assignment of an Integer to a Decimal. A Decimal
can safely contain the value of an Integer without using any special casting operations.) Expressions that result
in inappropriate data type comparison or assignment should turn red in Studio.

In the examples that follow, the generic Vocabulary from the Rule Language Guide will be used because the
generic attribute names indicate their data types:

Figure 85: Generic Vocabulary used in the Rule Language Guide

Progress Corticon.js: Rule Modeling: Version 1.4118

Chapter 6: Rules containing calculations and equations

The following figure shows a set of Action rows that illustrate the importance of data type compatibility in
assignment expressions:

Figure 86: Data type mismatches in assignment expressions

Let's examine each of the Action rows to understand why each is valid or invalid.

A—This expression is valid because the data types of the LHS and RHS sides of the equation are compatible.
They are both Boolean.

B—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a DateTime and the RHS resolves to a String.

C—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a String and the RHS resolves to a DateTime.

D—This expression is valid because the data types of the LHS and RHS sides of the equation are compatible
even though they are different! This is an example of the one exception to Corticon's general rule regarding
data type compatibility: Decimals can hold Integer values.

E—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a Boolean, and the RHS resolves to a Decimal.

Note that the Problems window contains explanations for the red text shown in the Rulesheet.

119Progress Corticon.js: Rule Modeling: Version 1.4

Data type compatibility and casting

The following figure shows a set of Conditional expressions that illustrate the importance of data type compatibility
in comparisons:

Figure 87: Datatype mismatches in comparision expressions

Let's examine each of these conditional expressions to understand why each is valid or invalid:

a—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. They are both Strings. Note that Corticon.js Studio confirms the validity of the expression by
recognizing it as a comparison and automatically entering the values set {T,F} in the Values column.

b—This comparison expression is invalid because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a String, and the RHS resolves to a DateTime. Note that, in addition to
the red text, Corticon.js Studio emphasizes the problem by not entering the values set {T,F} in the Values
column.

c—This comparison expression is invalid because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a Boolean, and the RHS resolves to a Decimal.

d—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. This is another example of the one exception to Corticon's general rule regarding data type
compatibility: Decimals can be compared to Integer values.

e—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. Like d, this also illustrates the exception to Corticon's general rule regarding data type compatibility:
Decimals can be compared to Integer values. Unlike an assignment, however, whether the Integer and Decimal
types occupy the LHS or RHS of a comparison is unimportant.

Progress Corticon.js: Rule Modeling: Version 1.4120

Chapter 6: Rules containing calculations and equations

Data type of an expression
It is important to emphasize that the idea of a data type applies not only to specific attributes in the Vocabulary,
but to entire expressions. The previous examples were simple, and the data types of the LHS or the RHS of
an equation correspond to the data types of those single attributes. But, the data type to which an expression
resolves could be more complicated.

Figure 88: Examples of expression datatypes

Let's examine each assignment to understand what is happening:

A—The RHS of this equation resolves to an Integer data type because the .dayOfWeek operator “extracts”
the day of the week from a DateTime value (in this case, the value held by attribute date1) and returns it as
an Integer between 1 and 7. Because the LHS also has an Integer data type, the assignment operation is valid.

B—TheRHS of this equation resolves to an Integer because the .size operator counts the number of characters
in a String (in this case the String held by attribute string1) and returns this value as an Integer. Because
the LHS also has an Integer data type, the assignment operation is valid.

C—The RHS of this equation resolves to a Boolean because the ->isEmpty collection operator examines a
collection (in this case the collection of Entity2 children associated with parent Entity1, represented by
collection alias e2) and returns true if the collection is empty (has no elements) or false if it is not. Because
the LHS also has a Boolean data type, the assignment operation is valid.

D—The RHS of this equation resolves to a Boolean because the ->exists collection operator examines a
collection (in this case, e2 again) and returns true if the expression in parentheses is satisfied at least once,
and false if it isn't. Since the LHS also has a Boolean data type, the assignment operation is valid.

E—the RHS of this equation resolves to an Integer because the ->sum collection operator adds up the values
of all occurrences of an attribute (in this case, integer2) in a collection (in this case, e2 again). Since the
LHS has a Decimal data type, the assignment operation is valid. This is the lone case where type casting
occurs automatically.

Note: The .dayOfWeek operator and others used in these examples are described fully in the Rule Language
Guide.

121Progress Corticon.js: Rule Modeling: Version 1.4

Data type compatibility and casting

Defeating the parser
The part of Corticon.js Studio that checks for data type mismatches (along with all other syntactical problems)
is the Parser. The Parser ensures that whatever is expressed in a Rulesheet can be correctly translated and
compiled into code executable by Corticon.js Studio's Ruletest as well as by the Decision Service. Because
this is a critical function, much effort was put into the Parser's accuracy and efficiency. But rule modelers should
understand that the Parser is not perfect, and cannot anticipate all possible combinations of the rule language.
It is still possible to “slip one past” the Parser. Here is an example:

Figure 89: LHS and RHS resolve to integers

In the preceding figure, there is an assignment expression where both LHS and RHS return Integers under all
circumstances. But making a minor change to the RHS throws this result into confusion:

Figure 90: Will the RHS still resolve to an integer?

The minor change of adding a division step to the RHS expression has a major effect on the data type of the
RHS. Prior to modification, the RHS returns an Integer, but an odd Integer! When an odd Integer is divided by
2, a Decimal always results. The Parser is smart, but not smart enough to catch this problem.

When the rule is executed, what happens? How does the Decision Service react when the rule instructs it to
force a Decimal value into an attribute of type Integer? The server responds by truncating the Decimal value.
For example, if integer2 has the value of 2, then the RHS returns the Decimal value of 2.5. This value is
truncated to 2 and then assigned to integer1 in the LHS.

Looking at this rule in isolation, it is not difficult to see the problem. But, in a complex Rulesheet, it may be
difficult to uncover this sort of problem. Your only clue to its existence may be numerical test results that do
not match the expected values. To be safe, iut is a best practice to ensure the LHS of numeric calculations
has a Decimal data type so no data is inadvertently lost through truncation.

Progress Corticon.js: Rule Modeling: Version 1.4122

Chapter 6: Rules containing calculations and equations

Manipulating JS datatypes with casting operators
A special set of operators is provided in the Corticon.js Studio's Operator Vocabulary that allows the rule
modeler to control the data types of attributes and expressions. These casting operators are described below:

Table 6: Special casting operators

Produces data of type…Applies to data of type…Casting operator

IntegerDecimal, String.toInteger

DecimalInteger, String.toDecimal

StringInteger, Decimal, DateTime.toString

DateTimeString.toDateTime

The problems shown in Datatype mismatches in comparision expressions can use these casting operators to
make corrections:

Figure 91: Using casting operators

Casting operators were used in actions rules B and C to make the data types of the LHS and RHS match.
Notice, however, that no casting operator exists to cast a Decimal into a Boolean data type for action E, hence
the error.

Supported uses of calculation expressions
You can do comparisons and assignments in a few different ways:

• Calculation as an assignment in a noncondition on page 126

• Calculation as a comparison in a condition on page 126

• Calculation as an assignment in an action on page 128

123Progress Corticon.js: Rule Modeling: Version 1.4

Supported uses of calculation expressions

To make the examples more interesting and allow for a bit more complexity in our rules, the basic Tutorial
Vocabulary (Cargo.ecore) was extended to include a fewmore attributes. The extended Vocabulary is shown
in the following figure:

Figure 92: Basic Tutorial Vocabulary extended

The new attributes are described in the following table:

Progress Corticon.js: Rule Modeling: Version 1.4124

Chapter 6: Rules containing calculations and equations

Table 7: New attributes added to the Basic Tutorial Vocabulary

DescriptionData typeAttribute

The weight of an aircraft with no fuel
or cargo onboard (kilograms.)

DecimalAircraft.emptyWeight

The maximum amount of weight an
aircraft can safely lift, equal to the
sum of cargo and fuel weights

(kilograms.)

DecimalAircraft.grossWeight

The maximum amount of fuel an
aircraft can carry (liters.)

DecimalAircraft.maxfuel

The floor space required for this
cargo. (square meters.)

DecimalCargo.footprint

Indicates whether the flight plan is
approved for operation.

BooleanFlightPlan.approved

The total amount of all aircraft and
cargo weights for this flight plan

(kilograms.)

DecimalFlightPlan.planWeight

The distance the aircraft is expected
to fly (kilometers.)

DecimalFlightPlan.flightRange

The amount of fuel loaded on the
aircraft assigned to this flight plan

(liters.)

DecimalFlightPlan.fuel

Calculation as a comparison in a precondition
In the following figure, a numeric calculation is used as a comparison in the filters section of the Rulesheet:

The LHS of the expression calculates the average pressure exerted by the total cargo load on the floor of the
aircraft (sum of the cargo weights divided by the sum of the cargo containers' footprints). This result is compared
to the RHS, which is the literal value 5. You might expect to see this type of calculation in a set of rules that
deals with special cargos where a lot of weight is concentrated in a small area. This might, for example, require
the use of special aircraft with sturdy, reinforced cargo bay floors. Such a Filter expression might be the first
step in handling cargos that satisfy this special criterion.

125Progress Corticon.js: Rule Modeling: Version 1.4

Supported uses of calculation expressions

Calculation as an assignment in a noncondition
The example shown in the following figure uses a calculation in the RHS of the assignment to derive the total
weight carried by an Aircraft on the FlightPlan, where the total weight equals the weight of the fuel plus the
weight of all Cargos onboard plus the empty weight of the Aircraft itself.

Figure 93: A calculation in a nonconditional expression

The portion that converts a fuel load measured in liters—the unit of measure that airlines purchase and load
fuel—into a weight measured in kilograms, the unit of measure used for the weight of the cargo as well as the
aircraft and crew:

plan.fuel * 0.812

Note that this conversion is conservative because Jet A1 fuel expands as it warms so this figure is at the cool
end of its range. This portion is then added to:

load.weight -> sum

which is equal to the sum of all Cargo weights loaded onto the aircraft associated with this flight plan. The final
sum of the fuel, cargo, and aircraft weights is assigned to the flight plan's planWeight. Note that parentheses
are not required. The calculation will produce the same result without them. The parentheses were added to
improve clarity.

Calculation as a comparison in a condition
After planWeight is derived by the nonconditional calculation in the following figure, it can immediately be
used elsewhere in this or subsequent Rulesheets.

Note: Subsequent Rulesheets means Rulesheets executed later in a Ruleflow. The concept of a Ruleflow is
discussed in the Quick Reference Guide.

Progress Corticon.js: Rule Modeling: Version 1.4126

Chapter 6: Rules containing calculations and equations

An example of such usage appears in the following figure:

Figure 94: planWeight Derived and used in same Rulesheet

In Condition row a, planWeight is compared to the aircraft's grossWeight to make sure that the aircraft is
not overloaded. An overloaded aircraft must not be allowed to fly, so the approved attribute is assigned a
value of false.

This has the advantage of being both clear and easy to reuse—the term planWeight, once derived, can be
used anywhere to represent the data produced by the calculation. It is also much simpler to use a single attribute
in a rule expression than it is a long, complicated equation.

But, this does not mean that the equation cannot be modeled in a conditional expression, if preferred. The
example shown in the following figure places the calculation in the LHS of the Conditional comparison to derive
planWeight and compare it to grossWeight all in the same expression.

Figure 95: Calculation in a conditional expression

This approach might be preferable if the results of the calculation were not expected to be reused, or if adding
an attribute like planWeight to the Vocabulary were not possible.

Often, attributes like planWeight are very convenient intermediaries to carry calculated values that will be
used in other rules in a Rulesheet. In cases where such attributes are conveniences, and are not used by
external applications consuming a Rulesheet, they can be designated as transient attributes in the Vocabulary,
which causes their icons to change from blue/yellow to orange/yellow.

127Progress Corticon.js: Rule Modeling: Version 1.4

Supported uses of calculation expressions

Calculation as an assignment in an action
The following figure shows two rules that each make an assignment to maxFuel, depending on the type of
aircraft:
Figure 96: A calculation in an action expression

In rule 1, the maxFuel load for 747s is derived by subtracting maxCargoWeight and emptyWeight from
grossWeight. In rule 2, maxFuel for DC-10s is assigned the literal value 100000.

Unsupported uses of calculation expressions
Some calculation expressions you might want to try do not provide expected or reliable results.

Calculations in value sets and column cells—The Conditional expression shown below is not supported by
Studio, even though it does not turn red. Some simpler equations may actually work correctly when inserted
in the Values cell or a rule column cell, but it is a dangerous habit to get into because more complex equations
generally do not work. It is best to express equations as shown in the previous sections.

Figure 97: Calculation in a Values Cell and Column

Progress Corticon.js: Rule Modeling: Version 1.4128

Chapter 6: Rules containing calculations and equations

Calculations in rule statements—Even though it is possible to embed attributes from the Vocabulary inside
Rule Statements, it is not possible to embed equations or calculations in them. Operators and equation syntax
not enclosed in braces {..} are treated like all other characters in the Rule Statement: Nothing will be calculated.
If the Rule Statement shown in the following figure is posted by an action in rule 1, then the message will be
displayed exactly as shown; it will not calculate a result of any kind.

Figure 98: Calculation in a Rule Statement

Likewise, including equation syntaxwithin curly brackets along with other Vocabulary terms is also not permitted.
Doing so can cause your text to turn red, as shown:

Figure 99: Embedding a calculation in a rule statement

However, even if the syntax does not turn red, you should not perform calculations in Rule Statements—it may
cause unexpected behavior. When red, the tool tip should give you some guidance as to why the text is invalid.
In this case, the exponent operator (**) is not allowed in an embedded expression.

129Progress Corticon.js: Rule Modeling: Version 1.4

Unsupported uses of calculation expressions

Progress Corticon.js: Rule Modeling: Version 1.4130

Chapter 6: Rules containing calculations and equations

7
Rule dependency in chaining

This section explores how Corticon determines the sequencing of rules, and looping, which involves controls
you can set over the revisiting, re-evaluating, and possible re-firing of rules.

What is rule dependency?
Dependencies between rules exist when a conditional expression of one rule evaluates data produced by the
action of another rule. The second rule is said to be dependent on the first.

Forward chaining
When a Ruleflow is compiled into a Decision Service, a dependency network for the rules is automatically
generated. Corticon uses this network to determine the order in which rules fire at run time. For example, in
the following simple rules, the proper dependency network is 1 > 2 > 3 > 4.

131Progress Corticon.js: Rule Modeling: Version 1.4

This is not to say that all three rules will always fire for a given test—clearly, a test with B as the initial value
will only cause rules 2, 3, and 4 to fire. But, the dependency network ensures that rule 1 is always evaluated
before rule 2, and rule 2 is always evaluated before rule 3, and so on. This mode of Rulesheet execution is
called optimized inferencing, meaning that the rules execute in the optimal sequence determined by the
dependency network generated by the compiler. Optimized inferencing is the only mode of rule processing
for all Corticon.js Rulesheets.

Optimized inferencing processing is a powerful capability that enables the rule modeler to break up complex
logic into a series of smaller, less complex rules. Once broken up into smaller or simpler rules, the logic is
executed in the proper sequence automatically, based on the dependencies determined by the compiler.

An important characteristic of Optimized Inferencing processing: the flow of rule execution is single-pass,
meaning a rule in the sequence is evaluated once and never revisited, even if the data values (or data state)
evaluated by its Conditions change over the course of rule execution. In the preceding example, this effectively
means that rule execution ceases after rule 4. Even if rule 4 fires (with resulting value = B), the second rule
will not be revisited, re-evaluated, or re-fired even though its condition (if value = B) would be satisfied by the
current value (state).

Progress Corticon.js: Rule Modeling: Version 1.4132

Chapter 7: Rule dependency in chaining

8
Filters

A Filter expression acts to limit or reduce the data in working memory to only that subset whose members
satisfy the expression. A Filter does not permanently remove or delete any data; it simply excludes data from
evaluation by other rules in the same Rulesheet.

We often say that data satisfying a Filter expression “survives” the Filter. Data that does not survive the Filter
is said to be “filtered out”. Data that has been filtered out is ignored by other rules in the same Rulesheet.

A Filter expression, regardless of its full behavior, is unaffected by Filter expressions in other Rulesheets.

As an example, look at the Rulesheet sections shown in the following two figures:

Figure 100: Aliases Declared

The Scope window in this figure defines aliases for a root-level Policy entity, a collection of Driver entities
related to that Policy, and a collection of Vehicle entities related to that Policy, named thePolicy,
drivers, and cars, in that order.

133Progress Corticon.js: Rule Modeling: Version 1.4

To start with, we will write a simple Filter and observe its default behavior. In the simple scenario below, the
Filter expression reduces the set of data acted upon by the Nonconditional rule (column 0), which in this case
merely posts the Rule Statement as a message.

Figure 101: Rulesheet to Illustrate Basic Filter Behavior

Progress Corticon.js: Rule Modeling: Version 1.4134

Chapter 8: Filters

Our result is not unexpected: for every element in the collection (every Driver) whose age attribute is greater
than 16, we see a posted message in the Ruletest, as shown below:

Figure 102: Ruletest to test Filter Behavior

The policy is issued because there are drivers over 16. But because only Jacob and Lisa are older than 16,
Rule Messages are posted only for them.

For details, see the following topics:

• Full filters

• Limiting filters

• Filters that use OR

• What is a precondition

• How to use collection operators in a filter

Full filters
By default, each filter you write acts as a full filter. This means not only will the data not satisfying the Filter
expression be filtered out of subsequent evaluations, but in cases where this data is a collection where no
elements survive the filter, the parent entity will also be filtered out!

135Progress Corticon.js: Rule Modeling: Version 1.4

Full filters

Here is the Testsheet with three juvenile drivers:

Figure 103: Ruletest for Full Filter

Notice two important things about this Ruletest's results: first, none of the Driver entities in the Input are older
than 16, which means none of them survives the filter. Second, because the parent Policy entity does not
contain at least one Driver that satisfies the filter, then the parent Policy itself also fails to survive the filter. If
no Policy entity survives the filter, then rule Column 0 has no data upon which to act, so no Policy is
assigned a startDate equal to the date portion of now. The Testsheet's output, shown in the preceding figure,
confirms the behavior.

Why would you want a Filter to behave this way? Perhaps because, if these are the only drivers seeking a
policy, then there must be at least one driver of legal age to warrant issuing a policy. While you will probably
find that the full filter behavior is generally what you want when filtering your data, it might be too strict in other
situations. If other rules on the Rulesheet act or operate on Policy, then a maximum filter gives you an easy
way to specify and control which Policy entities are affected.

Disabling a Full Filter
When testing, you might want to remove one filter. Instead of deleting the filter, you can disable it by right-clicking
the rule and then choosing Disable, as shown:

Progress Corticon.js: Rule Modeling: Version 1.4136

Chapter 8: Filters

After the filter is disabled, all applications of the filter are rendered in gray, as shown:

A disabled full filter is really no filter at all. You can perform the corresponding action to again Enable the filter.

Limiting filters
There are occasions, however, when the all-or-nothing behavior of a full filter is unwanted because it is too
strong. In these cases, you want to apply a filter to specified elements of a collection, but still keep the selected
entities even if none of the children survive the filter.

137Progress Corticon.js: Rule Modeling: Version 1.4

Limiting filters

To turn a Filter expression into a limiting filter, right-click on a filter in the scope section and select Disable
from the menu, as shown:

Figure 104: Selecting to limit a filter

This causes that specific filter position to no longer apply, indicated in gray:
Figure 105: Limiting filter set

Notice that the filter is still enabled, and that it will still be applied at the Driver level. The filter was limited.

Use case for limiting filters

The preceding example was basic. Let's explore some more complex examples of limited filters.

Consider the case where there is a rule component designed to process customers and orders.

A customer has a 1 to many relationship with an order.

The rule component has two objectives: one to process customers, and the second to process orders.

If you define a filter that tests for a GOLD status on an order, there can be four logical iterations of how the
filter could be applied to the rules.

Case 1: filter is not applied at all.
Case 2: filter is applied to all customers and all orders.
Case 3: filter is only applied to customers.
Case 4: filter is only applied to orders.

Progress Corticon.js: Rule Modeling: Version 1.4138

Chapter 8: Filters

A business statement for these cases could be as follows:

Case 1: Process all customers and all orders.
Case 2: Process only GOLD status orders and only customers that have a GOLD status

order.
Case 3: Process only customers that have a GOLD status order and all orders of a

processed customer.
Case 4: Process all customers and only GOLD status orders.

For filter modeling, the Filter expression could be written as Customer.order.status = ‘GOLD’. The
modeling consideration for the cases are:

Case 1: Filter is not entered (or filter disabled, or filter disabled at both Customer
and Customer.order levels in the scope).

Case 2: Filter is entered with no scope modifications (enabled at both Customer and
Customer.order levels in the scope).

Case 3: Filter is entered and then disabled at the Customer.order level in the scope.

Case 4: Filter is entered and then disabled at the Customer level in the scope.

You see how one filter can apply limits to the full filter to achieve the preferred profile of what survives the filter
and what gets filtered out.

Next, a more complex set of limiting filters is discussed.

Example of limiting filters

Consider the following Rulesheet Scope of a Vocabulary:
Figure 106: Scope in a Rulesheet that will be filtered

Consider the filter to be applied to data:

Customer.order.item.bid >= Category.product.price

This is shown in the Rulesheet's Filters section as:
Figure 107: Definition of a filter

139Progress Corticon.js: Rule Modeling: Version 1.4

Limiting filters

The resulting filter application applies at several levels, as shown:
Figure 108: Application of the filter to the Scope's tree structure

A Ruletest Testsheet might be created as follows:

Progress Corticon.js: Rule Modeling: Version 1.4140

Chapter 8: Filters

This data tree contains five entity types (Customer, Order, Item, Category, Product).

This filter is evaluated as follows:

Customer[1],Order[1],Item[1],Category[1],Product[1] false
Customer[1],Order[1],Item[1],Category[1],Product[2] true
Customer[1],Order[1],Item[1],Category[2],Product[2] true
Customer[1],Order[1],Item[1],Category[2],Product[3] true
Customer[1],Order[1],Item[1],Category[3],Product[1] false
Customer[1],Order[1],Item[2],Category[1],Product[1] false
Customer[1],Order[1],Item[2],Category[1],Product[2] false
Customer[1],Order[1],Item[2],Category[2],Product[2] false
Customer[1],Order[1],Item[2],Category[2],Product[3] false
Customer[1],Order[1],Item[2],Category[3],Product[1] false
Customer[1],Order[2],Item[3],Category[1],Product[1] false
Customer[1],Order[2],Item[3],Category[1],Product[2] false
Customer[1],Order[2],Item[3],Category[2],Product[2] false
Customer[1],Order[2],Item[3],Category[2],Product[3] true
Customer[1],Order[2],Item[3],Category[3],Product[1] false
Customer[2],Order[3],Item[5],Category[1],Product[1] false
Customer[2],Order[3],Item[5],Category[1],Product[2] false
Customer[2],Order[3],Item[5],Category[2],Product[2] false
Customer[2],Order[3],Item[5],Category[2],Product[3] false
Customer[2],Order[3],Item[5],Category[3],Product[1] false

The tuples that evaluate to true are:

Customer[1],Order[1],Item[1],Category[1],Product[2]
Customer[1],Order[1],Item[1],Category[2],Product[2]
Customer[1],Order[1],Item[1],Category[2],Product[3]
Customer[1],Order[2],Item[3],Category[2],Product[3]

The entities that survive the filter are:

Customer[1]
Customer[1],Order[1]
Customer[1],Order[2]
Customer[1],Order[1],Item[1]
Customer[1],Order[2],Item[3]
Category[1]
Category[2]
Category[1],Product[2]
Category[2],Product[2]
Category[2],Product[3]

The Scope section of the Rulesheet expands as follows:

Notice how the filter is applied towards each discrete entity referenced in the expression:

• If the filter is applied to Customer, then the survivor of the filter is Customer[1]. If not applied, then
{Customer[1], Customer[2]} survive the filter.

• If the filter is applied to Customer.order, then the surviving tuples are {Customer[1], Order[1]}
and {Customer[1],Order[2]}. If not applied, then there is no effect (because there was no Order
child of Customer[1] that did not survive the filter).

• If the filter is not applied at the Customer level as well as the Customer.order level, then all
Customer.order tuples survive the filter with the result: {Customer[1],Order[1]}, {
Customer[1],Order[2]}, {Customer[2],Order[3]}.

• If the filter is applied to Customer.order.item, then the surviving tuples are
{Customer[1],Order[1],Item[1]} and {Customer[1],Order[2],Item[3]}. When not applied

141Progress Corticon.js: Rule Modeling: Version 1.4

Limiting filters

(at this level but at higher levels), then the surviving tuples are {Customer[1],Order[1],Item[1]},
{Customer[1],Order[1],Item[2]}, {Customer[1],Order[2],Item[3]}.

• If the filter is applied to Category, then the surviving entities are Category[1], Category[2]. If not
applied, then Category[1], Category[2], Category[3].

• If the filter is applied to the Category.product level, then the surviving tuples are be {Category[1],
Product[2]}, {Category[2], Product[2]}, {Category[2], Product[3]}

You see how a filter applied (at each level) determines which entities are processed when a rule references a
subset of the filter’s entities. With the limiting filters feature, the filter may or may not be applied to each entity
referenced by the filter.

Filters that use OR
Just as compound filters can be created by writing multiple preconditions, filters can also be constructed using
the special word or directly in the Rulesheet. See the Rule Language Guide for an example.

What is a precondition
If you are comfortable with the limiting and full behaviors of a Filter expression, then its precondition behavior
is even easier to understand. While reading this section, keep in mind that filters always act as either limiting
or full filters, but they can also act as preconditions if you enable that behavior as described in this section. If
you think of filtering as a mandatory behavior but a precondition as an optional behavior, then you will be in
good shape later. Also, it may be helpful to think of the precondition behavior, if enabled, as taking effect after
the filtering step is complete.

Precondition behavior of a filter ensures that execution of a Rulesheet stops unless at least one piece of data
survives the filter. If execution of a Rulesheet stops because no data survived the filter, then execution moves
on to the next Rulesheet (in the case where the Rulesheet is part of a Ruleflow). If no more Rulesheets exist
in the Ruleflow, then execution of the entire Ruleflow is complete.

In effect, a filter with precondition behavior enabled acts as a gatekeeper for the entire Rulesheet - if no data
survived the filter, then the Rulesheet's gate stays closed and no additional rules on that Rulesheet will be
evaluated or executed.

If, however, data survived the filter, then the gate opens, and the surviving data can be used in the evaluation
and execution of other rules on the same Rulesheet.

Progress Corticon.js: Rule Modeling: Version 1.4142

Chapter 8: Filters

The precondition behavior of a filter is significant because it allows you to control Rulesheet execution regardless
of the scope used in the rules. Take, for example, the Rulesheet shown in the following figure. The filter in row
1 is acting in its standard default mode of full filter. This means that Driver entities in the collection named
drivers and the collection's parent entity Policy are both affected by this filter. Only those elements of
drivers older than 16 survive, and at least one must survive for the parent Policy also to survive.

Figure 109: Input Rulesheet for Precondition

But, how does this affect the Claim in nonconditional row A (rule column 0)? Claim, as a root-level entity, is
safely outside of the scope of the filter, and therefore unaffected by it. Nothing the filter does (or does not do)
has any effect on what happens in Action row A—the two logical expressions are independent and unrelated.
As a result, Claim.validClaim will always be false, even when none of the elements in drivers are
older than 16. A quick Ruletest verifies this prediction:

Figure 110: Rulesheet for an action unaffected by a filter

But, what if the business intent of our rule is to update Claim based on the evaluation of Policy and its
collection of Drivers? What if the business intent requires that the Policy and Claim really be related in
some way? How do you model this?

143Progress Corticon.js: Rule Modeling: Version 1.4

What is a precondition

Using the same example, right-click on Filters row 1 and select Precondition.

Figure 111: Selecting precondition behavior from the filter menu

Note that the two options, Precondition and Limiting Filter, are mutually exclusive: turning one on turns the
other off. A filter cannot be both a precondition and a limiting filter because at least one piece of data always
survives a limiting filter, so a precondition never stops execution.

Selecting Precondition causes the following:

• The yellow funnel icon in the Filter window receives a small red circle symbol

• The yellow funnel icons in the Scope window receive small red circle symbols

Progress Corticon.js: Rule Modeling: Version 1.4144

Chapter 8: Filters

The following figure shows a filter in Precondition mode.

Figure 112: A Filter in Precondition Mode

As described before, the precondition behavior of the filter causes Rulesheet execution to stop whenever no
data survives the filter. So, in the original case where Policy and Claim were unassociated, a filter in
Precondition mode accomplishes the business intent without artificially changing the Vocabulary or underlying
data model, as shown:

Figure 113: Rulesheet with a filter in Precondition mode

145Progress Corticon.js: Rule Modeling: Version 1.4

What is a precondition

A final proof is provided in the following figure:

Figure 114: Testsheet for a filter in Precondition mode

Summary of filter and preconditions behaviors
• A filter reduces the available data for other rules in the Rulesheet to use. Filters show as gray text rather

than black. shades of gray - all data, some data, or no data may result from a filter.

• A filter in Precondition mode stops Rulesheet execution if no data survives the filter. Preconditions are
explicit: data either survives the filter, and allows Rulesheet execution to continue, or no data survives and
the Rulesheet execution stops.

• Filter expressions always acts as a filter. By default, they act as filters only. If you also need true precondition
behavior, then setting the filter to Precondition mode enables precondition behavior while keeping filter
behavior.

Performance implications of the precondition behavior
A rule fires whenever data sharing the rule's scope exists that satisfies the rule's conditions. In other words, to
fire any rule, the rule engine must first collect the data that shares the rule's scope, and then check if any of it
satisfies the rule's conditions. So, even in a Rulesheet where no rules fire, the rules engine may have still
needed to work hard to come to that conclusion. And, hard work requires time, even for a high-performance
rules engine like Corticon.js.

Progress Corticon.js: Rule Modeling: Version 1.4146

Chapter 8: Filters

A Filter expression acting only as a filter never stops Rulesheet execution; it limits the amount of data used in
rule evaluations and firings. In other words, it reduces the set of data that is evaluated by the rule engine, but
it does not actually stop the rule engine's evaluation of remaining rules. Even if a filter successfully filters out
all data from a given data set, the rule engine still evaluates this empty set of data against the available remaining
rules. Of course, no rules fire, but the evaluation process occurs and takes time.

Filter expressions also acting as preconditions change this. Now, if no data survives the filter (remember, Filter
expressions always act as filters even when also acting as preconditions), then Rulesheet execution stops. No
additional evaluations are performed by the rules engine. That Rulesheet is done, and the rules engine begins
working on the next Rulesheet. This can save time and improve engine performance when the Rulesheet
contains many additional rules that would have been evaluated were the expression in filter-only mode (the
default mode).

147Progress Corticon.js: Rule Modeling: Version 1.4

What is a precondition

How to use collection operators in a filter
In the following examples, all Filter expressions use their default Filter-only behavior. As detailed in the Rule
Writing Techniques topics, the logic expressed by the following three Rulesheets provides the same result:
Figure 115: A Condition/Action rule column with 2 Conditional rows

Figure 116: Rulesheet with one Condition row moved to Filters row

Figure 117: Rulesheet with Filter and Condition rows swapped

Progress Corticon.js: Rule Modeling: Version 1.4148

Chapter 8: Filters

Even though expressions in the Filters section of the Rulesheet are evaluated before Conditions, the results
are the same. This holds true for all rule expressions that do not involve collection operations (and therefore
do not need to use aliases – we have used aliases in this example purely for convenience and brevity of
expression): conditional statements, whether they are located in the Filters or Conditions sections, are AND'ed
together. Order does not matter.

In other words, to use the logic from the preceding example:

If person.age > 40 AND person.skydiver = true, then person.riskRating = 'high'

Because it does not matter which conditional statement is executed first, we could have written the same logic
as:

If person.skydiver = true AND person.age > 40, then person.riskRating = 'high'

This independence of order is similar to the commutative property of multiplication: 4 x 5 = 20 and 5 x 4 =
20. Aliases work perfectly well in a declarative language (like Corticon.js's) because regardless of the order of
processing, the outcome is always the same.

149Progress Corticon.js: Rule Modeling: Version 1.4

How to use collection operators in a filter

Location matters
Order independence does not apply to conditional expressions that include collection operations. In the following
Rulesheets, notice that one of the conditional expressions uses the collection operator ->size, and therefore
must use an alias to represent the collection Person.

Figure 118: Collection operator in Condition row

Figure 119: Collection operator in Filter row

The Rulesheets appear identical with the exception of the location of the two conditional statements. But, do
they produce identical results? Let's test the Rulesheets to see, testing Collection operator in Condition row
first:

Figure 120: Ruletest with three skydivers

Progress Corticon.js: Rule Modeling: Version 1.4150

Chapter 8: Filters

What happened here? Because filters are always applied first, the Rulesheet initially filtered out the elements
of collection person whose skydiver value was false. Think of the filter as allowing only skydivers to pass
through to the rest of the Rulesheet. The Conditional rule then checks to see if the number of elements in
collection person is more than 3. If it is, then all person elements in the collection that pass through the filter
(in other words, all skydivers) receive a riskRating value of high. Because the first Ruletest included only
3 skydivers, the collection fails the conditional rule, and no value is assigned to riskRating for any of the
elements, skydiver or not.

Now modify the Ruletest and rerun the rules:

Figure 121: Ruletest with four skydivers

It is clear from this run that the rules fired correctly, and assigned a riskRating of high to all skydivers for
a collection containing more than three skydivers.

Now, test the Rulesheet inCollection Operator in Filter row, where the rule containing the collection operation
is in the Filters section.

Figure 122: Ruletest2 with three skydivers

151Progress Corticon.js: Rule Modeling: Version 1.4

How to use collection operators in a filter

What happened this time? Because filters apply first, the ->size operator counted the number of elements
in the person collection, regardless of who skydives and who does not. Here, the filter allows any collection
– and the whole collection – of more than three persons to pass through to the Conditions section of the
Rulesheet. Then, the conditional rule checks to see if any of the elements in collection person skydive. Each
person who skydives receives a riskRating value of high. Even though the Ruletest included only three
skydivers, the collection contains four persons, and, therefore, passes the Preconditional filter. Any skydiver
in the collection has its riskRating assigned a value of high.

It is important to point out that the Rulesheets in Collection Operator in Condition row and Collection
Operator in Filter row implement two different business rules. When the Rulesheets were built, the
plain-language business rule statements violated the methodology!). The rule statements for these two
Rulesheets would look like this:

The difference is subtle but important. In the first rule statement, the test is for skydivers within groups that
contain more than three skydivers. In the second, the test is for skydivers within groups of more than three
people.

Multiple filters on collections
A slightly more complicated example will be constructed by adding a third conditional expression to the rule.

Figure 123: Rulesheet with two conditions

Figure 124: Rulesheet with two filters

Progress Corticon.js: Rule Modeling: Version 1.4152

Chapter 8: Filters

Once again, the Rulesheets differ only in the location of a conditional expression. In the first rulesheet, the
gender test is modeled in the second conditional row, whereas in the other rulesheet (Rulesheet with two filters),
it is implemented in the second filter row. Does this difference have an effect on rule execution? Build a Ruletest
and use it to test the Rulesheet in Rulesheet with two conditions first.

Figure 125: Ruletest for Rulesheet with two conditions

As you see in this figure, the combination of a condition that uses a collection operator (the size test) with
another condition that does not (the gender test) produces an interesting result. What appears to have happened
is that, for a collection of more than three skydivers, all females in that group were assigned a riskRating
of high. Step-by-step, here is what the rules engine did:

1. The filter screened the collection of persons (represented by the alias person) for skydivers.

2. If there are more than three surviving elements in person (that is, skydivers), then all females in the
filtered collection are assigned a riskRating value of high. It may be helpful to think of the rules engine
checking to make sure there are more than three surviving elements, then reviewing those whose gender
is female, and assigning riskRating one element at a time.

Expressed as a plain-language rule statement, the Rulesheet implements the following rule statement:

It is important to note that conditions do not have the same filtering effect on collections that Filter expressions
do, and the order of conditions in a rule has no effect on rule execution.

153Progress Corticon.js: Rule Modeling: Version 1.4

How to use collection operators in a filter

Now that you understand the results in theRuletest for Rulesheet with 2 Conditions, look at what our second
Rulesheet produces.

Figure 126: Ruletest for Rulesheet with two filters

This time, no riskRating assignments were made to any element of collection person. Why? Because
multiple filters are logically AND'ed together, forming a compound filter. In order to survive the compound filter,
elements of collection person must be both skydivers AND female. Elements that survive this compound filter
pass through to the size test in the Condition/Action rule, where they are counted. If there are more than three
remaining, then all surviving elements are assigned a riskRating value of high. Rephrased, the Rulesheet
implements the following rule statement:

Progress Corticon.js: Rule Modeling: Version 1.4154

Chapter 8: Filters

To confirm that you understand how the rules engine executes this Rulesheet, modify the Ruletest and rerun:

Figure 127: Ruletest with risk ratings

That Ruletest includes four female skydivers, so, if you understand our rules correctly, you expect all four to
pass through the compound filter, and then satisfy the size test in the conditions. This test should result in all
four surviving elements receiving a riskRating of high. That test confirms that the expectation is correct.

155Progress Corticon.js: Rule Modeling: Version 1.4

How to use collection operators in a filter

Progress Corticon.js: Rule Modeling: Version 1.4156

Chapter 8: Filters

9
How to recognize and model parameterized
rules

Patterns emerge in rules that show that there are limits and constraints that you have to handle.

For details, see the following topics:

• Parameterized rule where a specific attribute is a variable or parameter within a general business rule

• Parameterized rule where a specific business rule is a parameter within a generic business rule

Parameterized rule where a specific attribute is a
variable or parameter within a general business rule

During development, patternsmay emerge in the way business rules define relationships between Vocabulary
terms. For example, in our sample FlightPlan application, a recurring pattern might be that all aircraft have
limits placed on their maximum takeoff weights. We might notice this pattern by examining specific business
rules captured during the business analysis phase:

These rules are almost identical; only a few key parts – parameters – are different. Although aircraft type (747
or DC-10) and max cargo weight (200,000 or 150,000 kilograms) are different in each rule, the basic form
of the rule is the same. In fact, we can generalize the rule as follows:

157Progress Corticon.js: Rule Modeling: Version 1.4

Where the parameters X and Y can be organized in table form as shown below:

Maximum cargo weight YAircraft type X

200,000747

150,000DC-10

It is important to recognize these patterns because they can drastically simplify rule writing and maintenance
in Corticon.js Studio. As shown in the following figure, we could build these two rules as a pair of Rulesheets,
each with a Filter expression that filters data by aircraftType.

Figure 128: Non-Parameterized Rule

But there is a simpler and more efficient way of writing these two rules that leverages the concept of
parameterization. The following figure illustrates how this is accomplished:

Figure 129: Parameterized Rules

Notice how both rules are modeled on the same Rulesheet. This makes it easier to organize rules that share
a common pattern and maintain them over time. If the air cargo company decides to add new aircraft types to
its fleet in the future, the new aircraft types can simply be added as additional columns.

Progress Corticon.js: Rule Modeling: Version 1.4158

Chapter 9: How to recognize and model parameterized rules

Also notice the business rule statements in the Rule Statements section. By entering 1:2 in the Ref column
and inserting attribute names into the rule statement, the same statement can be reused for both rule columns.
The syntax for inserting Vocabulary terms into a rule statement requires the use of {..} curly brackets enclosing
the term. See the Rule Language Guide for more details on embedding dynamic values in Rule Statements.

Parameterized rule where a specific business rule is
a parameter within a generic business rule

The previous topic illustrated the simplest examples of parameterized rules. Other subtler examples occur
frequently.

A recurring pattern in Trade Allocationmight be that specific accounts prohibit or restrict the holding of specific
securities for specific reasons. You might notice this pattern by examining specific business rules captured
during the business analysis phase:

The first specific rule might be motivated by another, general rule that states:

The general rule explains why Airbus places this specific restriction on its account holdings: Boeing is a
competitor. The second rule is very similar in that it also defines an account restriction for a security attribute
(the issuer's industry classification), even though the rule has a different motivation. (A client's investments
must not conflict with its ethical guidelines.)

There may be many other business rules that share a common structure, meaning similar entity context and
scope. This pattern allows you to define a generic business rule:

You can also write the rule as a constraint:

Because there is not a method for accommodating many similar rules as a single, generalized case, you need
to enter each specific rule separately into a Rulesheet. This makes the task of capturing, optimizing, testing,
and managing these rules more difficult and time-consuming than necessary.

159Progress Corticon.js: Rule Modeling: Version 1.4

Parameterized rule where a specific business rule is a parameter within a generic business rule

Progress Corticon.js: Rule Modeling: Version 1.4160

Chapter 9: How to recognize and model parameterized rules

10
Logical analysis and optimization

A strength of Corticon's toolset is the ability to perform extensive tests and analysis of your rules using traditional
methods as well as within Studio. You can evaluate the completeness of rule coverage, conflicts between rules,
and looping in rules. You can even test the subtleties of rule executions with expected results. You are offered
techniques to compress and optimize your rules.

For details, see the following topics:

• Test, validate, and optimize your rules

• Traditional methods of analyzing logic

• Validate and test Rulesheets in Corticon Studio

• Test rule scenarios in the Ruletest Expected panel

• How to optimize Rulesheets

• Precise location of problem markers in editors

Test, validate, and optimize your rules
Corticon.js Studio provides the rule modeler with tools to test, validate, and optimize rules and Rulesheets prior
to deployment. Before proceeding, let's define these terms.

161Progress Corticon.js: Rule Modeling: Version 1.4

Scenario testing
Scenario testing is the process of comparing an actual decision operation to an expected operation using data
scenarios or test cases. The Ruletest provides the capability to build test cases using real data, which can then
be submitted as input to a set of rules for evaluation. The actual output produced by the rules is then compared
to the expected output from those rules. If the actual output matches the expected output, then you may have
some degree of confidence that the decision is performing properly. Why only some confidence and not complete
confidence is addressed in this set of topics.

For complete details about settings and analysis for scenario testing, see Test rule scenarios in the Ruletest
Expected panel on page 182

Rulesheet analysis and optimization
Analysis and optimization is the process of examining and correcting or improving the logical construction of
Rulesheets, without using test data. As with testing, the analysis process verifies that the rules are functioning
correctly. Testing, however, does nothing to inform the rule builder about the execution efficiency of the
Rulesheets. Optimization of the rules ensures they execute most efficiently, and provide the best performance
when deployed in production.

The following example illustrates the point:

Two rules are implemented to profile life insurance policy applicants into two categories: high risk and low risk.
These categories might be used later in a business process to determine policy premiums.

Figure 130: Simple rules for profiling insurance policy applicants

To test these rules, create a new scenario in a Ruletest, as shown:

Progress Corticon.js: Rule Modeling: Version 1.4162

Chapter 10: Logical analysis and optimization

In this scenario, a single example of Person, a non-smoker aged 45 is created. Based on the rules just created,
the expectation is that the Condition in Rule 1 will be satisfied (People aged 55 or younger…) and that the
person's riskRating will be assigned the value of low. To confirm the expectations, run the Ruletest:

Figure 131: Ruletest

As you can see in the figure, the expectations are confirmed: Rule 1 fires and riskRating is assigned the
value of low. Furthermore, the .post command displays the appropriate rule statement. Based on this single
scenario, can we say conclusively that these rules will operate properly for other possible scenarios; that is,
for all instances of Person? How do we answer this critical question?

Traditional methods of analyzing logic
The question of proper decision operation for all possible instances of data is fundamentally about analyzing
the logic in each set of rules. Analyzing each individual rule is relatively easy, but business decisions are rarely
a single rule. More commonly, a decision has dozens or even hundreds of rules, and the ways in which the
rules interact can be very complex. Despite this complexity, there are several traditional methods for analyzing
sets of rules to discover logical problems.

163Progress Corticon.js: Rule Modeling: Version 1.4

Traditional methods of analyzing logic

Flowcharts
A flowchart that captures these two rules might look like the following:

Figure 132: Flowchart with two rules

Upon closer examination, the flowchart reveals two problems with our rules: what happens if Person.age>55
or if Person.smoker=false? The rules built in Simple rules for profiling insurance policy applicants do not
handle these two cases. But, there is also a third, subtler problem here: what happens if both conditions are
satisfied, specifically when Person.age<=55 and Person.smoker=true? When Person.age<=55,
Person.riskRating should be given the value of low. But, when Person.smoker=true,
Person.riskRating should be given the value of high.

Progress Corticon.js: Rule Modeling: Version 1.4164

Chapter 10: Logical analysis and optimization

There is a dependency between our rules: They are not truly separate and independent evaluations because
they both assign a value to the same attribute. So, the flowchart turns out to be an incorrect graphical
representation of the rules, because the decision flow does not truly follow two parallel and independent paths.
Let's try a different flowchart:

Figure 133: Flowchart with two dependent rules

In this flowchart, an interdependence between the two rules was acknowledged, and they were arranged
accordingly. However, a few questions still exist. For example, why is the smoker rule before the age rule? By
doing so the smoker rule has an implicit priority over the age rule because any smoker is immediately given a
riskRating value of High regardless of what their age is. Is this what the business intends, or are we, as
modelers, making unjustified assumptions?

This is a problem of logical conflict, or ambiguity, because it is not clear from the two rules, as they were
written, what the correct outcome should be. Does one rule take priority over the other? Should one rule take
priority over the other? This is, of course, a business question, but the rule writer must be aware of the
dependency problem and resulting conflict in order to ask the question in the first place. Also, notice that there
is still no outcome for a non-smoker older than 55. This is a problem of logical completeness and it must be
taken into consideration, no matter which flowchart is used.

The point is that discovery of logical problems in sets of rules using the flowcharting method is very difficult
and tedious, especially as the number and complexity of rules in a decision (and the resulting flowcharts) grows.

165Progress Corticon.js: Rule Modeling: Version 1.4

Traditional methods of analyzing logic

Test suites
The use of a test suite is another common method for testing rules (or any kind of business logic). The idea is
to build a large number of test cases, with carefully chosen data, and determine what the correct system
response should be for each case.

Then, the test cases are processed by the logical system, and output is generated. Finally, the expected output
is compared to the actual output, and any differences are investigated as possible logical bugs.

Let's construct a very small test table with only a few test cases, determine the expected outcomes, and then
run the tests and compare the results. To ensure that the rules execute properly for all cases that might be
encountered in a “real-life” production system, create a set of cases that includes all such possibilities.

In a simple example of two rules, this is a relatively straightforward task:

Table 8: All combinations of conditions in table form

Non-Smoker (smoker = false)Smoker (smoker = true)Condition

Age <= 55

Age > 55

In this table, there is a matrix that uses the Values sets from each of the Conditions in our rules. By arranging
one set of values in rows, and the other set in columns, the Cross Product (also known as the direct product
or cross product) of the two Values sets is created, which means that every member of one set is paired with
every member of the other set. Because each Values set has only two members, the Cross Product yields 4
distinct possible combinations of members (2 multiplied by 2). These combinations are represented by the
intersection of each row and column in the table. Now, let's fill in the table using the expected outcomes from
our rules.

Rule 1, the age rule, is represented by row 1 in the table. Recall that rule 1 deals exclusively with the age of
the applicant and is not affected by the applicant's smoker value. To put it another way, the rule produces the
same outcome regardless of whether the applicant's smoker value is true or false. Therefore, the action
taken when rule 1 fires (riskRating is assigned the value of low) should be entered into both cells of row 1
in the table, as shown:

Figure 134: Rule 1 expected outcome

Progress Corticon.js: Rule Modeling: Version 1.4166

Chapter 10: Logical analysis and optimization

Likewise, rule 2, the smoker rule, is represented by column 1 in the table, All Combinations of Conditions
in Table Form. The action taken if rule 2 fires (riskRating is assigned the value of high) should be entered
into both cells of column 1 as shown:

Figure 135: Rule 2 expected outcome

The table format illustrates that a complete set of test data should contain four distinct cases (each cell
corresponds to a case). Rearranging, the test cases and expected results can be summarized as follows:

Figure 136: Test cases extracted from cross product

The table format also highlights two problems that were encountered earlier with flowcharts. In the figure Rule
2 Expected Outcome, row 1 and column 1 intersect in the upper left cell. This cell corresponds to test case
#1 in the figure above. As a result, each rule tries to assert its own action – one rule assigns a low value, and
the other rule assigns a high value. Which rule is correct?

Logically speaking, they both are. But, if the rule analyst had a business preference, it was lost in the
implementation. As before, you cannot tell by the way the two rules are expressed. Logical conflict reveals
itself again.

Also notice the lower right cell (corresponding to test case #4) – it is empty. The combination of age>55 AND
non-smoker (smoker=false) produces no outcome because neither rule deals with this case – the logical
incompleteness in our business rules reveals itself again.

167Progress Corticon.js: Rule Modeling: Version 1.4

Traditional methods of analyzing logic

Before you can deal with the logical problems discovered here, let's build a Ruletest in Studio that includes all
four test cases in the preceding figure.

Figure 137: Inputs and outputs of the four test cases

Let's look at the test case results in the figure above. Are they consistent with your expectations? With a minor
exception in case #1, the answer is yes. In case #1, riskRating was assigned the value of high. But, also
notice the rule statements posted: case #1 produced two messages which indicate that both the age rule and
the smoker rule fired as expected. But, because riskRating can hold only one value, the system
non-deterministically assigned it the value of high.

So, if using test cases works, what is wrong with using it as part of your Analysis methodology? Let's look at
the assumptions and simplifications made in the previous example:

1. There are just two rules with two Conditions. Imagine a rule pattern comprising three Conditions – our simple
2-dimensional table expands into three dimensions. This may still not be too difficult to work with because
some people are comfortable visualizing in three dimensions. But, what about four or more? It is true that
large, multi-dimensional tables can be “flattened” and represented in a 2-D table, but these become very
large and awkward very quickly.

2. Each of the rules contains only a single Conditional parameter limited to only two values. Each also assigns,
as its Action, a single parameter which is also limited to just two values.

Progress Corticon.js: Rule Modeling: Version 1.4168

Chapter 10: Logical analysis and optimization

When the number of rules and values becomes very large, as is typical with real-world business decisions, the
size of the Cross Product rapidly becomes unmanageable. For example, a set of only six Conditions, each
choosing from only ten values produces a Cross Product of 106, or onemillion combinations. Manually analyzing
a million combinations for conflict and incompleteness is tedious and time-consuming, and still prone to human
error.

In many cases, the potential set of cases is so large that few project teams take the time to rigorously define
all possibilities for testing. Instead, they often pull test cases from an actual database populated with real data. If
this occurs, conflict and incompleteness may never be discovered during testing because it is unlikely that
every possible combination will be covered by the test data.

Validate and test Rulesheets in Corticon Studio
Now, having demonstrated how to test rules with real cases (as performed in Inputs and outputs of the four
test cases) as well as having discussed two manual methods for developing these test cases, it is time to
demonstrate how Corticon.js Studio performs conflict and completeness checking automatically.

How to expand rules
Look at this table:

Figure 138: Rule 1 expected outcome

Then look at this Rulesheet:

Figure 139: Simple Rules for Profiling Insurance Policy Applicants

169Progress Corticon.js: Rule Modeling: Version 1.4

Validate and test Rulesheets in Corticon Studio

Rule 1 (the age rule) is a combination of two subrules; an age value was specified for the first Condition but
did not specify a smoker value for the second Condition. Because the smoker Condition has two possible
values (true and false), the two subrules can be stated as follows:

Corticon.js Studio makes it easy to view subrules for any or all columns in a Rulesheet. By clicking the Expand

Rules button on the toolbar, or double-clicking the column header, Corticon.js Studio displays subrules for
any selected column. If no columns are selected, then all subrules for all columns are shown. Subrules are
labeled using decimal numbers: rule 1 below has two subrules labeled 1.1 and 1.2. Subrules 1.1 and 1.2 are
equivalent to the upper left and upper right cells in Rule 1 Expected Outcome.

Figure 140: Expanding rules to reveal components

As pointed out before, the outcome is the same for each subrule. Because of this, the subrules can be
summarized as the general rules shown in column 1 of Simple Rules for Profiling Insurance Policy Applicants.
The two subrules collapse into the rules shown in column 1. The dash character in the smoker value of column
1 indicates that the actual value of smoker does not matter to the execution of the rule. It will assign riskRating
the value of low no matter what the smoker value is (as long as age <= 55, satisfying the first Condition).
Looking at it a different way, only those rules with dashes in their columns have subrules, one for each value
in the complete value set determined for that Condition row.

Progress Corticon.js: Rule Modeling: Version 1.4170

Chapter 10: Logical analysis and optimization

The conflict checker
With the two rules expanded into four subrules as shown in Expanding Rules to reveal components, most of

the Cross Product is displayed. Click the Check for Conflicts button in the toolbar.

Figure 141: Conflict revealed by the Conflict Checker

Note: The mechanics of conflict checks are described in the Tutorial: Basic Rule Modeling topic "Analyze
rules.

Note: Refresher about conflict discovery and resolution: On a Rulesheet, click Check for Conflicts ,

and then expand the rules by clicking Expand Rules . Expansion shows all of the logical possibilities for
each rule. To resolve conflict, either change the rules, or decide that one rule should override another. To do
that, in theOverrides row at each column intersection where an override is intended, select one or more column
numbers that will be overridden when that rule fires. ClickCheck for Conflicts again to confirm that the conflicts
are resolved.

In this topic, the intent is to correlate the results of the automatic conflict check with the problems we identified
first with the flowchart method, then later with test cases. Subrules 1.1 and 2.1, the subrules highlighted in pink
and yellow in Figure 141: Conflict revealed by the Conflict Checker on page 171, correspond to the intersection
of column 1 and row 1 of Rule 2 Expected Outcome or test case #1 in Test Cases Extracted from Cross
Product. But note that Corticon.js Studio does not instruct the rule writer how to resolve the conflict. It simply
alerts the rule writer to its presence. The rule writer, ideally someone who knows the business, must decide
how to resolve the problem. The rule writer has two basic choices:

171Progress Corticon.js: Rule Modeling: Version 1.4

Validate and test Rulesheets in Corticon Studio

1. Change the Actions for one or both rules. You could change the Action in subrule 1.1 to match 2.1 or vice
versa. Or, you could introduce a new Action, say riskRating = medium, as the Action for both 1.1 and
2.1. If either method is used, then the result will be that the Conditions and Actions of subrule 1.1 and 2.1
are identical. This removes the conflict, but introduces redundancy, which, while not a logical problem, can
reduce processing performance in deployment. Removing redundancies in Rulesheets is discussed in the
How to optimize Rulesheets on page 191 topics.

2. Use an Override. Think of an override as an exception. To override one rule with another means to instruct
the rules engine to fire only one rule even when the Conditions of both rules are satisfied. Another way to
think about overrides is to refer back to the discussion surrounding the flowchart in Flowchart with two
dependent Rules. At the time, it was unclear which decision should execute first. No priority was declared
in the rules. But, it made a big difference how our flowchart was constructed and what results it generated. To
use an override here, select the number of the subrule to be overridden from the drop-down box at the
bottom of the column of the overriding subrule, as shown circled in the following figure. This is expressed
as “subrule 2.1 overrides 1.1”. It is incorrect to think of overrides as defining execution sequence. An override
does not mean “fire rule 2.1 and then fire rule 1.1.” It means “fire rule 2.1 and do not fire rule 1.1”.

Figure 142: Override entered to resolve conflict

An override is essentially another business rule, which should to be expressed somewhere in theRule Statements
section of the Rulesheet. To express this override in plain English, the rule writer might choose to modify the
rule statement for the overridden rule:

This modification successfully expresses the effect of the override.

Progress Corticon.js: Rule Modeling: Version 1.4172

Chapter 10: Logical analysis and optimization

If you are ever in doubt as to whether you have successfully resolved a conflict, click the Check for Conflicts
button again. The affected subrules should not highlight as you step through any remaining ambiguities. If all
ambiguities have been resolved, you will see the following window:

Figure 143: Conflict resolution complete

Note: How does one rule override another rule? To understand overrides, the first concept to learn is
condition context. The condition context of a rule is the set of all entities, aliases, and associations that are
needed to evaluate all the conditional expressions of a rule. The second concept is the override context. The
override context is defined using set algebra. The override context of two rules is the intersection of the two
rule’s condition contexts. To evaluate the override, the set of entities that fulfill the overriding rule’s conditions
are trimmed to the override context and recorded. Before the conditions of the overridden rule are evaluated,
the entities that are part of the override context are tested to determine if they were recorded; if so, then the
rule is overridden and processing of the rule with those entities is stopped. If the override context is empty,
then any execution of the overriding rule will stop all executions of the overridden rule.

Use overrides to handle conflicts that are logical dependencies
Overrides can be used for more than just conflicting rules. While the basic use of overrides is in cases where
rules are in conflict to allow the modeler to control execution, it is not the only use. The more advanced usage
applies cases where there is a logical dependency—cases where a rule might modify the data so that another
rule can also execute. This type of conflict is not detected by the conflict checker.

173Progress Corticon.js: Rule Modeling: Version 1.4

Validate and test Rulesheets in Corticon Studio

Consider a simple Cargo Rulesheet:

When tested, the first rule is triggered, and its action sets a value that triggers rule 2:

The Ruletest result shows that the value set in the first rule's action modified the data so that the change in the
condition's value triggered the second rule. If this effect is not what is intended, then an override can be used.
The use of an override here ensures that the modification of data will not trigger execution of the second rule:
they are mutually exclusive (mutex). When an override is set on rule 1 that specifies that, if it fired, it should
skip rule 2...

... the rules produce the preferred output:

If these rules were re-ordered, then the override would be unnecessary.

Progress Corticon.js: Rule Modeling: Version 1.4174

Chapter 10: Logical analysis and optimization

The completeness checker
When rules are expanded, check for completeness by correlating results with the previous manual methods
of logical analysis.

Note: Themechanics of completeness checks are described in the Tutorial: Basic Rule Modeling topic "Analyze
rules.

Clicking the Check for Completeness button, the message window is displayed:

Figure 144: Completeness Check message window

After clickingOK to dismiss the message window, notice that the Completeness Check produced a new column
(3), shaded in green:

Figure 145: New rule added by completeness check

175Progress Corticon.js: Rule Modeling: Version 1.4

Validate and test Rulesheets in Corticon Studio

This new rule, the combination of age>55 AND smoker=false corresponds to the intersection of column 2
and row 2 in Rule 2 expected outcome and test case #4 in Test cases extracted from Cross Product. The
Completeness Checker has discovered the missing rule! To do this, the Completeness Checker employs an
algorithm that calculates all mathematical combinations of the Conditions' values (the Cross Product), and
compares them to the combinations defined by the rule writer as other columns (other rules in the Rulesheet).
If the comparison determines that some combinations are missing from the Rulesheet, then these combinations
are automatically added to the Rulesheet. As with the Conflict Check, the Action definitions of the new rules
are left to the rule writer. The rule writer should also remember to enter new plain-language Rule Statements
for the new columns so it is clear what logic is being modeled. The corresponding rule statement might look
like this:

Automatically determine the complete values set
As values are manually entered into column cells in a Condition row, Corticon.js Studio automatically creates
and updates a set of values, which for the given datatype of the Condition expression, is complete. This means
that as you populate column cells, the list of values in the drop-down lists you select from will grow and change.

In the drop-down list, you will see the list of values you entered, plus null if the attribute or expression can have
that value. But this list displayed in the drop-down is not the complete list. Corticon.js Studio maintains the
complete list but only shows you the elements that you manually inserted.

This automatically generated complete value list feeds the Completeness Checker with the information it needs
to calculate the Cross Product and generate additional “green” columns. Without complete lists of possible
values, the calculated Cross Product itself will be incomplete.

Automatically compress the new columns
An important aspect of the Completeness Checker's operation is the automatic compression it performs on the
resulting set of missing Conditions. As you can see from the message displayed in Completeness Check
Message Window, the algorithm not only identifies the missing rules, but it also compresses them into
non-overlapping columns. Two important points about this statement:

1. The compression performed by the Completeness Checker is a different kind of compression from that
performed by the Compress Tool introduced in "How to optimize Rulesheets" in the Corticon.js Rule Modeling
Guide. The optimized columns produced by the Completeness Check contain no redundant subrules (that
is what non-overlapping means), whereas the Compression Tool intentionally injects redundant subrules
in order to create dashes wherever possible. This creates the optimal visual representation of the rules.

2. The compression performed here is designed to reduce the results set (which could be extremely large)
into a manageable number while simultaneously introducing no ambiguities into the Rulesheet (which might
arise due to redundant subrules being assigned different Actions).

Progress Corticon.js: Rule Modeling: Version 1.4176

Chapter 10: Logical analysis and optimization

Handle limitations of the completeness checker
The Completeness Checker is powerful in its ability to discover missing combinations of Conditions from your
Rulesheet. However, it is not smart enough to determine if these combinations make business sense or not.
The example in the following figure shows two rules used in a health care scenario to screen for high-risk
pregnancies:

Figure 146: Example prior to Completeness Check

Now, we will click on the Completeness Checker:

Figure 147: Example after Completeness Check

177Progress Corticon.js: Rule Modeling: Version 1.4

Validate and test Rulesheets in Corticon Studio

Notice that columns 3-4 have been automatically added to the Rulesheet. But also notice that column 3 contains
an unusual Condition: gender <> female. Because the other two Conditions in column 3 have dash values,
we know it contains component or subrules. By double-clicking on column 3's header, its subrules are revealed:

Figure 148: Non-female subrules revealed

Because our Rulesheet is intended to identify high-risk pregnancies, it would not seem necessary to evaluate
non-female (that is., male) patients. And if male patients are evaluated, then you can say that the scenarios
described by subrules 3.1 and 3.3—those scenarios containing pregnant males—are unnecessary. While
these combinations may be members of the Cross Product, they are not combinations that can occur. If other
rules in an application prevent combinations like this from occurring, then subrules 3.1 and 3.3 can also be
unnecessary. If no other rules catch this faulty combination earlier, then you may want to use this opportunity
to raise an error message or take some other action that prompts a re-examination of the input data.

Renumber rules
Assume that subrules 3.1 and 3.3 are impossible, and so can be ignored. However, say you decide to keep
subrules 3.2 and 3.4 and assign Actions to them. For this example, violation messages will be posted.

However, if you try to enter Rule Statements for subrules 3.2 and 3.4, you will discover that Rule Statements
can only be entered for general rules (whole-numbered columns), not subrules.

To convert column 3, with its four sub-rules, into four whole-numbered general rules, select Rulesheet >Rule
Column(s)>Renumber Rules from the Studio menubar.

Figure 149: Sub-rules renumbered and converted to general rules

Now that the columns were renumbered, Rule Statements can be assigned to columns 4 and 6, and columns
3 and 5 can be deleted or disabled (if you want to do so).

Progress Corticon.js: Rule Modeling: Version 1.4178

Chapter 10: Logical analysis and optimization

When impossible or useless rules are created by the Completeness Checker, it is a good idea to disable the
rule columns rather than deleting them. When disabled, the columns remain visible to all modelers, eliminating
any surprise (and shock) when future modelers apply the Completeness Check and discover missing rules
that you had already found and deleted. If you disable any columns, it is a good idea to include a Rule Statement
that explains why. See the following figure for an example of a fully complete and well-documented Rulesheet.

Figure 150: Final Rulesheet with impossible rules disabled

Let the expansion tool work for you with tabular rules
Business rules, especially those found in operational manuals or procedures, often take the form of tables.
Take for example the following table that generates shipping charges between two geographic zones:

Matrix to Calculate Shipping Charges per Kilogram

Zone 5Zone 4Zone 3Zone 2Zone 1From/To

$5.65$4.55$3.45$2.35$1.25Zone 1

$4.55$3.45$2.35$1.25$2.35Zone 2

$3.45$2.35$1.25$2.35$3.45Zone 3

$2.35$1.25$2.35$3.45$4.55Zone 4

$1.25$2.35$3.45$4.55$5.65Zone 5

179Progress Corticon.js: Rule Modeling: Version 1.4

Validate and test Rulesheets in Corticon Studio

In the following figure, a simple Vocabulary with which to implement these rules was built. Because each cell
in the table represents a single rule, the Rulesheet contains 25 columns (the Cross Product equals 5x5 or 25).

Figure 151: Vocabulary and Rulesheet to implement matrix

Rather than manually create all 25 combinations (and risk making a mistake), you can use the Expansion Tool
to help you do it. This is a three-step process. Step 1 consists of entering the full range of values found in the
table in the Conditions cells, as shown:

Figure 152: Rulesheet with Conditions automatically populated

Now, use the Expansion Tool to expand column 1 into 25 non-overlapping columns. You now see the 25
subrules of column 1 (only the first ten sub-rules are shown in the following figure due to page width limitations
in this document):

Figure 153: Rule 1 expanded to show sub-rules

Progress Corticon.js: Rule Modeling: Version 1.4180

Chapter 10: Logical analysis and optimization

Each subrule represents a single cell in the original table. Now, select the appropriate value of shipCharge
in the Actions section of each subrule as shown:

Figure 154: Rulesheet with Actions populated

In step 3, shown in the following figure, select Rulesheet >Rule Column(s)>Renumber Rules to renumber
the subrules to arrive at the final Rulesheet with 25 general rules, each of which can now be assigned a Rule
Statement.

Figure 155: Rulesheet with renumbered rules

For more about this example, see the section "How to optimize Rulesheets".

Memory management
As you might suspect, the Completeness Checker and Expansion algorithms are memory intensive, especially
as Rulesheets become very large. If Corticon.js Studio runs low on memory, get details on increasing Corticon.js
Studio's memory allotment in “Increase Corticon.js Studio memory allocation" in the Corticon.js Installation
Guide.

Logical loop detection
Corticon.js Studio has the ability to both detect and control rule looping. This is important because loops are
sometimes inadvertently created during rule implementation. Other times, looping is intentionally introduced
to accomplish specific purposes.

181Progress Corticon.js: Rule Modeling: Version 1.4

Validate and test Rulesheets in Corticon Studio

Test rule scenarios in the Ruletest Expected panel
Using Ruletests, you can submit request data as input to Rulesheets or Ruleflows to see how the rules are
evaluated and the resulting output. You can make Ruletests even more powerful by specifying the results you
expected, and then seeing how they reconcile with the output. Running the test against a specified Rulesheet
or Ruleflow automatically compares the actual Output data to your Expected data, and color codes the
differences for easy review and analysis.

You can establish the expected data in either of two ways:

1. Create expected data from test output:

a. Create or import a request into a Ruletest.

b. Run the test against an appropriate Rulesheet or Ruleflow.

c. Choose the menu command Ruletest > Testsheet > Data > Output > Copy to Expected, or click
in the Corticon.js Studio toolbar.

2. Create expected data directly from the Vocabulary:

a. Drag and drop nodes from theRule Vocabularywindow to create a tree structure in the Expected panel
that is identical to the input tree.

b. Enter expected values for the Input attributes as well as the attributes that will be added in the Output
panel.

Note: See the topics in Techniques that refine rule testing on page 186.

How to navigate in Ruletest Expected comparison results
When reviewing the results of a test run, two navigation features help you focus your attention :

• Synchronized scrolling: When you slide the scroll tab in the Ruletest panels, the three columns do not
move together, making alignment of data points difficult. You can set (or unset) synchronized scrolling of
the columns by either right-clicking any of the Ruletest panels and then choosing Scroll Lock, or clicking

in the Corticon.js Studio toolbar. After you set the panels to synchronize, all panels will synchronize
their scrolling, even advancing across collapsed entities and associations to stay synchronized on the first
displayed line.

• Navigation to differences: The Ruletest window provides a set of controls that report the number of
discovered differences and controls to navigate across the items. In the upper right of the Ruletest window,
the following image shows that the test results identified six differences:

The four buttons take you to the first, previous, next, and last discovered difference.

Review test results when using the Expected panel
The following topics present a variety of test results.

Progress Corticon.js: Rule Modeling: Version 1.4182

Chapter 10: Logical analysis and optimization

Output results match expected exactly
In the following example, both packaging values are shown in bold text, indicating that these values were
changed by the rules. Because all colors are black and the differences count is 0, theOutput data is consistent
with the Expected data.

Different values output than expected
In the following example, one difference was identified. The expected value of Cargo[2] packaging value is
standard, but the Ruletest produced an actual value of oversize. Because the Output does not match the
Expected data, the text is colored red.

183Progress Corticon.js: Rule Modeling: Version 1.4

Test rule scenarios in the Ruletest Expected panel

In this example, notice that it is the value determined by the rule that changed, not the input values. Research
indicates that the designer changed the rule for volume from >30 to >=30 thereby triggering the different
container requirement.

Fewer values output than expected
In the following example, Cargo[2] has no input attribute values in the Input panel. The rule test failed because
of inadequate input data, and the two missing attributes (and their expected values) are colored green.

Progress Corticon.js: Rule Modeling: Version 1.4184

Chapter 10: Logical analysis and optimization

More values output than expected
In the following example, Cargo[3] was added in the Intput, and shown correctly in the Output panel. But,
because it was not anticipated by the Expected panel, it is colored blue as one difference at the entity level.

185Progress Corticon.js: Rule Modeling: Version 1.4

Test rule scenarios in the Ruletest Expected panel

All Expected panel problems
In this example, there are three differences. The designer changed the trigger point for volume so Cargo[1]
chose a container that is different from what was previously expected. Cargo[3] is on the input and likewise
in the output, but Cargo[2] was expected and is missing from the output.

Techniques that refine rule testing
The following settings help you tune the results of comparing the output data and expected data so that irrelevant
errors are minimized:

Set selected attributes to ignore validation
When different values are output than what was expected, it could mean that the Expected panel data created
from Output data were reflecting dynamic values such as dates and time. If your Rulesheets use now, then
the Expected values will evaluate as errors very soon. To handle that situation, you can choose to ignore
validation for selected values in the Expected panel.

Consider the following example:

Progress Corticon.js: Rule Modeling: Version 1.4186

Chapter 10: Logical analysis and optimization

The selected attribute in this test has no input value and no expected value:

When the test runs, it is valid.

But, when the input gets a value and the output still has no value (or a different value), the test fails.

Clicking the expected attribute, you can choose Ignore Validation.

187Progress Corticon.js: Rule Modeling: Version 1.4

Test rule scenarios in the Ruletest Expected panel

An attribute that will be ignored is greyed out.

Running the same test, the test passes.

Progress Corticon.js: Rule Modeling: Version 1.4188

Chapter 10: Logical analysis and optimization

The setting can revert by selecting the attribute and then choosing Enable Validation.

Use key attributes to improve difference detection in Ruletests
The execution of Ruletests can, in some cases, erroneously detect differences between the Output and Expected
results. This typically occurs in Rulesheets that add new entities to collections. The unsorted nature of collections
makes it impossible to match the collections in the Output and Expected results with complete accuracy. An
optional feature is available when you encounter problems with test failures due to the randomness of entity
ordering. To avoid this problem, you can specify certain attributes as key attributes that will assist the comparison
algorithm, that the validation linking entities in both panels are chosen based on the key values.

To set a key attribute, right-click the attribute in the Expected panel, and then choose Key Attribute, as shown:

189Progress Corticon.js: Rule Modeling: Version 1.4

Test rule scenarios in the Ruletest Expected panel

Key attributes are shown in italic in the current entity as well as all other corresponding entities in the Expected
panel, as shown:

Progress Corticon.js: Rule Modeling: Version 1.4190

Chapter 10: Logical analysis and optimization

To remove a key attribute, right-click on the attribute again in the Expected panel, and then choose Key
Attribute to clear the setting.

Setting multiple key attributes attempts to match the full set.

Numerical equivalence
When comparing expected results with output results during the validation stage of testing, two values that
have a different number of trailing zeros to the right of the decimal place will validate correctly. However, you
should avoid introducing rounding errors and inconsistent use of big decimal data types because they can
produce unintended differences during comparisons.

How to optimize Rulesheets
The tools that evaluate completeness and that perform compression can be reviewed to ensure that the decision
service will execute them efficiently .

The compress tool
Corticon.js Studio helps improve performance by removing redundancies within Rulesheets. There are two

types of redundancies the Compress Tool detects and removes:

191Progress Corticon.js: Rule Modeling: Version 1.4

How to optimize Rulesheets

1. Rule or subrule duplication. The Compress Tool searches a Rulesheet for duplicate columns (including
subrules that may not be visible unless the rule columns are expanded), and deletes extra copies. Picking
up where we left off in New Rule Added by Completeness Check, let's add another rule (column #4), as
shown in the following figure:

Figure 156: New Rule (#4) added

While these four rules use only two Conditions and take just two Actions (an assignment to riskRating

and a posted message), they already contain a redundancy problem. Using the Expand Tool , this
redundancy is visible in the following figure:

Figure 157: Redundancy problem exposed

Progress Corticon.js: Rule Modeling: Version 1.4192

Chapter 10: Logical analysis and optimization

Clicking the Compress Tool has the effect shown in the following figure:

Figure 158: Rulesheet after compression

Looking at the compressed Rulesheet in this figure, notice that column #4 disappeared. More accurately,
the Compress Tool determined that column 4 was a duplicate of one of the subrules in column 1 (1.2) and
removed it.

Compression does not, however, alter the text of the rule statement; that task is left to the rule writer.

It is important to note that the compression does not alter the Rulesheet's logic; it simply affects the way
the rules appear in the Rulesheet: the number of columns, Values sets in the columns, and
such. Compression also streamlines rule execution by ensuring that no rules are processed more than
necessary.

2. Combining Values sets to simplify and shorten Rulesheets. In the Shipping charge example, the
Compress Tool combined Rulesheet columns wherever possible by creating Values sets in Condition
cells. For example, rule 6 in the figure Compressed Shipping Charge Rulesheetis the combination of rule
6 and 8 from Rulesheet with Renumbered Rules.

Figure 159: Compressed shipping charge Rulesheet

Value sets in Condition cells are equivalent to the logical operator OR. Rule 6 therefore reads:

193Progress Corticon.js: Rule Modeling: Version 1.4

How to optimize Rulesheets

In deployment, the decision service will execute this new rule 6 faster than the previous rule 6 and 8 together.

How to produce characteristic Rulesheet patterns
Because Corticon Studio is a visual environment, patterns often appear in the Rulesheet that provide insight
into the decision logic. After rule writers recognize and understand what these patterns mean, they can often
accelerate rule modeling in the Rulesheet. The Compression Tool is designed to reproduce Rulesheet patterns
in some common cases.

For example, take the following rule statement:

Applying modeling techniques, you might implement rule 1 as:

Figure 160: Implementing the 747 rule

Progress Corticon.js: Rule Modeling: Version 1.4194

Chapter 10: Logical analysis and optimization

Now let's have the Completeness Checker populate any missing columns:

Figure 161: Remaining columns produced by the Completeness Checker

Click Expand to fill out the Rulesheet so you can examine the 17 cross-product subrules:

Figure 162: Underlying subrules produced by the Completeness Checker

The 17 new columns (counting both rules and subrules) include an optimization that combined <> 'N312UA'
and null into not 'N312UA'. So, the number of combinations is 3*3*2 = 18. Subtracting the rule in column
1, 17 new columns were added.

Now, click Compress .

195Progress Corticon.js: Rule Modeling: Version 1.4

How to optimize Rulesheets

There are now just 4 rules. Fill in the Actions for the new columns, DC-10, as shown:

Figure 163: Missing Rules with Actions assigned

Because the added rules are non-overlapping, you can be sure they won't introduce any ambiguities into the
Rulesheet.

To be sure, click the Conflict Checker .

Figure 164: Proof that no new conflicts were introduced by the Completeness Check

This pattern tells you that the only case where the aircraft type is a 747 is when max cargo volume is greater
than 300 AND max cargo weight is greater than 200,000 AND tail number is N123UA. This rule is expressed
in column 1. In all other cases, specifically where max cargo volume is 300 or less OR max cargo weight is
200,000 or less OR tail number is something other than N123UA will the aircraft type be a DC-10.

The characteristic diagonal line of Condition values in columns 2-4, surrounded by dashes indicates a classic
OR relationship between the 3 Conditions in these columns. The Compression algorithm was designed to
produce this characteristic pattern whenever the underlying rule logic is present. It helps the rule writer to better
see how the rules relate to each other.

Progress Corticon.js: Rule Modeling: Version 1.4196

Chapter 10: Logical analysis and optimization

Compression creates subrule redundancy
Compressing the example in the preceding topic into a recognizable pattern, however, has an interesting side

effect: it introduced more subrules than were initially present. To see this, click Expand to compress the
Rulesheet as shown:

Figure 165: Expanding Rules following compression

You may be surprised to see a total of 54 subrules (columns) displayed (in the preceding figure) instead of the
26 prior to compression. Look closely at the 54 columns, and you will see several instances of subrule
redundancy. Of the 18 sub-rules within the original columns 2, 3 and 4, almost half are redundant (for example,
subrules 2.1, 3.1 and 4.1, shown in the preceding figure, are identical). What happened?

Effect of compression on Decision Service performance
Why does Corticon.js Studio have what amounts to two different kinds of compression: one performed by the
Completeness Checker and another performed by the Compression Tool? It is because each has a different
role during the rule modeling process. The type of compression performed during a Completeness Check is
designed to reduce a (potentially) very large set of missing rules into the smallest possible set of non-overlapping
columns. This allows the rule writer to assign Actions to the missing rules without worrying about accidentally
introducing ambiguities.

The compression performed by the Compression Tool is designed to reduce the number of rules into the
smallest set of general rules (columns with dashes), even if the total number of subrules is larger than that
produced by the Completeness Checker. This is important for three reasons:

1. The Compression Tool preserves or reproduces key patterns familiar and meaningful to the rule modeler.

2. The Compression Tool, by reducing a Rulesheet to the smallest number of columns, optimizes the Corticon
rules engine. Smaller Rulesheets (lower column count) result in faster performance.

3. The Compression Tool, by reducing columns to their most general state (the most dashes), improves
performance by allowing it to ignore all Conditions with dash values. This means that when the rule in column
3 of Missing Rules with Actions Assigned is evaluated by the rules engine, only the max cargo weight
Condition is considered. The other two Conditions are ignored because they contain dash values. When
rule 3 of Missing Rules with Actions Assigned is evaluated after the Completeness Check is applied but
before the Compression Tool, however, both max cargo weight and volume Conditions are considered,
which takes slightly more time. So, even though both Rulesheets have the same number of columns (four),
the Rulesheet with more generalized rules (more dashes - Missing Rules with Actions Assigned) executes
faster because the engine is doing less work.

197Progress Corticon.js: Rule Modeling: Version 1.4

How to optimize Rulesheets

Precise location of problem markers in editors
Problems experienced in Corticon.js editors are easily located when you click each annotated error line in the
Problems view to open the corresponding file in its editor, and then bring the specific location into view and
give it focus.

In the following illustration, the problem location is Rulesheet cell [b3598] of the 2DIM Rulesheet.
Double-clicking the problem line opened the file to that precise location, as shown:

This functionality applies to Vocabularies, Rulesheets, Ruleflows, and Ruletests.

Note: When migrating projects from earlier releases, the marker metadata has not been captured. When you
clear the existing problem list, and then perform a full build of the project, the location metadata that enables
this feature will be established.

Progress Corticon.js: Rule Modeling: Version 1.4198

Chapter 10: Logical analysis and optimization

11
Advanced Ruleflow techniques and tools

Ruleflows provide techniques for combining, branching, and graphing.

For details, see the following topics:

• How to use a Ruleflow in another Ruleflow

• Conditional branching in Ruleflows

• How to generate Ruleflow dependency graphs

How to use a Ruleflow in another Ruleflow
You can reduce the complexity and testing of large Ruleflows by breaking a Ruleflow into smaller Ruleflows,
and then constructing the larger Ruleflow from them. The resulting modularity simplifies unit testing and
collaboration.

You can change the name of a Ruleflow on the canvas context so that it provides meaning, and you can add
comments. None of these actions change the Ruleflow properties of the original Ruleflow.

With two Ruleflows, each can be updated and tested independently, and as long as you ensure that the
Vocabulary stays consistent -- separate teams can collaborate on developing their rules. That makes it easy
to reuse either of these Ruleflows. For example, if pricing varies in different markets, then you can create a
new Ruleflow that brings in the same risk assessment rules to provide the data to process against a modified
policy pricing Ruleflow for the other market.

199Progress Corticon.js: Rule Modeling: Version 1.4

Note: Deploying Ruleflows within a Ruleflow - When this Ruleflow is deployed, the generated Decision
Service will include the content of both Ruleflows. However, when either of the included Ruleflows changes,
Ruleflows that include one of them are not automatically updated -- each must be redeployed to include the
changes.

For more information, see the "Ruleflows" section of the Quick Reference Guide.

Conditional branching in Ruleflows
In a Ruleflow, you often have steps that should only process an entity with a specific attribute value. You can
accomplish this by using preconditions on a Rulesheet, but the resulting logic, or flow, is difficult to perceive
when looking at the Ruleflow. The following Ruleflow shows a progression of processing from the upper left to
the lower right. But, the rules to decide whether a loan is approved or declined are one-or-the-other, and the
Rulesheets for the US states do not represent a progression because the applicant's state is going to trigger
only one of these Rulesheets to fire its rules:

Looking at this Ruleflow, the real flow is somewhat hidden. If the Rulesheets for Texas, California, Vermont,
and Idaho each had a precondition such that only matching states were processed, then they represent a set
of mutually exclusive options, not the linear flow depicted in the Ruleflow. You will see how to create a branch
in a Ruleflow like this:

Progress Corticon.js: Rule Modeling: Version 1.4200

Chapter 11: Advanced Ruleflow techniques and tools

And then bring that Ruleflow into another Ruleflow where you will also create a branch for the Declined and
Approved Rulesheets that also might have needed to use preconditions. The completed Ruleflow looks like
this:

A branch node can be Rulesheet, Ruleflow, Subflow, or another Branch container.

Note: Multiple branches can be assigned to the same target activity. These values are shown as a set in the
Ruleflow canvas.

Refresher on enumerations and Booleans

201Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

Branching can occur on either enumerated or Boolean attribute types. Only these are allowed because they
have a set of known possible values. These possible values can be used to identify a branch. Using branches
in a Ruleflow lets you clearly identify the set of options, or branches, for processing an entity based on an
attribute value. In the example, using branching for the set of state options and whether the loan is approved
or declined makes the flow more apparent. It will also be easier to create and maintain.

This topic covers the general concepts of branching. First, let's review enumerations and Booleans because
they are essential to branching definitions.

When defining elements of a Vocabulary, each attribute is specified as one of five data types in the Corticon.js
Vocabulary.

These data types can be extended by Enumerations. In this illustration, States are extending their String type
to be qualified as a list of labels and corresponding values that delimit the expected values yet offer the listed
items in drop-down lists when you are defining Ruletests. Notice that the Boolean data type is not listed as it
is implicitly an enumeration.

The Vocabulary definition then chooses the States data type, a subset of String, as its data type.

Progress Corticon.js: Rule Modeling: Version 1.4202

Chapter 11: Advanced Ruleflow techniques and tools

Every attribute that is an enumerated data type or a Boolean is available for branching. For more information,
see Enumerations on page 31.

Example of branching based on a Boolean
In the example, loan status does not pass through being declined on its way to being approved; it is one or the
other. This true/false decision point in a Ruleflow that contains several Rulesheets provides an easy introduction
to branching.

To create a branch on a Ruleflow canvas for a Boolean attribute:

1. On the Ruleflow canvas where you want to create a branch, click Branch on the Palette, and then click on
the canvas where you want to place the branch. A Branch container is created with your cursor in the name
label area.

2. Enter a name such as Loan Status, and press Enter. You can change the name later.

3. Drag the Rulesheets Approved.erf and Declined.erf from the Project Explorer to the branch
compartment.

4. On the Branch's Properties tab for Branch Activity, click . The Select Branch Attributes for
the Ruleflow's Vocabulary identifies three attributes that are candidates for branching (state, agency, and
approved), and the associations that apply to these attributes. For this branch, approved is the Boolean
attribute appropriate for loan status. More specific, the attribute preferred is
Applicant.mortgage.approved. Click on that attribute as shown:

203Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

5. Click OK.

6. You can define the Boolean branches in a few ways:

• Click the Value drop-down list, as shown:

Notice that there four choices for a Boolean. The null value is offered because the attribute is not set as
Mandatory so null is allowable. The other value is demonstrated below.

• Choose true on the first line, and then choose other on the second line.

• Click Check for completeness, as shown, to populate the Value list from the attribute:

Progress Corticon.js: Rule Modeling: Version 1.4204

Chapter 11: Advanced Ruleflow techniques and tools

Notice that it does not add other to the list. If you set true and other as shown above, clicking Check
for completeness would have nothing to add because other implies completeness. You can clear
green highlights by clicking the Clear analysis results button.

The values listed are in red until we each one is bound to a node. You can delete any or all but a minimal
number of these lines if you do not have nodes that will handle specific cases. For this example, keep only
true and false. Then, click Cleanup to remove lines that no assigned node.

7. In the Branch Activity section, the Node column lets you click a Value line and then use the drop-down
list to choose the appropriate target node for the value. When the request in process matches this value, it
will be passed to this branch in the branch container:

When both true and false have nodes specified, the required branches for this ruleflow are defined.

8. Connect the incoming and outgoing connections to the branch to complete the flow on the canvas.

205Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

Multiple values can direct to the same target node, as shown in these colorized examples, where all the 'not
true' possibilities are assigned to the Declined node:

Progress Corticon.js: Rule Modeling: Version 1.4206

Chapter 11: Advanced Ruleflow techniques and tools

That completes the creation of this Boolean-based branch.

207Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

Example of branching based on an enumeration
In the example, four US states each have specific rules defined. Processing policy might require graceful
rejection of requests that do not specify one of these four states. And, over time, the included states might
expand or contract. This branch for State Specific Rules will be created as a separate Ruleflow, State Rules,
so that it can be reused in other Ruleflows.

To create a branch on a Ruleflow canvas for an attribute that is an enumerated list:

1. On the Ruleflow canvas, click Branch on the Palette, and then click on the canvas where you want to place
the branch. A Branch compartment is created with your cursor in the name label area.

2. Enter a name such as State Specific Rules, and press Enter.

3. On the Branch's Properties tab for Branch Activity, click . The Select Branch Attributes for
the Ruleflow's Vocabulary identifies three attributes that are candidates for branching (state, agency, and
approved), and the associations that apply to these attributes.

4. Choose Applicant.state. The list of all US state abbreviations that is used by this attribute defines the
enumeration in the Vocabulary, as shown:

Note: See Enumerations on page 31 for information about entering or pasting enumeration labels and
values as well importing them from a connected database.

5. Drag theRulesheetsCalifornia.ers,Idaho.ers,Texas.ers,Vermont.ers, andOther States.ers
into the branch compartment on the canvas. You can use Ctrl+click to select multiples and then drag them
as a group. Each Rulesheet is marked with a error flag at this point, as shown:

Progress Corticon.js: Rule Modeling: Version 1.4208

Chapter 11: Advanced Ruleflow techniques and tools

6. On the canvas, click the branch to open its Properties tab. You can define the enumeration branches in a
few ways:

• Click the Value drop-down list. On separate value lines, choose each of the defined states and then
other.

• Click Check for completeness, as shown, to populate the Value list from the attribute:

Notice that it does not add other to the list. If you set true and other as shown above, clicking Check
for completeness would have nothing to add because other implies completeness. You can clear
green highlights by clicking the Clear analysis results button.

The values listed are in red until each one is bound to a node.

209Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

7. Click a state value, then use the drop-down list to select the appropriate node. In the following image, notice
that the California node was assigned to the CA value, so that value turned black. The node on the canvas
cleared the error, and the branching value is indicated in parentheses.

Progress Corticon.js: Rule Modeling: Version 1.4210

Chapter 11: Advanced Ruleflow techniques and tools

Note: An additional node was added to the canvas, but because it is connected to a node, it is not offered
in the drop-down list as a branch.

8. After matching the states with appropriate nodes, the Other States Rulesheet is unassigned. To handle
this, a special purpose value is added. At the bottom of the value list, click the down arrow and choose
other.

Assign the Other States Rulesheet to that value.

9. After all the nodes are assigned to values, click Cleanup to clear all the unassigned values, as shown:

211Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

The unassigned values that were removed will all be handled by the other value's node. If you click Check
for Completeness now, you get that the branch is complete.

That completes the creation of this enumeration-based branch.

Progress Corticon.js: Rule Modeling: Version 1.4212

Chapter 11: Advanced Ruleflow techniques and tools

Note: Other features of the user interface for defining branch activity are:

• Clicking a trashcan button on the right side of a branch line deletes that line.

• Clicking the Clear button removes all lines. The branch and components on the canvas are not removed.

Logical analysis of a branch container
A Ruleflow branch container is subject to two significant types of logical errors: completeness and conflicts.

Completeness in a branch
A branch is complete when all of its possible values are accounted for in branch nodes. When first defining
branch activity, instead of selecting each possible value on each line, you can click Check branch for
completeness, as shown:

This adds all missing values as branch targets.

When branching by a Boolean attribute, three values are added, as shown:

213Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

When branching by an enumerated Custom Data Type attribute, each label in the enumeration is added, as
illustrated:

If the completeness check adds additional branch values, these will be highlighted in green. Clicking Clear
analysis results removes color highlighting:

Assign nodes in the branch to appropriate listed values. When you are done, click Cleanup to remove any
branch values that do not have corresponding branch nodes. Unless you specify the keyword other as a
branch value and assign it a branch node, your branch would be incomplete; you have not accounted for some
of the possible branch values.

Conflicts in a branch
When branch nodes include logic that creates conflicts or ambiguities, those conflicts are difficult to identify.
You can evaluate whether there are logical conflicts in a branch by clicking Check branch for conflicts, as
shown:

Progress Corticon.js: Rule Modeling: Version 1.4214

Chapter 11: Advanced Ruleflow techniques and tools

Conflict or ambiguity in a Ruleflow branch container might be:

• Different branches modify a shared entity: You are informed of the attribute/association being modified.

• A branch accesses the branch entity through an association that is not being filtered by the branch:
For example, the branch is on Policy.type while some rules act on Customer.policy.type. That
creates a conflicting branch node, each of which is highlighted in red, as shown:

215Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

Note: For more about this type of conflict, see the topic, "How branches in a Ruleflow are processed".

Progress Corticon.js: Rule Modeling: Version 1.4216

Chapter 11: Advanced Ruleflow techniques and tools

Click the Clear analysis results button to remove the highlights.

How branches in a Ruleflow are processed
Branch activities are executed in the enumeration order as defined in the Vocabulary. Branch activities are not
processed concurrently, they are executed sequentially.

Branch selection
Data is assigned to each branch before any branch execution occurs, so if an attribute in the branch condition
changes value during a branch activity execution, it will not change the branch assignment. Further downstream,
the new value is presented for subsequent branch activity execution.

Consider the following example. When branching by Customer.smoker, the value of smoker determines
which branch is executed. Changing the value of smokerwithin a branch does not alter which branch processes
the customer.

Suppose you had the payload:

Customer 1 (smoker = "Yes")
Customer 2 (smoker = "No")

Changing the smoker for Customer 1 from "Yes" to "No" would not, within the current branch condition, cause
it to be passed to the "No" smoker branch. Subsequent branching by smoker would use its current value.

Branching by associated attributes
When associations are involved, the data passed into the branch activity is the full association traversal of the
branch condition. The entity (with possible associated parents) that satisfies the branch condition is passed
into the branch activity. Child associations are available during activity execution. Unrelated entities are part
of the branch payload.

Consider the following example of branching by Customer.policy.type. All the policies for an order of
some type will be passed into the matching branch.

Suppose you had the payload:

- Customer 1
- policy 1 (type="standard")
- policy 2 (type="preferred")

- Customer 2
- policy 3 (type="standard")
- policy 4 (type="preferred")

The branch for "standard" would be passed:

- Customer 1
- policy 1 (type="standard")

- Customer 2
- policy 3 (type="standard")

The branch for "preferred" would be passed:

- Customer 1
- policy 2 (type="preferred")

- Customer 2
- policy 4 (type="preferred")

217Progress Corticon.js: Rule Modeling: Version 1.4

Conditional branching in Ruleflows

Branch consistency
When a root entity is used for the branch and the branch activities use associations, care must be taken to
ensure consistent results in a Ruleflow branch. It is important to use the same association traversals in the
branch Rulesheets as used in the branch attribute. Thus, if the branch Rulesheets reference entities like
Customer.policy.type and the branch attribute is on entity policy.type, the branch attribute in the
branch container properties should be defined as Customer.policy.type, not Policy.type. If the branch
container is the root entity Policy.type, then the branch Rulesheets will still allow for references through
the association Customer.policy.type to Policy entities that did not survive the branch.

Consider the following example of branching on Policy.type.

Suppose the payload had Policy.type:

- Customer 1
- policy 1 (type="standard")
- policy 2 (type="preferred")

- Customer 2
- policy 3 (type="standard")
- policy 4 (type="preferred")

The branch for "standard" would be passed:

- Policy 1 (type="standard")
- Policy 3 (type="standard")

The branch for "preferred" would be passed:

- Policy 2 (type="preferred")
- Policy 4 (type="preferred")

However, in both branches, Customer 1 and Customer 2 (with associations) will also be available. So, if
rules in those branches reference Customer.policy, then the rules will execute on every Customer.policy,
not just the branched ones. Because the branch was on Policy, rules that reference Policy only execute
on the branched ones.

How to generate Ruleflow dependency graphs
When working on large Ruleflows, you often want to know the dependencies between the nodes in the Ruleflow.
This can help you determine how best to order the nodes or detect unanticipated dependencies. Dependencies
are identified by the attributes that are set or referenced in the nodes of a Ruleflow. You also often want to
know how one or more attributes are used in a Ruleflow. Ruleflow graphing lets you see the dependencies
and where attributes are used. This is useful for understanding a Ruleflow, debugging problems, and performing
impact analysis when changing a vocabulary.

Progress Corticon.js: Rule Modeling: Version 1.4218

Chapter 11: Advanced Ruleflow techniques and tools

With the Ruleflow you want to graph open in its Studio editor, select theRuleflowmenu commandDependency
Graph, as shown:

The Generate Dependency Graph dialog box opens:

Choose the type of graph you want and the output folder. You can focus the analysis on just nodes that you
selected before opening the dialog, or all nodes on the Ruleflow canvas.

Note: When no objects on the Ruleflow canvas are preselected, the option to graph only selected nodes has
no effect.

Attribute Dependency Graph

An attribute dependency graph shows the attributes that establish dependencies: that is, when a Rulesheet
uses an attribute set by another Rulesheet, the former has a dependency on the latter.

219Progress Corticon.js: Rule Modeling: Version 1.4

How to generate Ruleflow dependency graphs

When you just generate a graph right away, all the attributes are included, as in this graph of the advanced
tutorial's Ruleflow:

Progress Corticon.js: Rule Modeling: Version 1.4220

Chapter 11: Advanced Ruleflow techniques and tools

For large projects, graphs with all the attributes and dependencies can be difficult to work with. You can specify
that only selected attributes are to be analyzed. Click Attributes to open the Attribute Selector dialog box,
as shown:

In this illustration, five attributes were selected. Clicking OK returns to the graph options. Clicking Finish
generates the graph.

221Progress Corticon.js: Rule Modeling: Version 1.4

How to generate Ruleflow dependency graphs

The graph opens in your default browser, as shown:

The graph image and its supporting files are saved in the output folder.

Note: When you next generate an attribute graph from the same Ruleflow, it overwrites the existing file unless
you relocate generated files or specify unique output folders.

Logical Dependency Graph

Progress Corticon.js: Rule Modeling: Version 1.4222

Chapter 11: Advanced Ruleflow techniques and tools

A logical dependency graph shows the dependency between the Rulesheets in a Ruleflow. Change the graph
type to Logical Dependency Graph, as shown:

You can set the output folder to your preference and if Ruleflow nodes were selected before opening the dialog
box, the analysis is limited to those nodes. The option to specify attributes is not relevant and not available.

Clicking Finish generates the graph. The following figure is the logical dependency graph for Rulesheets in
the advanced tutorial's Ruleflow:

The graph image and its supporting files are saved in the output folder.

Note: When you again generate a dependency graph from the same Ruleflow, it overwrites the existing file
unless you relocate generated files or specify unique output folders.

223Progress Corticon.js: Rule Modeling: Version 1.4

How to generate Ruleflow dependency graphs

Progress Corticon.js: Rule Modeling: Version 1.4224

Chapter 11: Advanced Ruleflow techniques and tools

12
TroubleshootingCorticon.js Studio problems

When developing rules in Corticon.js Studio or deploying rules to production, you need strategies for preventing
and resolving problems where rules are not producing the expected results. Considering these early in your
project will help you establish best practices and prepare you for when a problem occurs. Corticon provides
capabilities to help.

This section provides both best practice guidance and specific techniques to help you avoid and troubleshoot
problems.

Break the project down into discrete, modular components
Corticon lets you create complex Ruleflows from smaller building blocks. When starting the development of a
new rule project, create multiple simpler Rulesheets to satisfy a rules requirement rather than a single complex
Rulesheet. Simple Rulesheets will be easier to validate. Create multiple small Ruleflows and assemble them
into a larger Ruleflow using nested Ruleflows. Small Ruleflows are similarly easier to validate. Creating a
complex Ruleflow from already validated small building blocks will minimize the chance of problems.

Use the Rulesheet logical analysis functions
Corticon provides logical analysis functions to identify gaps and conflicts in your Rulesheets. Utilizing these
during rule development will minimize the chance of run time anomalies.

Create Ruletests for individual Rulesheets and Ruleflows
Creating Ruletests for each Rulesheet and Ruleflow will provide a means to unit test, or validate, each. Knowing
that each of these building blocks has been well tested will give you greater confidence you will not see problems
when assembling them into Ruleflows.

When modifying a rule project, run existing Ruletests
Running Ruletests will help ensure you do not introduce unintended changes in the behavior of Rulesheets or
Ruleflows.

225Progress Corticon.js: Rule Modeling: Version 1.4

Troubleshoot rules in Ruletests
Utilize debug logging if your rules are not working as expected.

To enable debug logging in Corticon.js Studio, edit your brms.properties file and add the line:

loglevel=DEBUG

The log will detail the execution of your rules when you run Ruletests so that you can better understand the
execution of your rules and identify anomalies causing incorrect results.

Restart Studio and the new log level will be used when you run Ruletests. The log information will be written
to the file CcStudio.log in your log folder of the [CORTICON_WORK] directory specified during install.

Debug Logging in Deployed Rules
To enable debug logging when deploying rules, you need to set the logLevel to 1 in the JSON configuration
object passed to your rules when executed from your JavaScript application.

const configuration = { logLevel: 1};
result = decisionService.execute(payload, configuration)

See the generated wrapper code produced by Corticon.js Studio when packaging rules for deployment to
various supported platforms.

Debugging JavaScript Platforms Differences
Corticon.js supports rule deployment to any platform with a compatible version of JavaScript. In principal,
Corticon rules should execute identically. When you encounter a problem where rules are executing differently,
you should perform the following tests:

1. Execute rules in the Corticon.js Studio tester: Corticon.js Studio runs rules for the tester by deploying
them behind the scenes to an instance of Node.js and executing them with the input payload specified in
the Testsheet. If your rules don’t execute correctly, there is either a problem in your rules or a bug in
Corticon.js.

2. Execute rules in a browser: Corticonj.js Studio provides the option to package rules for browser deployment.
As part of this Corticon.js produces a simple HTML file, browser.sample.html, for testing rules in a
browser that presents a simple form where you can provide an input JSON payload, pass it to your rules,
and then see the results.

If your rules execute correctly in the Corticon.js Studio tester but not correctly in the browser, there is a
difference in behavior of the underlying JavaScript engine and you should contact Corticon support.

3. Execute rules on your target platform: Your rules might execute correctly in both in the Corticon.js Studio
tester and in a browser, but behave differently on your target platform. There might be an incompatibility in
the JavaScript engine on your platform or some platform specific environment issues are interfering with
rule execution; for example, insufficient memory. You could contact Corticon support but if it is a problem
unique to your platform, their options for assistance will be limited.

Preparing to Call Support
When you need to contact Progress support for assistance with Corticon.js rule execution errors, be prepared
to provide any related debug logs, as well as your rule assets and a sample JSON payload demonstrating the
incorrect behavior.

For details, see the following topics:

• Where did the problem occur

• Use Corticon Studio to reproduce the behavior

Progress Corticon.js: Rule Modeling: Version 1.4226

Chapter 12: Troubleshooting Corticon.js Studio problems

• How to compare and report on Rulesheet differences

Where did the problem occur
Regardless of the environment the error or problem occurred in, always attempt to reproduce the behavior in
Studio. If the error occurred while you were building and testing rules in Corticon.js Studio, then you're already
in the right place. If the error occurred while the rules were running on a test or production deployment
environment, then obtain a copy of the Ruleflow (.erf file) and open it, its constituent Rulesheets (.ers files),
and its Vocabulary (.ecore file) in Studio.

Use Corticon Studio to reproduce the behavior
It is always helpful to build and save known-good Ruletests (.ert files) for the Corticon.js Rulesheets and
Ruleflows you intend to deploy. A Ruletest known to be good not only verifies that Rulesheet or Ruleflow is
producing the expected results for a given scenario, it also enables you to re-test and re-verify these results
at any time in future.

If you do not have a known-good Ruletest, build one now to verify that the Ruleflow, as it exists right now, is
producing the expected results. If you have access to the actual data set or scenario that produced the error
in the first place, it is especially helpful to use it here now. Run the Ruletest.

Analyze Ruletest results
This section assumes:

• Your Ruletest produced none of the errors listed above, or

• You or Corticon.js Technical Support identified workarounds that overcame these errors

Does the Rulesheet produce the expected test results? In other words, does the actual output match the
expected output?

• If so, and you were using the same scenario that caused the original problem, then the problem is not with
the rules or with Studio, but instead with the deployment.

The log captures errors and exceptions caused by certain rule and request errors.

• If not, the problem is with the rules themselves. Continue in this section.

Trace rule execution
A first step in analyzing results of executing Decision Services is to gain visibility to the rules that fired. With
rule tracing, you can see which rules and Rulesheets fired in processing a work document. There are two
techniques for tracing rule execution:

• Rule trace viewer—See all the actions that took place in a Ruletest with the click of a button. Drill into the
changes and make changes to the source files immediately.

• Rule message metadata—Set up rule messages to expose metadata about selected rules in Studio Tester
as well as with deployed Decision Services.

227Progress Corticon.js: Rule Modeling: Version 1.4

Where did the problem occur

Note: The following examples use the Advanced Tutorial's Ruleflow as the test subject. The Ruleflow has
three Rulesheets, each with conditional and non-conditional rules. Here is the output of the coupons.ert
Ruletest:

Progress Corticon.js: Rule Modeling: Version 1.4228

Chapter 12: Troubleshooting Corticon.js Studio problems

RULE TRACE VIEWER
You can reduce the time it takes diagnose rule execution problems by efficiently analyzing the Ruletest as it
executes to trace all the rules that fired. Run a Ruletest with the additional functionality of the Rule Trace Viewer
by just clicking a button:

The Ruletest runs the test as well a rule trace across all Rulesheets, and then presents the results in the Rule
Trace tab, as shown:

The results of a rule trace are dynamic:

• Highlight—Click anywhere on a line to highlight that element in the Testsheet output. Click on any item in
the Ruletest to see all the rules related to that element highlighted in the Rule Trace Viewer.

• Sort—Click on any column header in the Rule Trace tab to sort the tab content in ascending order. Click
again to sort into descending order.

• Locate—Double-click on any line to open the related Rulesheet positioned at the Action line and rule. The
Rulesheet is in editable form so you can make adjustments quickly, and run again to see the effects of
changes.

Note: The Rule Trace Viewer is based on JSON. If you have the Studio property
com.corticon.tester.ccserver.execute.format set to XML (instead of the default, JSON), the Rule
Trace Viewer function is inoperative.

229Progress Corticon.js: Rule Modeling: Version 1.4

Use Corticon Studio to reproduce the behavior

RULE MESSAGE METADATA
You can expose the Rulesheet and rule for items that you have specified in rule statements, including selected
values as illustrated:

Figure 166: Rule messages when metadata is enabled in Studio

To enable this function, add a line to the brms.properties as:

com.corticon.reactor.rulestatement.metadata=true

After deployment, testing execution of the Decision Service in the Studio and in the Web Console shows that
the metadata is exposed in the response, as shown for the Web Console:

While this can be useful in tracing deployment problems, the metadata will remain in production until you shut
off the feature and generate a new decision service.

Identify the breakpoint
To understand why your rules are producing incorrect results, it is important to know where in the Rulesheet
or Ruleflow the rules stop behaving as expected. At some point, the rules stop acting normally and start acting
abnormally; they break. After you identify where the rule breaks, the next step is to determine why it breaks.

An important tool to help identify the breakpoint is the Ruletest’s message box. By choosing values for Post
and Alias columns in the Rule Messages window, you can generate a trace or log of the rules that fire during
execution. The message box in a Ruletest displays those messages in the order that they were generated by
. In other words, the order of the messages in the box (top to bottom) corresponds to the order in which the
rules were fired by . While messages in the message box can also be sorted by severity or entity by clicking
the header of those columns, clicking the Message column header will always sequence according to the order
in which the rules fired. Inserting attribute values into rule statements can also provide good insight into rule
operation. But beware; a non-existent entity inserted into a rule statement prevents the rule from firing, becoming
the cause of another failure!

Progress Corticon.js: Rule Modeling: Version 1.4230

Chapter 12: Troubleshooting Corticon.js Studio problems

Disable/Enable

Disabling and then re-enabling individual Condition/Action rows, entire rule columns, Filter rows, and even
whole Rulesheets is a powerful way to isolate problems:

• Rulesheet elements - Right-click active Condition or Action row headers, column headers, or Filter row
headers to display a pop-up menu containing enable/disable options. Disabled rows and columns will be
shaded in gray on the Rulesheet.
Figure 167: Rulesheet with Rule Column 2 disabled.

• Ruleflow objects - Select objects on a Ruleflow canvas, and then click the Disable/Enable toolbar button

to toggle the disabled objects to dark gray. Redo the action to re-enable the object.
Figure 168: Ruleflow with coupons object disabled

Be sure to save these changes before running a Ruletest to ensure the changes take effect.

Disable and re-enable Rulesheet elements and Ruleflow objects until the strange or unexpected behavior
stops.

At the breakpoint
At the point at which abnormal behavior begins, what results is the breakpoint rule producing?

231Progress Corticon.js: Rule Modeling: Version 1.4

Use Corticon Studio to reproduce the behavior

• No results at all: The breakpoint rule should fire (given the data in the Ruletest) but does not. Proceed to
the No Results section.

• Incorrect results: The breakpoint rule does fire, but without the expected result. Proceed to the Incorrect
Results section.

No results
Failure of a rule to produce any results indicates that the rule is telling the rule engine to do something it cannot
do. (This assumes, of course, that the rule should fire under normal circumstances.) Frequently, this means
the engine tries to perform an operation on a term that does not exist or is not defined at the time of rule
execution. For example, trying to:

• Increment or decrement an attribute (using the += or -= operators, respectively) whose value does not exist
(in other words, has a null value).

• Post a message to an entity that does not exist, either because it was not part of the Ruletest to begin with,
or because it was deleted or re-associated by prior rules.

• Post a message with an embedded term from the Vocabulary whose value does not exist in the Ruletest,
or was deleted by prior rules.

• Create (using the .new operator) a collection child element where no parent exists, either because it was
not part of the Ruletest to begin with, or because it was deleted or re-associated by prior rules.

• Trying to forward-chain: using the results of one expression as the input to another within the same rule.
For example, if Action row B in a given rule derives a value that is required in Action row C, then the rule
may not fire. Both Actions must be executable independently in order for the rule to fire. If forward-chaining
is required in the decision logic, then the chaining steps should be expressed as separate rules.

Incorrect results in Studio
After the breakpoint rule is isolated, it is often helpful to copy the relevant logic into another Rulesheet for more
focused testing. See the Rule Language Guide to ensure you have expressed your rules correctly. Be sure to
review the usage restrictions for the operators in question.

If, after isolating and verifying the suspicious expression syntax, you are unable to fix the problem, please call
Progress Corticon.js Technical Support. As always, be prepared to send the product version used, and the set
of Corticon.js files (.ecore, .ers, .erf, and .ert) that will enable us to reproduce the problem.

Progress Corticon.js: Rule Modeling: Version 1.4232

Chapter 12: Troubleshooting Corticon.js Studio problems

How to compare and report on Rulesheet differences
When the execution of your rules is not producing the expected results and your not sure what changed,
Corticon.js Studio provides difference reports to help identify changes. Two versions of a Rulesheet can have
modest changes, yet it can be difficult to see all the differences during a visual inspection of the two Rulesheets.
Reporting on differences between Rulesheets provides help in debugging mistaken rule changes, and
inconsistent rule definitions. For example:

• Diagnosing a Ruletest failure - When a Ruletest fails because of changes in newer Rulesheets, you can
use Rulesheet difference reports to determine what changed, and then make changes to a Rulesheet to fix
bad rules, or to indicate changes to make to your Ruletest expected results.

• Resolvingmerge conflicts - When using a source control system such as git, you may encounter situations
where you want to commit a Rulesheet that someone else has changed, and discover a merge conflict.
Using Rulesheet difference analysis and reports, you can see what has changed and decide how to manually
merge the differences so you can commit your changes.

To compare two versions of a Rulesheet:

1. Right-click within a Rulesheet, and then choose the menu command Compare Rulesheets.

2. The Compare Rulesheets dialog box opens, as illustrated.

Rulesheet 1 is the Rulesheet currently in the editor.

3. Locate Rulesheet 2, a variation of Rulesheet 1, typically produced earlier in development or by another
developer.

4. Choose a preferred Report Type

5. Choose a preferred Report Style - The CSS stylesheet to use for the report. The basic stylesheets are
Corticon Blue and Corticon Green.

6. Choose a preferredOutput Folder - The location where the report will be stored on disk. The default location
is [CORTICON.js_WORK_DIR]/Reports. You can create a root location such as

233Progress Corticon.js: Rule Modeling: Version 1.4

How to compare and report on Rulesheet differences

C:\Corticon.js_Reports and then append subfolder names to sort out your projects, tasks, clients,
or versions.

7. Click Finish.

Customized difference reports
Advanced users might want to create alternative report types and styles:

• The type files are located at [CORTICON.js__WORK_DIR]\Reports\XSLT\ in folders according to the
asset types. You can copy the files to use as templates or change them to create report types that are then
offered in the Report Type dropdown menu for the asset type.

• The style files are located at [CORTICON.js_WORK_DIR]\Reports\CSS\. You can copy a stylesheet
file to use as a template to create custom report styles that are then offered in the Report Style dropdown
menu.

Reading a differences report
The Rulesheet difference report evaluates what's changed -- additions, deletions, and modifications as well as
items set as disabled. Presentation differences -- colors, fonts, natural language, and widths -- between the
Rulesheets are ignored.

A report lists all the data in both Rulesheets. Items that are the same in both Rulesheets are not highlighted
while those that are different are highlighted. The reason could be because the item changed. These need to
be researched to see if they pair with an item on the other Rulesheet that has a variation of the item in that
location.

Examples of how differences are reported
The following examples use the basic tutorial's Cargo Rulesheet as the Rulesheet to which variations are
compared:

EXAMPLE: Extra Condition

Progress Corticon.js: Rule Modeling: Version 1.4234

Chapter 12: Troubleshooting Corticon.js Studio problems

Conditions a and b are matched; however, Rulesheet 2 has an extra Condition, c.

EXAMPLE:One match that is in sequence and one that is out of sequence

There are a few differences illustrated in this example:

• In-sequence match: Condition c in Rulesheet 1 matches condition b in Rulesheet 2.

• Out-of-sequence match: Condition d in Rulesheet 1 is marked as different because Condition a in Rulesheet
2 is out of sequence, and is marked as different.

• Extra: Condition: c in Rulesheet 2 is extra, and therefore different.

• Empty Condition Rows: Rulesheet1 has two empty Condition rows a and b are highlighted.

235Progress Corticon.js: Rule Modeling: Version 1.4

How to compare and report on Rulesheet differences

EXAMPLE: A Condition has been disabled

When the state of the condition is different, the conditions are matched, but marked as different, as shown.
Condition c is disabled in Rulesheet 1 -- it is highlighted but matched.

Progress Corticon.js: Rule Modeling: Version 1.4236

Chapter 12: Troubleshooting Corticon.js Studio problems

A
Customize Corticon.js Studio

Corticon.js Studio provides a small set of properties to change its default behavior. These properties are defined
in the brms.properties file in the [CORTICON_WORK_DIR] folder.

About the brms.properties file
• It is good practice to back up the file before you start to make changes.

• If you delete the file, it does not get recreated at restart. However, as these are overrides to default properties,
there is no loss of features or functionality when the file is not present.

• In the absence of a brms.properties file, you can simply list property settings in a text file, and then
save it to its proper location as brms.properties.

• An update of the installation will preserve a modified brms.properties file, and will add the default file
if none is present.

How to modify properties in the brms.properties file
The file lists properties that users commonly want to change. Each group of properties provides descriptive
comments and the commented default name=value pair.

To specify a preferred value for a listed property, edit the file, remove the # from the beginning of a property's
line, and then add your preferred value after the equals sign. For example, to express a preference for decimal
values displayed and rounded to two places instead of the six places preset for this property, locate the line:

#com.corticon.javascript.studio.tester.decimalscale=6

and then change it to

com.corticon.javascript.studio.tester.decimalscale=2

237Progress Corticon.js: Rule Modeling: Version 1.4

Saving and applying the revised Studio property settings
When your changes are complete, you can choose to save the settings file with its default name and location,
but you could save a copy with a useful name, such as debuggingLogSettingsbrms.properties.

In Studio, you can save multiple settings files, and then use Studio's Preferences to specify the Override
Properties File for the brms.properties to use.

Note: The overrides and license specified are stored in the Studio Workspace. If you change the Workspace,
those overrides or defaults will take effect.

For the revised settings to take effect, save the edited file, and then restart the Corticon Studio.

Progress Corticon.js: Rule Modeling: Version 1.4238

Appendix A: Customize Corticon.js Studio

	Copyright
	Table of Contents
	Introduction to Corticon.js rule modeling
	Create the Vocabulary
	Generate a Vocabulary
	Use JSON to generate a vocabulary
	Use JSON Schema to generate a vocabulary

	Build a Vocabulary by hand
	Extend a Vocabulary
	Enumerations
	How enumeration labels and values behave
	Enumerations defined in the Vocabulary
	Use enumerated Custom Data Types in Rulesheets
	Use enumerated Custom Data Types in Ruletests

	Domains
	Domains in a Rulesheet
	Domains in a Ruletest

	Rule scope and context
	Rule scope
	Aliases
	Scope and perspectives in the vocabulary tree
	How to use roles

	Rule writing techniques
	How to work with rules and filters in natural language
	Filters versus conditions
	Qualify rules with ranges and lists
	Ranges and lists in conditions and filters
	Value ranges in condition and filter expressions
	Value lists in condition and filter expressions

	Ranges and value sets in condition cells
	Boolean condition versus values set
	Exclusionary syntax
	How to use other in condition cells

	Numeric value ranges in conditions
	String value ranges in condition cells
	Value sets in condition cells
	Variables as condition cell values
	DateTime value ranges in condition cells
	Inclusive and exclusive ranges
	Value ranges that overlap
	Alternatives to value ranges

	How to use standard Boolean constructions
	How to embed attributes in posted rule statements
	How to include apostrophes in strings
	How to initialize null attributes
	How to handle nulls in compare operations

	Collections
	How Corticon Studio handles collections
	How to visualize collections
	A basic collection operator
	How to filter collections
	How to use aliases to represent collections
	Advanced collection sorting syntax
	Using sorts to find the first or last in grandchild collections
	Singletons
	Special collection operators
	Universal quantifier
	Existential quantifier
	Another example using the existential quantifier

	Rules containing calculations and equations
	Operator precedence and order of evaluation
	Data type compatibility and casting
	Data type of an expression
	Defeating the parser
	Manipulating JS datatypes with casting operators

	Supported uses of calculation expressions
	Calculation as a comparison in a precondition
	Calculation as an assignment in a noncondition
	Calculation as a comparison in a condition
	Calculation as an assignment in an action

	Unsupported uses of calculation expressions

	Rule dependency in chaining
	Filters
	Full filters
	Limiting filters
	Filters that use OR
	What is a precondition
	Summary of filter and preconditions behaviors
	Performance implications of the precondition behavior

	How to use collection operators in a filter
	Location matters
	Multiple filters on collections

	How to recognize and model parameterized rules
	Parameterized rule where a specific attribute is a variable or parameter within a general business rule
	Parameterized rule where a specific business rule is a parameter within a generic business rule

	Logical analysis and optimization
	Test, validate, and optimize your rules
	Scenario testing
	Rulesheet analysis and optimization

	Traditional methods of analyzing logic
	Flowcharts
	Test suites

	Validate and test Rulesheets in Corticon Studio
	How to expand rules
	The conflict checker
	The completeness checker
	Automatically determine the complete values set
	Automatically compress the new columns
	Handle limitations of the completeness checker
	Let the expansion tool work for you with tabular rules
	Memory management

	Logical loop detection

	Test rule scenarios in the Ruletest Expected panel
	How to navigate in Ruletest Expected comparison results
	Review test results when using the Expected panel
	Output results match expected exactly
	Different values output than expected
	Fewer values output than expected
	More values output than expected
	All Expected panel problems

	Techniques that refine rule testing
	Set selected attributes to ignore validation
	Use key attributes to improve difference detection in Ruletests
	Numerical equivalence

	How to optimize Rulesheets
	The compress tool
	How to produce characteristic Rulesheet patterns
	Compression creates subrule redundancy
	Effect of compression on Decision Service performance

	Precise location of problem markers in editors

	Advanced Ruleflow techniques and tools
	How to use a Ruleflow in another Ruleflow
	Conditional branching in Ruleflows
	Example of branching based on a Boolean
	Example of branching based on an enumeration
	Logical analysis of a branch container
	How branches in a Ruleflow are processed

	How to generate Ruleflow dependency graphs

	Troubleshooting Corticon.js Studio problems
	Where did the problem occur
	Use Corticon Studio to reproduce the behavior
	Analyze Ruletest results
	Trace rule execution
	Identify the breakpoint
	At the breakpoint
	No results
	Incorrect results in Studio

	How to compare and report on Rulesheet differences

	Customize Corticon.js Studio

