
Corticon
Rule Modeling

Copyright

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress
®

software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo UI, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Apache and Kafka are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. Any other marks contained herein may be trademarks of their
respective owners.

Please refer to the NOTICE.txt or Release Notes – Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Last updated with new content: Corticon 6.3.1

Updated: 2022/09/23

3Progress Corticon: Rule Modeling: Version 6.3

Progress Corticon: Rule Modeling: Version 6.34

Copyright

Table of Contents

Introduction to Corticon rule modeling ...11

Build the Vocabulary..13
Generate a Vocabulary...15

Use JSON Schema to generate a vocabulary...15
Use JSON to generate a vocabulary..21

Build a Vocabulary by hand ...29
Step 1: Design the Vocabulary...30
Step 2: Identify the terms ..30
Step 3: Separate the generic terms from the specific ...30
Step 4: Assemble and relate the terms ...30
Step 5: Diagram the Vocabulary..31
Step 6: Model the Vocabulary in Corticon Studio...32

Populate a Vocabulary from a Datasource...34
Step 1: How Datasources are transformed into a Corticon Vocabulary.....................................34
Step 2: The Vocabulary generation process for RDBMS sources...35
Step 3: The Vocabulary generation process from REST sources..41
Step 4: Verify and update the generated Vocabulary...45

Extend a Vocabulary...46
Custom Data Types..46
Domains...63
Support for inheritance...65

TestYourself questions for Build the vocabulary...72

Rule scope and context...77
Rule scope..84
Aliases...87
Scope and perspectives in the vocabulary tree..88

How to use roles..90
Technical aside...97

TestYourself questions for Rule scope and context..98

Rule writing techniques...103
How to work with rules and filters in natural language..103
Filters versus conditions...107
Qualify rules with ranges and lists..108

Ranges and lists in conditions and filters...109

5Progress Corticon: Rule Modeling: Version 6.3

Contents

Ranges and value sets in condition cells...111
How to use standard Boolean constructions...124
How to embed attributes in posted rule statements..124
How to include apostrophes in strings..126
TestYourself questions for Rule writing techniques and logical equivalents.......................................126

Collections..129
How Corticon Studio handles collections..130
How to visualize collections..130
A basic collection operator..131
How to filter collections...132
How to use aliases to represent collections..132
Sorted aliases...140
Advanced collection sorting syntax...143
Statement blocks..144
Using sorts to find the first or last in grandchild collections..146
Singletons...147
Special collection operators..149

Universal quantifier..150
Existential quantifier...152
Another example using the existential quantifier..156

Aggregations that optimize EDC database access...162
TestYourself questions for Collections..163

Rules containing calculations and equations...167
Operator precedence and order of evaluation..168
Data type compatibility and casting..170

Data type of an expression..173
Defeating the parser...174
Manipulating data types with casting operators...175

Supported uses of calculation expressions...176
Calculation as a comparison in a precondition...177
Calculation as an assignment in a noncondition..178
Calculation as a comparison in a condition..178
Calculation as an assignment in an action...180

Unsupported uses of calculation expressions...180
TestYourself questions for Rules containing calculations and equations..181

Rule dependency in chaining and looping..185
Forward chaining..185
Rulesheet processing modes of looping...187

Types of loops..188
Looping controls in Corticon Studio..192

Progress Corticon: Rule Modeling: Version 6.36

Contents

How to identify loops..193
Looping examples...196

Determine the next working day when given a date ...196
Remove duplicated children in an association ..200

How to use conditions as a processing threshold...204
TestYourself questions for Rule dependency chaining and looping..206

Filters and preconditions ...209
What is a filter ..209

Full filters..211
Limiting filters...213
Database filters..218

What is a precondition ...221
Summary of filter and preconditions behaviors..224
Performance implications of the precondition behavior...224

How to use collection operators in a filter...226
Location matters...228
Multiple filters on collections..230

Filters that use OR..233
TestYourself questions for Filters and preconditions...233

How to recognize and model parameterized rules.................................237
Parameterized rule where a specific attribute is a variable or parameter within a general business

rule...237
Parameterized rule where a specific business rule is a parameter within a generic business rule....239
How to populate an AccountRestriction table from a sample user interface240
TestYourself questions for Recognizing and modeling parameterized rules.......................................241

How to write rules to access external data..243
A scope refresher..244
Quick steps for setting up the Cargo sample..244
Enable database access for rules using root-level entities...245

Test the Rulesheet with database access disabled ...246
Test the Rulesheet with database access enabled..247
Optimize aggregations that extend to database...252

Precondition and filters as query filters...253
Filter query qualification criteria...253
Operators supported in query filters...254
How to use multiple filters in filter queries..255

Insert new records in a middle table...256
Integrate EDC Datasource data into rule output...256
TestYourself questions for how to write rules to access external data..257

7Progress Corticon: Rule Modeling: Version 6.3

Contents

Logical analysis and optimization..259
Test, validate, and optimize your rules..259

Scenario testing...260
Rulesheet analysis and optimization..260

Traditional methods of analyzing logic..261
Flowcharts..262
Test suites..264

Validate and test Rulesheets in Corticon Studio...267
How to expand rules..267
The conflict checker...269
The completeness checker..273
Logical loop detection..279

Test rule scenarios in the Ruletest Expected panel..280
How to navigate in Ruletest Expected comparison results..280
Review test results when using the Expected panel..280
Techniques that refine rule testing...284

How to optimize Rulesheets...290
The compress tool..290
How to produce characteristic Rulesheet patterns...292
Compression creates subrule redundancy...295
Effect of compression on Corticon Server performance..295

Precise location of problem markers in editors...296
TestYourself questions for Logical analysis and optimization...296

Advanced Ruleflow techniques and tools...299
How to use a Ruleflow in another Ruleflow..299
Conditional branching in Ruleflows...301

Example of branching based on a Boolean...304
Example of branching based on an enumeration...309
Logical analysis of a branch container...313
How branches in a Ruleflow are processed...315

How to generate Ruleflow dependency graphs..317
Ruleflow versions and effective dates ..323
TestYourself questions for Ruleflow versions and effective dates..325

Troubleshooting Corticon Studio problems..327
Where did the problem occur..328
Use Corticon Studio to reproduce the behavior..328

Observe constraint violations or severe errors...328
Analyze Ruletest results...329
Trace rule execution...330
Identify the breakpoint..332

Progress Corticon: Rule Modeling: Version 6.38

Contents

At the breakpoint..333
Partial rule firing...334
How to initialize null attributes..335
How to handle nulls in compare operations...335

Studio license expiration...337
How to compare and report on Rulesheet differences..337
TestYourself questions for Troubleshooting rulesheets and ruleflows..341

Appendix A: Studio properties and settings...343

Appendix B: Answers to TestYourself questions...................................349
TestYourself answers for Building the vocabulary...350
TestYourself answers for Rule scope and context..351
TestYourself answers for Rule writing techniques and logical equivalents...353
TestYourself answers for Collections..354
TestYourself answers for Rules containing calculations and equations..355
TestYourself answers for Rule dependency and inferencing..356
TestYourself answers for Filters and preconditions...357
TestYourself answers for Recognizing and modeling parameterized rules...358
TestYourself answers for Writing rules to access external data..358
TestYourself answers for Logical analysis and optimization...359
TestYourself answers for Ruleflow versioning and effective dating..360
TestYourself answers for Troubleshooting rulesheets...360

9Progress Corticon: Rule Modeling: Version 6.3

Contents

Progress Corticon: Rule Modeling: Version 6.310

Contents

1
Introduction to Corticon rule modeling

This set of topics describes the core of Corticon. Here you construct the logic and patterns in vocabularies that
are assembled in row-and-column rule sheets where the diverse operators enable spreadsheet layouts of
readable rule patterns. The modeling topics are supported by guides to the modeling language and a quick
reference to the user interface's basic tooling functions.

11Progress Corticon: Rule Modeling: Version 6.3

Progress Corticon: Rule Modeling: Version 6.312

Chapter 1: Introduction to Corticon rule modeling

2
Build the Vocabulary

This section describes the concepts and purposes of a Corticon Vocabulary. You see how to build a Vocabulary
from general business concepts and relationships.

Depending on your point of view, a Vocabulary represents different things and serves different purposes. For
the rule modeler, the Vocabulary provides the basic elements of the rule language—the building blocks with
which business rules are implemented in Corticon. For a systems analyst or programmer, a vocabulary is an
abstracted version of a data model that contains the objects used in those business rules implemented in
Corticon.

A vocabulary serves the following purposes:

• Provides terms that represent business “things.” Throughout the documentation, these things are referred
to as entities, and the properties or characteristics of these things as attributes. Entities and their attributes
in underlying data sources (such as tables in a relational database or fields in a user interface) can be
represented in the Vocabulary.

• Provides terms that are used to hold temporary or transient values within Corticon (such as the outcome of
intermediate derivations). These entities and attributes usually have a business meaning or context, but do
not need to be saved (which are referred to as persistent) in a database, or communicated to other
applications external to Corticon. An example of this might be the following two simple computational rules:

In these two rules, itemSubTotal is the intermediate or transient term. Youmay never use itemSubTotal
by itself; instead, you may only create it for purposes of subsequent derivations, as in the calculation of
orderTotal in rule #2. Because a transient attribute may be the result of a very complicated rule, it may
be convenient to create a Vocabulary term for it and use it whenever rewriting the complex rule would be
awkward or unclear. Also see the note on Transients.

13Progress Corticon: Rule Modeling: Version 6.3

• Provides a federated data model that consolidates entities and attributes from various enterprise data
resources. This is important because a company's data may be stored in many different databases in many
different physical locations. Progress believes that rule modelers should not be concerned with where data
is, only how it is used in the context of building and evaluating business rules. The decision management
system should ensure that proper links are maintained between the Vocabulary and the underlying data.
This concept is called abstraction—the complexities of an enterprise's data storage and retrieval systems
were hidden so that only the aspects relevant to rule writing are presented to the rule modeler.

• Provides a built-in library of literal terms and operators that can be applied to entities or attributes in the
Vocabulary. This part of the Vocabulary, the lower half of the Vocabularywindow shown in Figure 1: Operator
Vocabulary on page 14, is called the Operator Vocabulary because it provides many of the verbs (the
operators) needed for business rules. Many standard operators such as the mathematical functions (+, -,
*, /) and comparator functions (<, >, =) as well as more specialized functions are contained within this portion
of the Vocabulary. See the Rule Language Guide for descriptions and examples of all operators available,
as well as detailed instructions for extending the library.

Figure 1: Operator Vocabulary

• When XML messaging is used to carry data to and from the rules for evaluation, data must be organized
in a predefined structure that can be understood and processed by the rules. A schema supplies the contract
for sending data to and from a Corticon Decision Service. An XML schema, generated directly from the
Vocabulary, accomplishes this purpose. This schema is called a Vocabulary-Level service contract and
details can be found in the Deployment Guide.

Scope

An important point about a Vocabulary: there does not need to be a one-to-one correlation between terms in
the Vocabulary and terms in the enterprise data model. In other words, there may be terms in the data model
that are not included in or referenced by rules. Such terms do not need to be included in the Vocabulary.
Conversely, the Vocabulary may include terms (such as transient attributes) that are used only in rules. These
terms do not need to be present in the data model. Two guiding principles:

Progress Corticon: Rule Modeling: Version 6.314

Chapter 2: Build the Vocabulary

• If the rule modeler wants to use a particular term in a business rule, then that term must be part of the
Vocabulary. Terms can exist only within the Vocabulary. These are the transient attributes that were
introduced previously.

• If a rule produces a value that must be retained, persisted, or otherwise saved in a database (or other means
external to the rules), then that Vocabulary term must also be present in the enterprise data model. There
are many methods for linking or mapping these Vocabulary terms with corresponding terms in the data
model, but a discussion of these methods is technical and is not included in this manual.

There are two basic starting points for building a Vocabulary: construct one, or generate one from a REST or
database source.

For details, see the following topics:

• Generate a Vocabulary

• Build a Vocabulary by hand

• Populate a Vocabulary from a Datasource

• Extend a Vocabulary

• TestYourself questions for Build the vocabulary

Generate a Vocabulary
Overview
Corticon makes it easy to start your rule projects by letting you generate the Vocabulary directly from the JSON
that your rules will process. This technique accelerates development, so that you can quickly get started writing
rules, and ensures your vocabulary matches the JSON payloads that will be passed as input to your rules when
deployed.

To generate a vocabulary, select a JSON file that is representative of the range of objects and fields (entities
and attributes) that could be passed to your rules when deployed.

You need not be concerned if your JSON data model changes. Corticon lets you easily update your vocabulary
by reimporting JSON, or by editing your Vocabulary by hand.

Note: JSON or JSON schema as a source?—JSON schema is more common when working with
industry-standard data models, and has benefits because it more fully describes a data model, but JSON
schema is not widely used. In most projects, all you will have is JSON, in which case, try to have JSON that
represents all the entities and attributes that might occur in rule requests and output.

Use JSON Schema to generate a vocabulary

Create a Vocabulary from a JSON schema
Suppose your company belongs to an industry consortium that has defined a standard format for JSON
messages for communication between suppliers and customers. The consortium may opt to define a JSON
schema for the JSON. JSON schema providers a greater ability to define valid content for JSON payloads.

15Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

The use of JSON schema is in the early days of being adopted. JSON Schema is primarily used when different
organizations need a formal definition of an agreed upon data model. Using JSON schema has advantages
for vocabulary generation such as options for defining enumerated values and for transcribing comments into
the Vocabulary. Be careful: Some schemas are very large and have more than you need. You may want to cut
the schema down to just what you need before generating the vocabulary.

Note: Corticon uses JSON Schema Draft-07 to infer the patterns in the given source—whether a JSON payload
file or parsing a JSON schema file—to make its best effort to set up the entire Vocabulary complete with
associations. You might be using a different draft. As the specification gets more refined, improvements are
added to the schema.

• Sample JSON Schema on page 17

• To populate a Vocabulary from a JSON schema on page 18

• How Corticon generates a vocabulary from JSON on page 18

• How descriptions in your schema are handled on page 19

• How references in your schema are handled on page 20

• How enumerations in your schema are handled on page 19

• How to extend type definitions in your schema on page 20

Progress Corticon: Rule Modeling: Version 6.316

Chapter 2: Build the Vocabulary

https://json-schema.org/draft/2019-09/release-notes.html

Sample JSON Schema
The following code is an example of a JSON schema:

{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {

"BillingAddress": {
"description": "Address to where a Customer's invoice must go",
"type": "object",
"properties": {

"Zip": {
"type": "string"

},
"State": {

"type": "string"
},
"Address2": {

"type": "string"
},
"Address1": {

"type": "string"
},
"City": {

"type": "string"
}

}
},
"CompanyName": {

"type": "string"
},
"Phone": {

"type": "string"
},
"ShippingAddress": {

"description": "Address to where a Customer's product must go",
"type": "object",
"properties": {

"Zip": {
"type": "string"

},
"State": {

"type": "string"
},
"Address2": {

"type": "string"
},
"Address1": {

"type": "string"
},
"City": {

"type": "string"
}

}
},
"Notes": {

"type": "string"
},
"Contact": {

"type": "string"
}

}
}

17Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

To populate a Vocabulary from a JSON schema
1. Copy the preceding JSON and then save in a temporary file.

2. In Corticon Studio, create a new Rule Project named CustomerSchema.

3. In the project, create a Vocabulary named CustomerSchema.

4. Click in the Vocabulary edit window, and then select Vocabulary > Populate Vocabulary from JSON.

5. Select the sample file CustomerSchema.json, and then click Open.

The Vocabulary that the JSON schema generates is the following:

How Corticon generates a vocabulary from JSON
To generate a vocabulary from a JSON schema document, Corticon examines the contents of the document
to identify the entities in the document, their attributes, and their associations. Where data types are not defined
with JSON, Corticon infers the data type of attributes based on the values present.

The process of inferring the schema is essentially as follows:

• Entities: Entity names follow Corticon naming conventions and uppercase the first character of the entity
name.

• The entity Root entity always generated.

• If an existing entity has already been mapped to a JSON object, use that entity.

• If no entity is found, then create a new entity, and set the entity name to the object name.

• Attributes: For each attribute in an Entity:

• If an entity has no attributes, assign it one string attribute with the name item

• Create a new attribute (no duplicate names including case) with attribute name in the Entity

Progress Corticon: Rule Modeling: Version 6.318

Chapter 2: Build the Vocabulary

• Data type

• For a JSON schema where a data type is specified, use that data type.

• For a JSON instance:

• For a number that can be successfully converted to a relevant Java Date, set its data type as
DateTime.

• For a number with a decimal point, set its data type as Decimal.

• For a number without a decimal point, set its data type as Integer.

• For a string that is an ISO 8601 value, set its data type as DateTime, else it is a String.

• For an attribute with a data type of null, it is a String.

• For an empty array, it is a String array.

• Associations: Association role names are auto-assigned.

• Arrays are specified as a one-to-many with its corresponding parent entity.

• Associations are not be bidirectional.

• Both ends are not mandatory.

How descriptions in your schema are handled
The JSON Schema specification has description attributes that can be used to document your data structure.
The Vocabulary Generator puts the description fields in the schema into the Vocabulary's Comments tab,
as shown:

How enumerations in your schema are handled
The JSON Schema specification might have enumerations. When the Vocabulary Generator sees an enum
tag, it creates a Custom Data Type of that enumeration and use that as the attributes data type.

When a schema with an enum populates the Vocabulary, it generates a custom data type:

19Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

The type attribute is still String, but its Data Type is now the custom data type TypeEnumeration, as
shown:

How references in your schema are handled
The JSON Schema specification provides for the use of $ref attributes to have a single definition of an object
that can then be incorporated elsewhere in the schema. An example is an address object defined once and
included as part of customer and supplier objects in the schema.

When Corticon generates a vocabulary from JSON schema, associations will be added from the referring entity
to the target entity. In the example, the generated vocabulary would contain Customer, Supplier, and
Address entities. Corticon then adds associations from both Customer and Supplier entities to the Address
entity.

How to extend type definitions in your schema
The JSON Schema specification allows you to specify different validation rules through the use of oneOf,
anyOf, or allOf tags. For the most part, these tags do not effect vocabulary generation except when used
to extend a type definition. In the following example, the Type enumeration was added to the address definition
because it is needed for ShippingAddress. However, it is not needed for other types of addresses, so does
it make sense to include it, optionally, in all addresses? This is where the allOf tag comes in handy. You can
use it to extend the address type only for the ShippingAddress. A schema fragment that uses allOf is
shown:

...
"ShippingAddress": {

"description": "Address to where a Customer's product must go",
"allOf": [

{ "$ref": "#/definitions/address" },
{ "properties":

{ "type":
{
"title": "Address Type Enumeration",

"description": "Specifies if the address is a Business or Residence",

"enum": ["residential", "business"]

Note: Get the complete extend sample.

The difference in the vocabulary generated by this schema and the previous one is that the type attribute will
only be in the ShippingAddress entity and not the BillingAddress entity.

Progress Corticon: Rule Modeling: Version 6.320

Chapter 2: Build the Vocabulary

https://community.progress.com/s/question/0D54Q00008TguQjSAJ/generate-a-javascript-vocabulary-schema-extend

Use JSON to generate a vocabulary

Create a Vocabulary from a JSON payload
Suppose you are writing rules for a B2B e-commerce application that will determine what, if any, discounts
should be applied to an order. An order contains contact information about the customer, their partnership
status ('elite' or 'standard') and the items in the order. Your rules will examine this information to determine a
discount rate for the order in line with the promotions being offered by your company. For example, 'elite'
customers might get 15% off on orders over $10,000.

Working with IT, you've been supplied this sample JSON file representing an order. JSON in this format is used
by other components of your e-commerce application:

{
"orderId": 494748,
"customer": "Acme Industries",
"customerStatus": "elite",

"shippingAddress": {
"address1": "1234 Industrial Lane",
"address2": null,
"city": "Boston",
"state": "MA",
"zip": "01234"

},
"products": [

{
"sku": "XYZ-BB-43",
"unitPrice": 2300.00,
"quantity": 2,
"tags": [

"industrial",
"compressor"

]
}

],
"discount": 0.0

}

To populate a Vocabulary from a JSON payload:
1. Copy the preceding JSON and then save in a temporary file.

2. In Corticon Studio, create a new Rule Project named OnlineRetail.

3. In the project, create a Vocabulary named Orders.

4. Click in the Vocabulary edit window, and then select Vocabulary > Populate Vocabulary from JSON.

5. Choose the temporary file with the JSON you saved, and then click Open.

The Vocabulary that the JSON generates is the following:

21Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

Let's take a closer look at the Vocabulary:

• Root entity—The JSON source has an object definition at root, indicated by the JSON starting with initial
brace. You know this root entity is an order. Corticon does not know that, so it named the top-level entity
Root. After vocabulary generation completes you can refactor the root entity name to Order:

• Attributes—Each attribute takes the JSON Element Name that was in the source JSON. The root entity
has five attributes that are added as attributes of Root. You can manually revise the data type as appropriate.
This is the incoming payload identifier that will map to its Vocabulary attribute name:

Progress Corticon: Rule Modeling: Version 6.322

Chapter 2: Build the Vocabulary

Note: If an attribute has a null value in the source JSON, the data type String is assumed.

• Non-root entities—Other entities take the name in the source JSON, and specify their JSON Path as
relative to the root:

• Associations: Corticon added the Products entity, and then added an association from Root (Order)
to products:

23Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

• Scalar arrays—A scalar array is handled as an association from the entity with its own identifying Entity.
The JSON Array's relationship shows that products is relative to root ($) and one or more tags are related
to products:

Note: Corticon does not support JSON arrays mixing scalar values and objects. For example:

"A": [1,2,3, {"B": {"color" : "red"}}]

This JSON snippet defines an array "A" containing the scalar values 1,2,3 and the object "B". In Corticon,
an array must be either all scalar values or all objects.

Update a vocabulary from a JSON payload
Suppose your Sales department wants to enhance the discount program to provide an additional discount to
government agencies and whether an order is marked for expedited handling. In support of this IT has provided
an updated sample JSON the includes the new information.

Progress Corticon: Rule Modeling: Version 6.324

Chapter 2: Build the Vocabulary

An update generates new entities, attributes, and associations. The existing entities, attributes, and associations
are not revised by regenerating over the existing Vocabulary. If you want one element to be regenerated, delete
it before you perform the update. You could even delete the vocabulary entirely, and then start fresh. The
original sample payload adds a requirement for Billing Address to the sampleCustomer Vocabulary.

{
"orderId": 494748,
"customer": "Acme Industries",
"customerStatus": "elite",
"governmentAgency": false,

"shippingAddress": {
"address1": "1234 Industrial Lane",
"address2": null,
"city": "Boston",
"state": "MA",
"zip": "01234"

},
"shippingDetails": {

"expedite": true,
"mode": "ground"

},

"products": [
{

"sku": "XYZ-BB-43",
"unitPrice": 2300.00,
"quantity": 2,
"tags": [

"industrial",
"compressor"

]
}

],
"discount": 0.0

}

25Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

When you regenerate your vocabulary from this JSON, it will add new entities, attributes and associations to
your vocabulary for the new items in the JSON. The Vocabulary shows the added entity, attributes, and
association:

Note: If you rename or refactor entity or attribute names, an update from the same source will generate
duplicate entities and attributes for the ones you renamed in the Vocabulary. You will need to delete the
duplicates.

Integrating multiple sources into a Vocabulary
To build a single vocabulary that integrates multiple data feeds, it is convenient to import additional sources
into separate vocabulary domains. Corticon enables you to import into an added domain without impacting the
rest of the Vocabulary.

Progress Corticon: Rule Modeling: Version 6.326

Chapter 2: Build the Vocabulary

Consider a variation on the customer info so that it identifies a partner:

{
"orderId": 494749,
"partner": "Acme Partners",
"partnerStatus": "elite",
"shippingAddress": {

"address1": "2000 Industrial Ave",
"address2": null,
"city": "Boston",
"state": "MA",
"zip": "01234"

},
"shippingDetails": {

"expedite": true,
"mode": "ground"

}
}
"discount": 25.0
}

In the Vocabulary file, right-click at the root and then choose Add Domain:

Click on the new domain to refactor the name to Partners.

27Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

Right-click on the Partners domain and then choose Populate Domain From JSON:

Choose the file where the preceding listing was saved, and click Open.

The data is added to the Vocabulary.

Note that a reference to an attribute in an added domain requires the domain as a qualifier of the attribute when
used in rules. In this example, the regular ShippingAddress.address1 in a Rulesheet would be differentiated
from Partners.ShippingAddress.address1.

Progress Corticon: Rule Modeling: Version 6.328

Chapter 2: Build the Vocabulary

Build a Vocabulary by hand
An alternative to generating a vocabulary is to create one by hand. Creating a vocabulary by hand requires
more effort then generating one, yet has the potential advantage of forcing you to carefully consider the elements
to include in your vocabulary.

The first step in creating a Vocabulary is to collect information about the specifics of the business problem you
are trying to solve. This step usually includes research into the more general business context in which the
problem exists. Various resources may be available to you to help in this process, including:

• Interviews—The business users and subject matter experts are often the best source of information about
how business is conducted. They may not know how the process is supposed to work, or how it could work,
but in general, no one knows better how a business process or task is performed than those who actually
perform it.

• Company policies and procedures—Any written policies and procedures are an excellent source of
information about how a process is supposed to work and the rules that govern the process. Understanding
the gaps between what is supposed to happen and what actually happens can provide valuable insight into
problems.

• Existing systems and data sources—Systems address specific business needs, but needs often change
faster than systems can keep up. Understanding what the systems were designed to do versus how they
are actually used often provides clues about the core problems. Also, business logic contained in these
legacy systems often captures business policies and procedures (the business rules!) that are not recorded
anywhere else.

29Progress Corticon: Rule Modeling: Version 6.3

Build a Vocabulary by hand

• Forms and reports—Even in heavily automated businesses, forms and reports are often used extensively.
These documents can be very useful for understanding the details of a business process. Reports also
illustrate the expected output from a system, and highlight the information users require.

Analyze the chosen scenario or existing business rules in order to identify the relevant terms and the relationships
among these terms. Statements that express the relevant terms and relationships are called facts, and Progress
recommends developing a Fact Model to more clearly illustrate how they fit together. A simple example shows
you the creation of a Fact Model and its subsequent development into a Vocabulary for use in Corticon Studio.

Step 1: Design the Vocabulary

Example
An air cargo company has a manual process for generating flight plans. These flight plans assign cargo
shipments to a specific aircraft. Each flight plan is assigned a flight number. The cargo company owns a small
fleet of three planes: two Boeing 747s and one McDonnell-Douglas DC-10 freighter. Each airplane type has a
maximum cargo weight and volume that cannot be exceeded. Each airplane type also has a tail number that
identifies it. A cargo shipment has characteristics like weight, volume and a manifest number.

Assume that the company wants to build a system that automatically checks flight plans to ensure that no
scheduling rules or guidelines are violated. One of the many business rules that needs to be checked by this
system is:

Step 2: Identify the terms
Identify the terms (entities and attributes) for our Vocabulary by circling or highlighting those nouns that are
used in the business rules you want to automate. Example on page 30 is marked up:

Step 3: Separate the generic terms from the specific
Why circle aircraft and not the names of the aircraft in the fleet? It is because 747 and DC-10 are specific
types of the generic term aircraft. The type of aircraft is an attribute of the generic aircraft entity. Several cargo
shipments and flight plans can exist. Like the specific aircraft, these are instances of their respective generic
terms. For the Vocabulary, you identify the generic (and therefore reusable) terms. But, ultimately, you need
a way to identify specific cargo shipments and flight plans from within the set of all cargo shipments and flight
plans. Assigning values to attributes of a generic entity accomplishes this goal, discussed later.

Step 4: Assemble and relate the terms
None of the circled terms exists in isolation. They all relate to each other in one or more ways. Understanding
these relationships is the next step in Vocabulary construction. The following facts are observed or inferred
from the example:

Progress Corticon: Rule Modeling: Version 6.330

Chapter 2: Build the Vocabulary

• An aircraft carries a cargo shipment.

• A flight plan schedules cargo for shipment on an aircraft.

• A cargo shipment has a weight.

• A cargo shipment has a manifest number.

• An aircraft has a tail number.

• An aircraft has a maximum cargo weight.

• A 747 is a type of aircraft.

Notice that some of these facts describe how one term relates to another term; for example, an aircraft carries
a cargo shipment. This type of statement usually provides a clue that the terms in question, aircraft and cargo
shipment, are entities and are two primary terms.

Also notice that a fact “has a” relationship. For example, an aircraft “has a” tail number, or a cargo “has a”
weight. This type of relationship usually identifies the subject (aircraft) as an entity and the object (tail number)
as an attribute of that entity. By continuing the analysis, the Vocabulary contains 3 main entities, each with its
own set of attributes:

Entity: Aircraft

Attributes: aircraft type, max cargo weight, max cargo volume, tail number

Entity: Cargo

Attributes: weight, volume, manifest number, packaging

Entity: FlightPlan

Attributes: flight number

Step 5: Diagram the Vocabulary
Using this breakdown, sketch a simple Fact Model that illustrates the entities and their relationships, or
associations. In the Fact Model, entities are rectangular boxes, associations between entities are straight lines
connecting the entity boxes, and entity-to-attribute relationships are diagonal lines from the associated entity.
The following illustration is the resulting Fact Model:

31Progress Corticon: Rule Modeling: Version 6.3

Build a Vocabulary by hand

A unified modeling language (UML) class diagram contains the same type of information, and may be more
familiar to you:

It is not a requirement to construct diagrams or models of the Vocabulary before building it in Corticon. But, it
can be very helpful in organizing and conceptualizing the structures and relationships, especially for very large
and complex Vocabularies. The BRMS Fact Model and UML Class Diagram are appropriate because they
remain sufficiently abstracted from lower-level data models that contain information not typically required in a
Vocabulary.

Step 6: Model the Vocabulary in Corticon Studio
The next step is to transform the diagram into your Corticon Vocabulary. This can be done in Corticon Studio
using its built-in Vocabulary Editor.

In Corticon Studio, choose New > Rule Project. Click the Rule Project, and then choose New > Vocabulary.
Create the entities, attributes, and associations that were defined in the diagram.

Note: See "Vocabulary topics" in the Quick Reference guide for complete details on building a Vocabulary.

The naming conventions for the entities and attributes will be used in the Vocabulary:

• All attributes in our Vocabulary must have a data type specified. These data types can be any of the following
common data types: String, Boolean, DateTime, Date, Time, Integer, or Decimal.

• Attributes are classified according to the method by which their values are assigned. They are either:

• Base: Values are obtained directly from input data or request message

• Transient: Created, derived, or assigned by rules in Studio.

Progress Corticon: Rule Modeling: Version 6.332

Chapter 2: Build the Vocabulary

Note:

Transient attributes carry or hold values while rules are executing within a single Rulesheet. Because
XML messages returned by a Decision Service do not contain transient attributes, these attributes and
their values cannot be used by external components or applications. If an attribute value is used by an
external application or component, then the attribute must be a base attribute.

To show the rule modeler which attributes are base and which are transient, Corticon Studio adds an
orange bar to transient attributes, as shown for packDate:

XML response messages created by Corticon Server will not contain the packDate attribute.

It is a good idea to use a naming convention that distinguishes transient attributes from base attributes.
For example, you could start a transient attribute's name with t_ such as t_packDate. Do not use
names that are cryptic. The intent is to express the names in terms that are understood by business
users as well as developers.

• Associations between entities have role names that are assigned when you build the associations in the
UML class diagram or Vocabulary Editor. Default role names simply duplicate the entity name, with the first
letter in lowercase. For example, the association between the Cargo and FlightPlan entities would have
a role name of flightPlan as seen by the Cargo entity, and cargo as seen by the FlightPlan entity. Roles
are useful in clarifying context in a rule. A topic that covers this in more detail in the Scope chapter.

• Associations between entities can be directional (one way) or bidirectional (two way). If the association
between FlightPlan and Aircraft were directional (with FlightPlan as the source entity and
Aircraft as the target), you would only be able to write rules that traverse from FlightPlan to Aircraft,
but not the other way. This means that a rule can use the Vocabulary term
flightPlan.aircraft.tailNumber but cannot use aircraft.flightPlan.flightNumber.
Bidirectional associations allow you to traverse the association in either direction, which allows you more
flexibility in writing rules. Therefore, Progress strongly recommends that all associations be bidirectional
whenever possible. New associations are bidirectional by default.

• Associations also have cardinality, which indicates how many instances of a given entity can be associated
with another entity. For example, in the air cargo scenario, each instance of FlightPlan will be associated
with only one instance of Aircraft, so there is a one-to-one relationship between FlightPlan and
Aircraft. The practice of specifying cardinality in the Vocabulary deviates from the UML class modeling
technique because assigning cardinality can be viewed as defining a constraint-type rule. For example, a
flightPlan schedules exactly one aircraft and one cargo shipment is a constraint-type business
rule that can be implemented in a Corticon Studio as well as embedded in the associations within a
Vocabulary. In practice, however, it may often be more convenient to embed these constraints in the
Vocabulary, especially if they are unlikely to change.

• Another consideration when creating a Vocabulary is whether derived attributes must be saved (or persisted)
external to Corticon Studio, for example, in a database. It is important to note that while the structure of
your Vocabulary may closely match your data model (often persisted in a relational database), the Vocabulary

33Progress Corticon: Rule Modeling: Version 6.3

Build a Vocabulary by hand

is not required to include all of the database entities/tables or attributes/columns, especially if they will not
be used for writing rules. Conversely, the Vocabulary may contain attributes that are used only as transient
variables in rules and that do not correspond to fields in an external database.

• Finally, the Vocabulary must contain all of the entities and attributes needed to build rules in Corticon Studio
that reproduce the decision points of the business process being automated. This process will most likely
be iterative, with multiple Vocabulary changes being made as the rules are built, refined, and tested. It is
common to discover, while building rules, that the Vocabulary does not contain all the necessary terms.
But, the flexibility of Corticon Studio permits the rule developer to update or modify the Vocabulary
immediately, without programming.

The following figure shows the vocabulary modeled in Corticon Studio:
Figure 2: Vocabulary Window in Corticon Studio

Populate a Vocabulary from a Datasource
Often you have data sources that you want to use as the basis for your rule modeling that might have many
tables, each with many columns. You could transcribe each data source's schema to create a Vocabulary, yet
the ability to populate the Vocabulary quickly from the schema would expedite the process dramatically.

When you use this built-in Vocabulary generation utility, Corticon sets up the name patterns and defines the
data types and associations as best it can. It is important that you review the Vocabulary against the source
schema, to validate that the results are correct.

Step 1: How Datasources are transformed into a Corticon
Vocabulary

The following are the relationships between relational Datasources and Corticon Vocabulary elements are:

Progress Corticon: Rule Modeling: Version 6.334

Chapter 2: Build the Vocabulary

Corticon VocabularyRelational database

VocabularySchema

Vocabulary: EntityTable

Vocabulary: AttributeTable Column or Field

Vocabulary: AssociationRelationship between Tables

After you connect to a Datasource and import its metadata, you can constrain the tables and attributes that
will be evaluated. Then, the internal algorithm makes its best effort to populate the Vocabulary.

Assuming that you are creating a new Vocabulary, these are the steps it takes:

1. For each selected Table in the Datasource, create a new Entity in the Vocabulary.

2. For each Column in the Table:

a. Create a new Attribute in the Entity.

b. Determine the best Corticon data type for the Attribute by referring to the column's data type information.

c. If the column is part of the Table's primary key, then mark the Attribute as part of the Entity identity.

3. After all Tables and Columns are processed, Associations are created for each foreign key for each table
(if the source and target tables are both mapped in the Datasource).

The creation process tries to be complete and accurate, but it has limited abilities:

• Columns that are referenced by foreign keys are not added as Attributes.

• Tables that do not have any valid columns are not created (such as, Association middle tables or Sequence
tables).

• The data type for an attribute is evaluated in this order: Datetime, Time, Date, Decimal, Integer, String, and
Boolean. Some Corticon data types might not get picked for attributes because of an overload of possible
mappings (such as, Date and Time could always be created as Datetime). Note that these decisions are
derived from data when data is in a REST source that has no schema.

Step 2: The Vocabulary generation process for RDBMS sources on page 35 shows the procedure for populating
a new Vocabulary.

Step 2: The Vocabulary generation process for RDBMS sources
Relational databases have well-structured schemas that declare every element's data type. The following steps
in Corticon Studio populate a new Vocabulary from a relational database Datasource. For an example, use
the Patient/Treatment schema that was created in SQL Server from SQL statements in the Data Integration's
ADC Connectivity sample.

To generate a Vocabulary from a relational data source:

1. In Corticon Studio, create a new Rules Project named GenMed.

2. In the new project, create a Vocabulary named GenMed.

3. Open the Vocabulary in its editor, and then select the menu command Vocabulary > Add Datasource >
Add ADC Datasource.

4. Define the Datasource name as Patient Data. Connect to SQL Server database PatientRecords. Enter
credentials, and the click CONNECTION Test:

35Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

Note: You might want to add a Schema Filter value, such as dbo, to constrain the results of the next step.

5. Click METADATA Import, and then choose the option to choose the tables you want to use. For this
example, choose just the two dbo tables, as shown:

Progress Corticon: Rule Modeling: Version 6.336

Chapter 2: Build the Vocabulary

and click Finish.

6. Select Vocabulary > Populate Vocabulary From Datasource:

37Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

7. Choose the Patient Data Datasource. If there were several Datasources defined, choose them one at a
time for this process. In this example, there is only one. Click Next.

8. A wizard opens to let you review the Datasource prior to creating the Vocabulary elements, where you can
select the Tables and Columns that create Entities and Attributes. In the following image, the tree was
expanded:

Progress Corticon: Rule Modeling: Version 6.338

Chapter 2: Build the Vocabulary

9. Click Finish. The Vocabulary is generated, as shown:

39Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

Progress Corticon: Rule Modeling: Version 6.340

Chapter 2: Build the Vocabulary

Step 3: The Vocabulary generation process from REST sources
REST sources are usually not as clearly structured as relational databases. Some provide a schema, but
generally they do not. REST sources can conform to a relational database schema when Corticon uses the
Progress® DataDirect® Autonomous Rest Connector to access REST sources. The REST connector maps the
JSON in a REST source to a relational database schema, and then translates SQL statements to REST API
requests. These steps in Corticon Studio populate a new Vocabulary from the REST Datasource used in the
REST connectivity sample from the Data Integration guide. The REST source has no schema; its data looks
this:

To generate a Vocabulary from a REST data source:

1. In Corticon Studio, create a new Rule Project named GenRates.

2. In the new project, create a Vocabulary named GenRates.

3. Open the Vocabulary in its editor, and then select Vocabulary > Add Datasource > Add REST Datasource.

4. Define the Datasource connection for the URL
https://bj36i9ki66.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate?procedureCode=B5120ZZ
as shown, and then click CONNECTION Test:

41Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

5. Click SCHEMA Discover. If your REST source has a schema, or is one that you exported in an earlier
processing of this source you could import it now. For this source, you need to let the Progress® DataDirect®
Autonomous Rest Connector map the JSON in the REST source to a relational database schema, and then
translate SQL statements to REST API requests.

6. Select Vocabulary > Populate Vocabulary From Datasource

Progress Corticon: Rule Modeling: Version 6.342

Chapter 2: Build the Vocabulary

7. Choose the REST Service Datasource. If there were several Datasources defined, choose them one at a
time for this process. In this example, there is only one, REST Service. Click Next.

8. A wizard opens to let you review the Datasource prior to creating the Vocabulary elements, where you can
select the Tables and Columns to create as Entities and Attributes. Here, the tree was expanded for
REST_DATA, the primary table that was unnamed so it was given this default name. You can see links
between tables to all the other tables at the bottom of the table.

43Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

9. Click Finish. The Vocabulary is generated, as shown:

The Primary Key in RATES is POSITION, a standard that REST connector uses to ensure keys are unique,
plus the REST_DATA_PROCEDURECODE, the default name of the primary entity. The Primary Key in the
REST_DATA entity is the single primary key, PROCEDURECODE

Progress Corticon: Rule Modeling: Version 6.344

Chapter 2: Build the Vocabulary

Here is an association:

Step 4: Verify and update the generated Vocabulary

Produce a Vocabulary Report
The import of Datasource metadata to build a Vocabulary is a processed through a best-effort algorithm. You
should produce a Vocabulary report to review the entity names, attribute names and their data types, and the
implied associations.

Adding and deleting
You can delete any entity (which deletes all its attributes) and any attributes and associations. Be careful not
to delete primary keys. The effect of deletions in the Vocabulary are local. The deletions do not affect the
Datasource. You can add attributes, and because the metadata you imported was not deleted, you can re-add
a deleted attribute and bind it to the column in the Datasource.

Doing updates from a Datasource is not a synching operation. There is no provision for removing metadata
that is no longer in the Datasource.

Refactoring names
You can rename any entity and attribute even if it is a just a case change. For example, you can refactor dob
with DOB. It is important that you refactor, not rename, so that other instances of the name in the Vocabulary
such as associations are also updated.

If you repopulate the Vocabulary from the Datasource, then the name you entered is retained while it is still
logically the Datasource column name.

Note: MS Dynamics as a Datasource: Some table names in Dynamics might map to an unexpected name.
For example, a Case table might become an Incident entity by default on the initial import.

45Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

Data types
The algorithm in the import makes a best effort to map the Datasource's data type to a corresponding Corticon
data type. The data type for an attribute is evaluated in this order: Datetime, Time, Date, Decimal, Integer,
String, and Boolean. Some Corticon data types might not get picked for attributes because of an overload of
possible mappings (such as, Date and Time could always be created as Datetime). Note that these decisions
are derived from data when data is in a REST source that does not have a schema. After import, you can revise
the data type, for example when you have custom data types that apply constraints, or date of birth imports as
Datetime when your rules want just Date, or when "flight_number":55 is imported as an integer data
type when you want it as a String,

Mandatory
Whether an attribute is mandatory is set by you. It is not changed on a re-import.

Associations
The metadata from the Datasource often provides correct associations. When you use multiple Datasources,
you need to create the associations between entities. In all cases, review your associations.

Transients
You can add transients. If you change an imported attribute to a transient, then its binding to its Datasource
column is dropped.

Foreign keys
When if both the source and target table are mapped in the Datasource, then an association is created for
each foreign key for each table.

Domains
Youmight need multiple domains. If you use REST Datasources, then you need to rename the existing domains
before importing a new one.

Extend a Vocabulary
After a Vocabulary is defined, you can extend the design by customizing data types to enforce certain values
and constraints, use multiple domains, and implement inheritance.

Custom Data Types
Corticon uses seven basic data types: Boolean, Decimal, Integer, String, DateTime, Date, and Time. An attribute
must use one of these types. You also have the option of creating custom data types that “extend” any one of
these basic seven.

You define and maintain Custom Data Types in a Vocabulary by selecting the Vocabulary name in the tree
view.

Data Type Name
When defining a custom data type, you must give it a name with no blank spaces. The name must comply with
standard entity naming conventions (see theQuick Reference Guide for details), and must not overlap (match)
any of the base data types, any other custom data type names, or the names of any Vocabulary entities.

Progress Corticon: Rule Modeling: Version 6.346

Chapter 2: Build the Vocabulary

Base Data Type
The selection in this field determines which base data type the custom data type extends.

You already used this feature in the custom data type containerType, a String, in the Basic Rule Modeling
Tutorial. The following figure lists its labels and values.

Figure 3: Vocabulary Editor Showing the Custom Data Type containerType

Enumeration or Constraint Expression?
Enumeration—When the Enumeration for a Custom Data Type is set to Yes, as shown in the preceding
figure, the Constraint Expression field is disabled, and the Label and Value columns are enabled.

Constraint Expression—When the Enumeration for a Custom Data Type is set to No, the Constraint
Expression field is enabled, and the Label and Value columns are disabled.

The following sections explore each of these features.

Constraint Expressions
When you want to prompt Rulesheet and Ruletest designers to use a specific range of values for an attribute,
a constraint expression will validate entries when the associated Ruletest runs.

Constraint expressions are optional for non-enumerated Custom Data Types, but if none are used, then the
Custom Data Type probably is not necessary because it reduces to a base attribute with a custom name.

All Constraint Expressions must be Boolean expressions: they must return or resolve to a Boolean value
of true or false. The supported syntax is the same as Filter expressions with the following rules and
exceptions:

• Use value to represent the Custom Data Type value.

• Logical connectors such as and and or are supported.

• Parentheses can be used to form more complex expressions

• The expression can include references to Base and Extended Operators which are compatible with the
Base Data Type chosen.

• No Collection operators can be referenced in the expression.

• There should be no references to null. This is because null represents a lack of value and is not a real
value. The Constraint Expression is intended to constrain the value space of the data type, and expressions
such as attribute expression <> null do not belong in it. An attribute that must not have a null value
can be designated by selecting Yes in its Mandatory property value.

The following are typical Constraint Expressions:

47Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

MeaningConstraint Expression

Integer values greater than 5value > 5

Decimal values greater than or equal to 10.2value >= 10.2

Decimal values between 1.1 (exclusive) and 9.9
(inclusive)

value in (1.1..9.9]

DateTime values between ‘1/1/2014 12:30:00 PM’
(inclusive) and ‘1/2/2019 11:00:00 AM’ (exclusive)

value in [‘1/1/2014 12:30:00 PM’..’1/2/2019 11:00:00
AM’)

Time values between ‘1:00:00 PM’ (inclusive) and
‘2:00:00 PM’ (inclusive)

value in [‘1:00:00 PM’..’2:00:00 PM’]

String values of minimum 6 characters in length that
contain at least a 1 or 2

value.size >= 6 and (value.indexOf(1) > 0 or
value.indexOf(2) > 0)

How to use non-enumerated Custom Data Types in Rulesheets and Ruletests
Non-enumerated custom data types use Constraint Expressions and do not cause Rulesheet drop-down
lists to become populated with custom sets. Also, manually entering a cell value that violates the custom data
type's Constraint Expression is not prohibited in the Rulesheet. For example, in the following figure,
weightRange is defined as a non-enumerated custom data type with Base Data Type of Decimal.

Figure 4: Non-enumerated Custom Data Types

Then, after assigning it to the Vocabulary attribute Cargo.weight, it is used in a Rulesheet Condition row as
shown:

Figure 5: Using Custom Data Types in a Rulesheet

Progress Corticon: Rule Modeling: Version 6.348

Chapter 2: Build the Vocabulary

Notice in the preceding figure that the 300000 entry violates the Constraint Expression of the custom data
type assigned to Cargo.weight, but does not turn red or otherwise indicate a problem. The indication comes
when data is entered for the attribute in a Ruletest, as shown:

Figure 6: Violating a Custom Data Type's Constraint Expression

Notice that the small yellow warning icon indicates a problem in the attribute, entity, and both Ruletest tabs.
Such an error is hard to miss. Also, a Warning message will appear in the Problems tab (if open and visible)
as shown. If the Problems tab is closed, you can display it by selectingWindow > Show View > Problems
from the Studio menubar.

Figure 7: Violating the Constraint Expression of a Custom Data Type

A Warning does not prevent you from running the Ruletest. However, an Error, indicated by a small red icon
, will prevent the Ruletest execution. You must fix any errors before testing.

Enumerations
Enumerations are lists of strictly typed unique values that are the valid values for each attribute that is assigned
the custom data type name as its data type. These lists also prompt Rulesheet and Ruletest designers to use
a specific list of values. Enumerated lists, often referred to as enums, can be maintained directly in the
Vocabulary, or retrieved and updated from a data source.

Each item list can be partnered with a unique label that you select in Rulesheets and Ruletests.

How enumeration labels and values behave
Before you start setting up and using enumerations, you should get acquainted with labels and values.

Note: It is important that you determine whether you want to use labels, because changing a set of enumerations
later to add or remove the labels data will affect any Rulesheets and Ruletests that use that custom data type's
enumerations as you can observe in this topic.

49Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

At the Vocabulary root, you created a String enumeration with only values. The base data type can be any
Corticon data type except Boolean. Every line requires a unique entry of its type, and the list must have no
blank lines from the top down to the last line.

The following examples are String values. They can contain spaces and most other characters. It needs to be
set off in plain single quotation marks. If you enter or paste text with the delimiters, they are added for you.
Like this:

If you want to use labels, then the label is always a String of any alphanumeric characters but cannot contain
spaces. Each must be unique and must have a corresponding value. Even when you use labels, the values
must be unique.

Set Glove.color to use the colorUnlabeled data type:

Progress Corticon: Rule Modeling: Version 6.350

Chapter 2: Build the Vocabulary

Set Ball.color to use the colorLabeled data type:

When you create a Rulesheet, the list offered at A1 contains the label (Ball.color = red) , while the list
offered at B1 contains the value in qoutes (Glove.color='red').

You add Rule Statements so that you can see how the labeled and unlabeled items are handled.

In a simple Ruletest, add some size tests to see what happens. As shown, the labels and values in the resulting
Output are both unquoted. The Rule Messages tab displays the value when the label was in use and the
value of the value-only enumeration.

51Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Entry of test values in the Ruletest list the label+value's label:

Progress Corticon: Rule Modeling: Version 6.352

Chapter 2: Build the Vocabulary

The value-only list has quoted values:

Both are reconciled to unquoted values in the displayed Input and Output columns:

Note: It is important that you determine in each custom data type whether you want to use labels. Some
enumerations can have labels while others do not. Changing a set of enumerations later, to add or remove the
labels data, affects any Rulesheets and Ruletests that use that custom data type's enumerations as you can
observe in this topic.

Enumerations defined in the Vocabulary
To set up an Enumeration, open the project's Vocabulary, and click its root—Cargo, in this example. Then,
enter a preferred unique name without spaces, and click the Base Data Type cell of the row to choose the data
type (the values are all red until you have added a successful value or label/value pair). Click on the Enumeration
cell to choose Yes. Now, enter a value on the first row, and a label if you want one. All the cells are validated,
and the red markers are cleared. Then, you can add other value or label/value pairs on the next lines.

53Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

When you complete a valid Custom Data Type, choose the attributes in the Vocabulary that will be constrained
to the enumeration.

If your custom data type is a local enumeration, then you enter the enumerated values of the base data type
into the Value column, and, if you intend to use labels, then enter label text into the Labels column.

Note: Pasting in labels and values—If you have the source data in a spreadsheet or text file, you can copy
from the source and paste into the Vocabulary after you define the name, base data type, and chosen yes to
enumeration. When you paste two columns of data, click the first label row. If you have one column of data
you want to use for both the label and the value, paste it in turn into each column. If the data type is String,
Date, Time, or DateTime, the paste action will add the required single quote marks.

The Label column is optional: you enter Labels only when you want to provide an easier-to-use or more intuitive
set of names for your enumerated values.

The Value column is mandatory: you need to enter the enumerations in as many rows of the Value column as
necessary to complete the enumerated set. Be sure to use normal syntax, so custom data types that extend
String, DateTime, Date, or Time base data types must be enclosed in single quote characters.

Here are some examples of enumerated custom data types:

Figure 8: Custom Data Type, example 1

Progress Corticon: Rule Modeling: Version 6.354

Chapter 2: Build the Vocabulary

PrimeNumbers is an Integer-based, enumerated custom data type with Value-only set members.

Figure 9: Custom Data Type, example 2

containerType is a String-based, enumerated custom data type with Label/Value pairs.

Figure 10: Custom Data Type, example 3

USHolidays2015 is a Date-based, enumerated custom data type with Label/Value pairs.

Figure 11: Custom Data Type, example 4

ShirtSize is an Integer-based, enumerated custom data type with Label/Value pairs.

Figure 12: Custom Data Type, example 5

55Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

RiskProfile is an Integer-based, enumerated custom data type with Label/Value pairs

Figure 13: Custom Data Type, example 6

DevTeam is a String-based, enumerated custom data type with Value-only set members.

Use the Move Up or Move Down toolbar icons to change the order of Label/Value rows in the list.

Enumerations retrieved from a database
If you want your custom data type to gets its enumerated labels and values from a database, then you need
to define the database table and columns that will be accessed.

This topic covers the significant points of this feature in the context of the Vocabulary.

Note: This functionality uses Corticon's Enterprise Data Connector. For more information, see "Import possible
values of an attribute from database tables" in the "Advanced EDC Topics" section of the Data Integration
Guide

When your Vocabulary has a verified connection to a supported database, theCustomData Types tab presents
three additional columns, as shown:

Figure 14: Custom Data Type columns for defining database retrieval

These columns are how you specify:

• Lookup Table Name—The database syntax that specifies the table that has the enumerations.

• Labels Column—The column in the lookup table that holds the label. This is optional because you can
elect to use only values.

• Values Column - The column in the lookup table that holds the value associated with the label or the solitary
value. This is required.

Progress Corticon: Rule Modeling: Version 6.356

Chapter 2: Build the Vocabulary

The following examples show two options:

Figure 15: SQL Server table with values to use in the Vocabulary

The value data is retrieved into the Vocabulary as highlighted:

Figure 16: Definition and retrieved values in Corticon Studio

57Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Another example retrieves name-value pairs.

Figure 17: SQL Server table with labels and values to use in the Vocabulary

The label/value data is retrieved into the Vocabulary as highlighted:

Figure 18: Definition and retrieved label-values in the Corticon Studio

How to use Custom Data Types
Custom data types are powerful additions to your Vocabulary that propagate their effects into Rulesheets and
Ruletests.

Progress Corticon: Rule Modeling: Version 6.358

Chapter 2: Build the Vocabulary

Use Custom Data Types in a Vocabulary
After a Custom Data Type is defined as shown, it can be used and reused throughout the Vocabulary's attribute
definitions.

Figure 19: Using Custom Data Types in the Vocabulary

Notice in this figure that multiple attributes can use the same custom data type; the custom data type
containerType is shown in the drop-down as a sub-category of the String-based data type. The other custom
data types will be grouped with their base data types as well.

Use enumerated Custom Data Types in Rulesheets
After an enumeration is defined and assigned to an attribute, its labels are displayed in selection drop-down
lists in both Conditions and Actions expressions, as shown. If Labels are not available (because Labels are
optional in an enumerated custom data type's definition), then Values are shown. The null option in the
drop-down list is only available if the attribute's Mandatory property value is set to No.

Figure 20: Using Custom Data Types in the Rulesheet

You can test a condition bound to an attribute by evaluating the attribute against a custom data type label using
the # tag, as shown:

Figure 21: Using # tag to test a custom data type

Note: Using a dot instead of a # tag works, but if there is custom data type with the same name as an entity,
then the expression will be invalid.

59Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Use enumerated Custom Data Types in Ruletests
An enumeration's Values and Labels are available as selectable inputs in a Ruletest, as shown:

Figure 22: Ruletest selecting container's containerType list

If you want the attribute value to be null, right-click the attribute, and then select Set to Null, as shown:

Use IN operator with an enumerated list
When your rule condition or filter is not defined by a range of values, you might have try to use a series of test
and logical OR operations to describe the test. For example, entity1.attribute1='This' or
entity1.attribute1='That' or entity1.attribute1='TheOther' is long, and could evolve into
a very long expression. You can eliminate the use of the long form of enumeration literals by using the in
operator's list format to reduce that filter or condition expression to entity1.attribute1 in
{'This','That','TheOther'}.

You can go a step further by defining enumerated lists to define even more brisk expressions, where the labels
that you choose are abbreviations for the full names. For example, Regions.state in
{MA,NH,VT,CT,RI,ME} to qualify only US New England states.

For more information about these features, see the topics in Qualify rules with ranges and lists on page 108.

How to relax enforcement of Custom Data Types
Using Custom Data Types lets you define general limitations of an attribute's values that are enforced on all
Rulesheets and Ruletests in the project and its Decision Services. While they are valuable in focusing on what
is valid in rule designs, violations of the constraints or lists cause rule processing -- Ruletests in Studio; Decision
Services on Servers -- to halt at the first violation. Such exceptions indicate that values in attributes are not
within numeric constraint ranges or not included in enumerated lists that were set in the Vocabulary's Custom
Data Types.

Progress Corticon: Rule Modeling: Version 6.360

Chapter 2: Build the Vocabulary

Note: Progress recommends that you use relaxed enforcement of CDTs only in test environments. In production,
you should enforce data constraints and lists to ensure valid processing by rules.

For Ruleflows, a rule that throws an exception in earlier Rulesheets disables processing in subsequent
Rulesheets. In the following example, the Advanced Tutorial testsheet outputs the following statements:

Note: The rule tracing feature reveals which Rulesheets fired which rules.

By defining a Custom Data Type that specifies the Item attribute price must be greater than zero, and then
entering the input value -1.00 for an item on the testsheet, the first constraint error stops all the subsequent
rules from firing:

Relaxing the enforcement of Custom Data Type constraints produces warnings instead of violations, so that
development teams and preproduction testing teams can expedite their debugging of rules and error handling,
as shown:

This example might indicate that the applications that format requests should handle the data constraint before
forwarding a request to the rules engine.

Detailed example

The following example uses the Cargo Vocabulary. It has two Custom Data Types, one numeric constraint
(assigned to Cargo.weight and Cargo.volume) and an enumeration list (assigned to Cargo.container.)

A value that is outside the constraints (Cargo [1] volume = -1) is noted as violating the attribute's data
type constraint on each input attribute and its entity, as well as noted on the Problems tab. But, when the
Ruletest runs, it stops on the first Violation, as shown:

61Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

The details of that first exception are entered in the log (when the loglevel is INFO or higher, and the
logInfoFilter does not include VIOLATION—thereby accepting that type of information into the log.) No
further processing occurs.

Note: See the topic "How to change logging configuration" in the Using Corticon Server logs section of Server
Guide.

You can set the property in brms.properties that relaxes enforcement of Custom Data Types,
com.corticon.vocabulary.cdt.relaxEnforcement=true, and then restart the Studio. The errors are
still flagged in the data, and the Problem information is unchanged. However, the Rule Messages section
flags each of the constraint breaches as a Warning, lets them proceed, and then fires all the other rules.

Note: Progress recommends that you create or update the standard last-loaded properties file,
brms.properties, to list override properties such as this for Corticon Studios and Servers. See the introductory
topics in "Server properties and settings" in the Server Guide for more for information about where to locate
this properties file.

Progress Corticon: Rule Modeling: Version 6.362

Chapter 2: Build the Vocabulary

Domains
Occasionally, it may be necessary to include more than one entity of the same name in a Vocabulary. This can
be accomplished using Domains. Domains allow you to bundle one or more entities in a subset within the
Vocabulary, thus you can reuse entity names as long as the entity names are unique within each
Domain. Additional Domains, referred to as sub-Domains, can be defined within other Domains.

Select Vocabulary > Add Domain, or click from the Studio toolbar.

A new folder is listed in the Vocabulary tree. Assign it a name. The example in the following figure shows a
Vocabulary with two Domains, US_Fleet and WW_Fleet:

Figure 23: Using domains in the Vocabulary>

Notice that the entity Aircraft appears in each Domain, using the same spelling and containing slightly
different attributes (FAAnumber vs. ICAOnumber). Notice, too, that the association role names from FlightPlan
to Aircraft were named manually to ensure uniqueness: one is now USaircraft and the other is
WWaircraft.

63Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Domains in a Rulesheet
When using entities from domains in a Rulesheet, it is important to ensure uniqueness, which means aliases
must be used to distinguish one entity from another.

Figure 24: Non-unique Entity names prior to defining Aliases

In Non-unique Entity names prior to defining Aliases, both Aircraft entities have been dropped into the
Scope section of the Rulesheet. But because their names are not unique, an error icon appears. Also, the
“fully qualified” domain name has been added after each to distinguish them. By fully qualified, we mean the
::US_Fleet:: designator that follows the first Aircraft and ::WW_Fleet:: that follows the second.

But, it would be inconvenient (and ugly) to use these fully qualified names in Rulesheet expressions. So, you
must define a unique alias for each. The aliases will be used in the Rulesheet expressions, as shown:

Figure 25: Non-unique Entity names after defining Aliases

Domains in a Ruletest
When using Vocabulary terms in a Ruletest, drag and drop them as usual. Notice that they are automatically
labeled with the fully qualified name, as shown:

Figure 26: Domains in a Ruletest

Progress Corticon: Rule Modeling: Version 6.364

Chapter 2: Build the Vocabulary

Support for inheritance
UML Class diagrams frequently include a modeling/programming concept called inheritance, where a class
can “inherit” attributes and associations from another class, for example:

Figure 27: Rose UML model showing inheritance

In this diagram, there is a UML model that includes inheritance. The solid-headed arrow indicates that the
Employee class is a descendant of the Person class, and therefore inherits some of its properties. Specifically,
the Employee class inherits the age and name attributes from Person. In other words, Employee has all the
same attributes of Person plus two of its own, hireDate and IDnumber. Likewise, Aircraft inherits all of
Equipment's attributes (acquireDate and propertyID) plus has attributes of its own, type and
tailNumber.

Modeling this UML Class Diagram as a Corticon Vocabulary is straightforward. All Entities, Attributes and
Associations are created per normal practice. To incorporate the elements of inheritance, you only need to add
one additional setting for each of the descendant entities, as shown:

Figure 28: Selecting Ancestor Entity for Descendant

65Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

After all descendant entities are configured to inherit from their proper ancestor entities, you can save the
Vocabulary and view it in the Rule Vocabulary window:

Figure 29: Vocabulary with Inheritance

Notice that many of the term names and icons are varying shades of gray. These color codes help you to
understand the inherited relationships that exist in the Vocabulary.

Inherited attributes
Attributes with names displayed in solid black type, such as Customer.loyaltyNumber in Figure
29: Vocabulary with Inheritance on page 66, are native attributes of that entity.

Attributes with names displayed in dark gray type, such as Customer.age, are inherited attributes from the
ancestor entity (in the case of Customer, Person).

Inherited associations
Inherited Associations are a bit more complicated. An entity can be directly associated with another entity or
that entity's descendants. An entity can also inherit an association from its ancestor.

Using the example shown in Figure 28: Selecting Ancestor Entity for Descendant on page 65 and Figure
29: Vocabulary with Inheritance on page 66 above, each of these combinations is described:

Progress Corticon: Rule Modeling: Version 6.366

Chapter 2: Build the Vocabulary

• Customer.aircraft is a direct association between Customer and Aircraft entities. No inheritance
is involved, so the association icon is black, and the rolename is black.

• Customer.operator (Equipment) is an association inherited from the Customer ancestor entity Person,
which has a direct association with Equipment and the rolename operator in our Vocabulary. The UML
class Diagram in Figure 28: Selecting Ancestor Entity for Descendant on page 65 shows the rolename as
operates because it is more conventional in UML to use verbs as rolenames, whereas nouns usually
make better rolenames in a Corticon Vocabulary. Because the association is inherited from the ancestor's
direct association, the icon is dark gray, and the rolename is black.

• Equipment (which you can see equally well in the expanded operator rolename) has several associations
with Person. One of these is a direct association with the Person entity. In this case, both the association
icon and the rolename are black. But, Equipment also has associations with descendants of the Person
entity, specifically Employee, Customer, and Pilot. These are filtered associations, and display their
rolenames in dark gray.

• Finally, Customer has another association with operator (Aircraft) because Aircraft is a descendant
of Equipment. So, the inherited dark gray icon and the filtered dark gray rolename are combined to display
this association.

How to control the tree view
In cases where a Vocabulary contains inheritance (and includes the various icons and color schemes previously
described), but the modelers who use it do not intend to use inheritance in their rules, the inherited associations

and filtered rolenames can be hidden from view by clicking the icon in the upper right corner of the Rule
Vocabulary window, as shown:

Figure 30: Vocabulary with inheritance properties hidden

Person and Equipment are associated (using named roles), but what relationship does Employee have with
Equipment or Aircraft, if any?

How to use aliases with inheritance
Any Entity, Attribute, or Association can be dragged into the Scope section for use in Rulesheets. But, if two
or more terms share the same name, then they must be assigned unique alias names before they can be used
in rules.

67Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

For example, in Figure 29: Vocabulary with Inheritance on page 66, there are four
Customer.operator.person terms in the Vocabulary due to the various forms of inheritance used by the
entities and associations. If two or more of these nodes are dragged into the Scope window, they will be
assigned error icons to indicate that their names are not unique, as shown:

Figure 31: Non-Unique nodes used in the Scope window

Without unique names, Corticon Studio does not know which one is intended in any rule that uses one of the
nodes. To ensure uniqueness, aliases must be assigned and used in rules, as shown:
Figure 32: Uniqueness Established using an Alias

Effects of inheritance on rule execution
The point of inheritance is not to complicate the Vocabulary. The point is to be able to write rules on ancestor
entities and have those rules affect descendant entities automatically.

Progress Corticon: Rule Modeling: Version 6.368

Chapter 2: Build the Vocabulary

Examples of effects of inheritance on rule execution are:

• Inherited Conditions and Actions

The following Rulesheet contains two rules that test the age value of the Employee entity. There are no
explicit actions taken by these rules, only the posting of messages.

Figure 33: Rules written on Employee

A Ruletest provides an instance of Employee and an instance of Pilot. Recall from the Vocabulary that
Pilot is a descendant of Employee, which means it inherits its attributes and associations. But more
important from a rule execution perspective, a Pilot is also be affected by any rules that affect Employee,
as shown:
Figure 34: Inheritance in action

69Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Using inheritance can be an efficient and powerful way to write rules on many different types of employees
(such as pilots, gate agents, baggage handlers, and mechanics) without needing to write individual rules
for each.

Progress Corticon: Rule Modeling: Version 6.370

Chapter 2: Build the Vocabulary

• Inherited Association

A similar test demonstrates how associations are inherited during rule execution. In this case, you test
Employee.hireDate to see who is qualified to operate a piece of Equipment. The += syntax used by the
Action row is explained in more detail in the Rule Language Guide.

Figure 35: Rulesheet populating the operators collection

In the following Ruletest, there is a sample Equipment entity, one Employee, and one Pilot. Both hire
dates satisfy the rule's Condition (the Pilot inheriting hireDate from its Employee ancestor as before).
When Employee was added to the operators collection alias, an instance of the association between
Equipment and Employee is created. But, what may be surprising is that the same occurs for Pilot,
which also has an association to Equipment that it inherited from Employee.

Figure 36: Inheriting an Association

71Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

TestYourself questions for Build the vocabulary
Note: Try this test, and then go to TestYourself answers for Building the vocabulary on page 350 to correct
yourself.

1. Give 3 functions of the Vocabulary.

2. True or False: All Vocabulary terms must also exist in the object or data model?

3. True or False: All terms in the object or data model must also exist in the Vocabulary?

4. True or False: In order to create the Vocabulary, an object or data model must already exist.

5. The Vocabulary is an __________ model, meaning many of the real complexities of an underlying data
model are hidden so that the rule author can focus on only those terms relevant to the rules.

6. The UML model that contains the same types of information as a Vocabulary is called a ______________

7. What are the three components (or nodes) of the Vocabulary?

8. Which of the following are acceptable attribute names?

hair colorHairColorhairColorHair_color

9. Which color is used in the Entity icon?

10.Which of the three Vocabulary components can hold an actual value?

Progress Corticon: Rule Modeling: Version 6.372

Chapter 2: Build the Vocabulary

11.What are the five main data types used by Vocabulary attributes?

12.Which colors are used in the Base attribute icon?

13.Which colors are used in the Transient attribute icon?

14.What is the purpose of a Transient Vocabulary term?

15. Associations are ________________ by default.

16. Association icons indicate:

musicalitycardinalitysingularityoptionality

17.Which of the following icons represents a one-to-many association?

18.Which of the following icons represents a one-to-one association?

19. If an association is one-directional from the Source entity to the Target entity, then which term is not available
in the Vocabulary?

Source.attributeSource.target.attributeTarget.source.attributeTarget.attribute

20. The default role name of an association from the Source entity to the Target entity is:

theTargettargetsourcerole1

21. Sketch a model for the following scenario:

22. Create a Corticon Studio Vocabulary for the model sketched in 21.

23. List the six steps in constructing a Vocabulary.

24. Cardinality of an association determines:

a. The number of possible associated entities.

b. The number of attributes for each entity.

c. The number of associations possible within an entity.

d. The number of attributes for each association.

25. The Vocabulary terms are the nouns of Corticon rules. What are the verbs?

26.What Corticon document contains the complete list of all Vocabulary operators, descriptions of their usage,
and actual examples of use in Rulesheets?

73Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Build the vocabulary

27. True or False. In addition to the supported vocabulary data types, you can create any type of custom data
type you want?

28. You must name your custom data type. Which of the following are not custom data type naming convention
requirements?

a. Cannot match any other vocabulary entity names

b. May match other Custom Data Type Names

c. Base Data Type names may not be re-used.

d. The name must comply with the standard entity naming rules.

29. True or False. The Enumeration section of the Custom Data Types exposes the Label/Value columns and
allows you to create a list of acceptable value rows.

30. Selecting no in the Enumeration section of the Custom Data Types enables the Contraint Expression. Give
an example of a Constraint Expression:

31. True or False. Constraint Expressions must be equivalent to a Boolean expression to be vaild.

32. In an Enumeration, are both the Label and Value columns required?

33.When you create Enumerated Custom Data Types, which of the following are acceptable entries for the
Value column:

‘Airbus'Airbus“12/12/2011”12/12/2011

34. Name an advantage to using Enumerated Custom Data Types when it comes to testing your rules in a
Ruletest.

35. Explain what Domains do in the Vocabulary?

36. True or False. If you use a Domain, then you are required to create an alias for each unique Entity/Domain
pair?

37. True or False. Inheritance can be modeled in a Vocabulary.

38. In the following vocabulary, which Entities have native attributes and which Entities have inherited attributes?

Progress Corticon: Rule Modeling: Version 6.374

Chapter 2: Build the Vocabulary

39. Give two examples of inherited attributes from the preceding vocabulary:

______________ ______________

40. True or False. Using Inheritance can be a way to write efficient and powerful rules. For example, one rule
could be used to modify the cadence attribute for all the entities in the preceding Vocabulary example.

75Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Build the vocabulary

Progress Corticon: Rule Modeling: Version 6.376

Chapter 2: Build the Vocabulary

3
Rule scope and context

The air cargo example that you started in the Vocabulary chapter is continued here to illustrate the important
concepts of scope and context in rule design.

A quick recap of the fact model:

Figure 37: Fact model

77Progress Corticon: Rule Modeling: Version 6.3

According to this Vocabulary, an aircraft is related to a cargo shipment through a flight plan. In other words,
it is the flight plan that connects or relates an aircraft to its cargo shipment. The aircraft, by itself, has no direct
relationship to a cargo shipment unless it is scheduled by a flight plan; or, no aircraft may carry a cargo shipment
without a flight plan. Similarly, no cargo shipment can be transported by an aircraft without a flight plan. These
facts constitute business rules in and of themselves and constrain creation of other rules because they define
the Vocabulary you will use to build all subsequent rules in this scenario.

Also recall that the company wants to build a system that automatically checks flight plans to ensure no
scheduling rules or guidelines are violated. One of the many business rules that need to be checked by this
system is:

With your Vocabulary created, you can build this rule in the Studio. As with many tasks in Studio, there is often
more than one way to do something. We will explore two possible ways to build this rule – one correct and one
incorrect.

To begin write your rule using the root-level terms in the Vocabulary. In the following figure, column #1 (the
trueCondition) is the rule you should be most interested in. The false condition in column #2 was added simply
to show a logically complete Rulesheet.

Figure 38: Expressing the rule using root-level Vocabulary terms

You can build a Ruletest to test the rule using the Cargo company's actual data, as follows:

Progress Corticon: Rule Modeling: Version 6.378

Chapter 3: Rule scope and context

The company owns 3 Aircraft, 2 747s and a DC-10, each with different tail numbers. Each box represents a
real-life example (or instance) of the Aircraft term from your Vocabulary.

Figure 39: The Cargo Company's 3 Aircraft

These aircraft give the company the ability to schedule 3 cargo shipments each night. Another business rule
is implied:– “an Aircraft cannot be scheduled for more than one flight per night”. This rule is not addressed
now because it is not relevant to the discussion}. On a given night, the cargo shipments look like those shown.
Again, like the Aircraft, these cargo shipments represent specific instances of the generic Cargo term from
the Vocabulary.

Figure 40: The three cargo shipments for the night of June 25th

79Progress Corticon: Rule Modeling: Version 6.3

Finally, the sample business process manually matches specific aircraft and cargo shipments together as three
flight plans, as shown below. This organization of data is consistent with the structure and constraints implicit
in the Vocabulary.

Figure 41: The three FlightPlans with their related Aircraft and Cargo instances

You can construct a Ruletest (in the following figure) so that the company's actual data is evaluated by the
rule. Because the rule used root-level Vocabulary terms in its construction, you use root-level terms in the
Ruletest:

Figure 42: Test the rule using root-level Vocabulary terms

Progress Corticon: Rule Modeling: Version 6.380

Chapter 3: Rule scope and context

Running the Ruletest:

Figure 43: Results of the Ruletest

81Progress Corticon: Rule Modeling: Version 6.3

Note the messages returned by the Ruletest. Recall that the intent of the rule is to verify whether a given
Flightplan is in violation by scheduling a Cargo shipment that is too heavy for the assigned Aircraft.
You already know that there are only three Flightplans. And you also know, from examination of Figure
41: The three FlightPlans with their related Aircraft and Cargo instances on page 80, that the combination of
aircraft N1003 and cargo 625C does not appear in any of the three Flightplans. So, why was this combination,
one that does not actually exist, evaluated? For that matter, why did the rule fire nine times when only three
sets of Aircraft and Cargo were present? The answer is in the way the rule was defined, and in the way the
rules engine evaluated it.

The Ruletest has three instances of both Aircraft and Cargo. Studio treats Aircraft as a collection or
set of these three specific instances. When Studio encounters the term Aircraft in a rule, it applies all
instances of Aircraft found in the Ruletest (all three instances in this example) to the rule. Because both
Aircraft and Cargo have three instances, there are a total of nine possible combinations of the two terms.
In the following figure, the set of these nine possible combinations is called a cross product, Cartesian product,
or tuple set in different disciplines. Progress uses cross-product when describing this outcome.

Figure 44: All possible combinations of Aircraft and Cargo

One pair, the combination of manifest 625B and plane N1003 (shown as the red arrow in the preceding figure),
is illegal, because the plane, a DC-10, can only carry 150,000 kilograms, while the cargo weighs 175,000
kilograms. But, this pairing does not correspond to any of the three FlightPlans created. Many of the other
combinations evaluated (five others) are not represented by real flight plans either. So why did Studio perform
three times the necessary evaluations? It is because the rule, as implemented in Figure 38: Expressing the
rule using root-level Vocabulary terms on page 78, does not capture the essential elements of scope and
context.

You want your rule to express the fact that you are only interested in evaluating the Cargo—Aircraft pair
for each FlightPlan, not for all possible combinations. How do you express this intention in your rule? You
use the associations included in the Vocabulary.

Progress Corticon: Rule Modeling: Version 6.382

Chapter 3: Rule scope and context

Refer to the following figure:

Figure 45: Rule expressed using FlightPlan as the Rule Scope

Here, the rule was rewritten using the aircraft and cargo terms from inside the FlightPlan term.

Note: Insidemeans that the Aircraft and Cargo terms that appear when the FlightPlan term is opened
in the Vocabulary tree, as shown by the orange highlights in Rule expressed using FlightPlan as the Rule
Scope.

This is significant. It means that you want the rule to evaluate the Cargo and Aircraft terms only in the
context of a FlightPlan. For example, on a different night, the Cargo company might have eight cargo
shipments assembled, but only the same three planes on which to carry them. In this scenario, three flight
plans would still be created. Should the rule evaluate all eight cargo shipments, or only those three associated
with actual flight plans? From the original business rule, only those cargo shipments in the context of actual
flight plans should be evaluated. To put it differently, the rule's application is limited to only those cargo shipments
assigned to a specific aircraft using a specific flight plan. We express these relationships in the Rulesheet by
including the FlightPlan term in the rule, so that cargo.weight is properly expressed as
FlightPlan.cargo.weight, and Aircraft.maxCargoWeight is properly expressed as
FlightPlan.aircraft.maxCargoWeight. By attaching FlightPlan to the terms
aircraft.maxCargoWeight and cargo.weight, you indicate mandatory traversals of the associations
between FlightPlan and the other two terms, Aircraft and Cargo.This instructs the rules engine to
evaluate the rule using the intended context. When writing rules, it is important to understand the context of a
rule and the scope of the data to which it will be applied.

For details, see the following topics:

• Rule scope

• Aliases

• Scope and perspectives in the vocabulary tree

• TestYourself questions for Rule scope and context

83Progress Corticon: Rule Modeling: Version 6.3

Rule scope
Because the rule evaluates both Cargo and Aircraft in the context of FlightPlan, the rule has scope,
which means that the rule evaluates only that data which matches the rule's scope. This has an interesting
effect on the way the rule is evaluated. When the rule is executed, its scope ensures that the Corticon Server
evaluates only those pairings thatmatch the same FlightPlan. This means that cargo.weight is compared
to aircraft.maxCargoWeight only if both cargo and aircraft share the same FlightPlan. This
simplifies rule expression greatly, because it eliminates the need to specify which FlightPlan is referred to
for each Aircraft-Cargo combination. When a rule has context, the system takes care of this matching
automatically by sending only those aircraft - cargo pairs that share the same flight plan to be evaluated by the
rule. And, because Corticon Studio automatically handles multiple instances as collections, it sends all pairs
to the rule for evaluation.

Note: See the Collections topic for a detailed discussion of this subject.

To test this new rule, structure your Ruletest to correspond to the new structure of your rule and reflect the
rule's scope. For more information about the mechanics of creating associations in Ruletests, see and "Add
and edit association nodes and their properties" and "Create associations in the test tree" in the Quick Reference
Guide.

Progress Corticon: Rule Modeling: Version 6.384

Chapter 3: Rule scope and context

Finally, one FlightPlan is created for each Aircraft-Cargo pair. This means that a total of three
FlightPlans are generated each night. Using the terms in your Vocabulary and the relationships between
them, Figure 41: The three FlightPlans with their related Aircraft and Cargo instances on page 80 shows the
possibilities. The rule evaluates these combinations and identifies any violations.

Figure 46: New Ruletest using flight plan as the rule scope

What is the expected result from this Ruletest? If the results follow the same pattern as in the first Ruletest,
you might expect the rule to fire nine times (three Aircraft evaluated for each of three Cargo shipments).

85Progress Corticon: Rule Modeling: Version 6.3

Rule scope

In the following figure you see that the rule fired only three times, and only for those Aircraft-Cargo pairs
that are related by common flight plans. This is the result that you want. The Ruletest shows that there are no
FlightPlans in violation of the rule.

Figure 47: Ruletest results using scope – note no violations

Progress Corticon: Rule Modeling: Version 6.386

Chapter 3: Rule scope and context

One final point about scope: it is critical that the context you choose for your rule supports the intent of the
business decision you are modeling. At the beginning of the example, the purpose of the application was to
check flightplans that have already been created. Therefore, the context of the rule was chosen so that the
rule's design was consistent with this goal: no aircraft-cargo combinations should be evaluated unless they are
already matched up using a common flight plan.

But what if the business purpose was different? What if the problem trying to be solved is modified to: Of all
possible combinations of aircraft and cargo, determine which pairings must not be included in the same flight
plan. The difference here is subtle but important. Before, you were identifying invalid combinations of pre-existing
flight plans. Now, you are trying to identify invalid combinations from all possible cargo-aircraft pairings. This
other rule might be the first step in a screening or filtering process designed to discard all the invalid combinations.
In this case, the original rule you built, root-level context, is the appropriate way to implement the rule, because
now you are looking at all possible combinations prior to creating new flight plans.

Aliases
To clean up and simplify rule expression, Corticon Studio allows you to declare aliases in a Rulesheet. Using
an alias to express scope results in a less cluttered Rulesheet.

To define an alias, you need to open the Scope tab on the Rulesheet. Either click the toolbar button to
open the advanced view, or choose the Rulesheet menu toggle Advanced View.

If rules were already modeled in the Rulesheet, then the Scope window contains those Vocabulary terms used
in the rules so far. If rules were not yet modeled, then the Scope window is empty.

To define an alias, double-click the term, and then type a unique name in the entry box, as shown:

Figure 48: Defining an alias in the Scope window

After an alias is defined, any subsequent rule modeling in the Rulesheet automatically substitutes the alias for
the Vocabulary term it represents.

87Progress Corticon: Rule Modeling: Version 6.3

Aliases

In the next illustration, notice that the terms in the Condition rows of the Rulesheet do not show the FlightPlan
term. That is because the alias plan substitutes for FlightPlan.

Figure 49: Rulesheet with FlightPlan alias declared in the Scope section

After an alias is defined, any new Vocabulary term dropped onto the Rulesheet is adjusted accordingly. For
example, dragging and dropping FlightPlan.cargo.weight onto the Rulesheet displays as
plan.cargo.weight.

Aliases work in all sections of the Rulesheet, including the Rule Statement section. Modifying an alias name
defined in the Scope section causes the name to update everywhere it is used in the Rulesheet.

Note: Rules modeled without aliases do not update automatically if aliases are defined later. So if you intend
to use aliases, define them as you start your rule modeling. That way, they apply automatically when you drag
and drop from the Vocabulary or Scope windows.

Scope and perspectives in the vocabulary tree
Because the Vocabulary is organized as a tree in Corticon Studio, it may be helpful to extend the tree analogy
to better understand what aliases do. The tree view permits us to use the business terms from a number of
different perspectives, each perspective corresponding to one of the root-level terms and an optional set of
one or more branches.

Progress Corticon: Rule Modeling: Version 6.388

Chapter 3: Rule scope and context

Table 1: Vocabulary Tree Views and Corresponding Branch Diagrams

Branch DiagramDescriptionVocabulary Tree

This portion of the Vocabulary tree
can be visualized as the branch
diagram shown to the right.
Because this piece of the
Vocabulary begins with the
FlightPlan root, the branches
also originate with the FlightPlan
root or trunk. The FlightPlan's
associated cargo and aircraft
terms are branches from the trunk.

Any rule expression that uses
FlightPlan,
FlightPlan.cargo, or
FlightPlan.aircraft is using
scope from this perspective of the
Vocabulary tree.

This portion of the Vocabulary tree
begins with Aircraft as the root,
with its associated flightPlan
branching from the root. A cargo,
in turn, branches from its associated
flightPlan.

Any rule expression that uses
Aircraft,
Aircraft.flightPlan, or
Aircraft.flightPlan.cargo
is using scope from this perspective
of the Vocabulary tree.

This portion of the Vocabulary tree
begins with Cargo as the root, with
its associated flightPlan
branching from the root. An
aircraft, in turn, branches from
its associated flightPlan.

Any rule expression that uses
Cargo, Cargo.flightPlan, or
Cargo.flightPlan.aircraft
is using scope from this perspective
of the Vocabulary tree.

Scope can also be thought of as hierarchical, meaning that a rule written with scope of Aircraft applies to
all root-level Aircraft data. And other rules using some piece (or branch) of the tree beginning with the root
term Aircraft, including Aircraft.flightPlan and Aircraft.flightPlan.cargo, also apply to this
data and its associated collections. Likewise, a rule written with the scope of Cargo.flightPlan does not
apply to root-level FlightPlan data.

89Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

This provides an alternative explanation for the different behaviors between the Rulesheets in Expressing the
Rule Using Root-Level Vocabulary Terms and Rule Expressed Using FlightPlan as the Rule Scope. The rules
in the former are written using different root terms and therefore different scopes, whereas the rules in the latter
use the same FlightPlan root and therefore share common scope.

How to use roles
Using roles in the Vocabulary can often help to clarify rule context. To illustrate this point, a slightly different
example will be used. The UML class diagram for a new (but related) sample Vocabulary is as shown:

Figure 50: UML Class Diagram without Roles

As shown in this class diagram, the entities Person and Aircraft are joined by an association. However,
can this single association sufficiently represent multiple relationships between these entities? For example,
a prior Fact Model might state that “a pilot flies an aircraft” and “a passenger rides in an aircraft”. Both pilot and
passenger are descendants of the entity Person. Furthermore, some instances of Person may be pilots and
some may be passengers. This is important because it suggests that some business rules may use Person
in its pilot context, and others may use it in its passenger context. How do you represent this in the Vocabulary
and rules in Corticon Studio?

Assume that you want to implement two new rules:

Progress Corticon: Rule Modeling: Version 6.390

Chapter 3: Rule scope and context

These rules are called cross-entity because they include more than one entity (both Aircraft and Person)
in the expression. Unfortunately, with the Vocabulary as it is, you have no way to distinguish between pilots
and passengers, so there is no way to unambiguously implement these two rules. This class diagram, when
imported into Corticon Studio, looks like this:

Figure 51: Vocabulary without roles

However, there are several ways to modify this Vocabulary to allow you to implement these rules.

Use Inheritance
Use two separate entities for Pilot and Passenger instead of a single Person entity. This may often be the
best way to distinguish between pilots and passengers, especially if the two types of Person reside in different
databases or different database tables (an aspect of deployment that rule modelers may not be aware of).
Also, if the two types of Person have some shared and some different attributes (Pilot may have attributes
like licenseRenewalDate and typeRating while Passenger may have attributes like farePaid and
seatSelection), then it may make sense to set up entities as descendants of a common ancestor entity
(such as Employee).

Add an attribute to Person
If the two types of Person differ only in their type, then you can add a personType (or similar) attribute to the
entity. In some cases, personType will have the value of pilot, and sometimes it will have the value of
passenger. The advantage of this method is that it is flexible: in the future, a Person of type manager or
bag handler or air marshal can easily be added. Also, this construction may be most consistent with the
actual structure of the employee database or database table, and maintains a normalized model. The
disadvantage comes when the rule modeler needs to refer to a specific type of Person in a rule. While this
can be accomplished using any of the filtering methods discussed in Rule Writing Techniques, they are
sometimes less convenient and clear than the final method, discussed next.

91Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

Use roles
A role is a noun that labels one end of an association between two entities. For example, in our
Person–AircraftVocabulary, the Personmay havemore than one role, or more than one kind of relationship,
with Aircraft. An instance of Person may be a pilot or a passenger; each is a different role. To illustrate
this in our UML class diagram, we add labels to the associations as follows:

Figure 52: UML class diagram with roles

When the class diagram is imported into Corticon Studio, it appears as the Vocabulary below:

Figure 53: Vocabulary with roles

Notice the differences between the two preceding Vocabularies In Vocabulary with Roles, Aircraft contains
2 associations, one labeled passenger and the other pilot, even though both associations relate to the
same Person entity. Also notice that the cardinalities of both Aircraft—Person associations have been
updated to one-to-many.

Progress Corticon: Rule Modeling: Version 6.392

Chapter 3: Rule scope and context

Written using roles, the first rule is illustrated below. There are a few aspects of the implementation to note:

• Use of aliases for Aircraft and Aircraft.pilot (plane and pilotOfPlane, respectively). Aliases
are just as useful for clarifying rule expressions as they are for shortening them.

• The rule Conditions evaluate data within the context of the plane and pilotOfPlane aliases, while the
Action posts a message to the plane alias. This enables you to act on the Aircraft entity based upon
the attributes of its associated pilots. Note that Condition row b uses a special operator (->size) that
counts the number of pilots associated with a plane. This is called a collection operator, and is explained
in detail in the section on Collections on page 129.

Figure 54: Rule #1 implemented using roles

93Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

To demonstrate how Corticon Studio differentiates between entities based on rule scope, construct a new
Ruletest that includes a single instance of Aircraft and 2 Person entities, neither of which has the role of
pilot.

Figure 55: Ruletest with no Person entities in pilot role

Although there are two Person entities, both of whom are members of the Flight Crew department, the
system recognizes that neither of them have the role of pilot (in relation to the Aircraft entity), and therefore
generates the violation message shown.

Progress Corticon: Rule Modeling: Version 6.394

Chapter 3: Rule scope and context

If you create a new Input Ruletest, then this time with both persons in the role of pilot, you see a different result,
as shown:

Figure 56: Ruletest with both Person entities in role of pilot

95Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

Finally, the rules are tested with one pilot and one passenger:

Figure 57: Ruletest with one Person entity in each of pilot and passenger roles

Despite the presence of two Person elements in the collection of test data, only one satisfies the rules' scope:
pilot associated with aircraft. As a result, the rules determine that one pilot is insufficient to fly a 747,
and the violation message is displayed.

These same concepts apply to the DC-10/Passenger business rule, which is not implemented.

Progress Corticon: Rule Modeling: Version 6.396

Chapter 3: Rule scope and context

Technical aside

Understanding rule associations and scope as relationships between tables in a
relational database
Although it is not necessary for the rule modeler or developer to understand database theory, a business or
systems analyst who is familiar with it may have already recognized that the preceding discussion of rule scope
and context is an abstraction of basic relational concepts. Actual relational tables that contain the data for the
cargo example might look like the following:

Figure 58: Tables in a relational database

Each one of these tables has a column that is a unique identifier for each row (or record). In the case of the
Aircraft table, the tailNumber is the unique identifier for each Aircraft record. This means that no two
aircraft can have the same tailNumber.ManifestNumber is the unique identifier for each Cargo record.
These unique identifiers are known as primary keys. Given the primary key, a particular record can always be
found and retrieved. A common notation uses an asterisk (*) to indicate those table columns that are primary
keys. If a Vocabulary is connected to an external database using Datasource Configuration features, then you
may notice asterisks next to attributes, indicating their designation as primary keys. See "How Datasource
information is viewed in the Vocabulary" in the Data Integration Guide for complete details.

Notice that the FlightPlan table contains columns that did not appear in the Vocabulary. Specifically,
tailNumber and manifestNumber exist in the Aircraft and Cargo entities, respectively, but you did not
include them in the FlightPlan Vocabulary entity. Does this mean that your original Vocabulary was wrong
or incomplete? No, the extra columns in the FlightPlan table are duplicate columns from the other two
tables: tailNumber came from the Aircraft table, and manifestNumber came from the Cargo table.
These extra columns in the FlightPlan table are called foreign keys because they are the primary keys from
other tables. They are the mechanism for creating relations in a relational database.

For example, flightNumber 101 (the first row or record in the FlightPlan table) includes Aircraft of
tailNumber N1001 and Cargo of manifestNumber 625A. The foreign keys in FlightPlan serve to link
or connect a specific Aircraft with a specific Cargo. If the database is queried (using a query language like
SQL, for example), then a user could determine the weight of Cargo planned for AircraftN1001 by traversing
the relationships from the Aircraft table to the FlightPlan table, you see that Aircraft N1001 is
scheduled to carry Cargo 625A. By traversing the FlightPlan table to the Cargo table, you can see that
Cargo 625A weighs 100,000 kilograms. Matching the foreign key in the FlightPlan table with the primary
key in the Cargo table makes this traversal possible.

97Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

The Corticon Vocabulary captures this essential feature of relational databases, but abstracts it in a way that
is friendlier to non-programmers. Rather than deal with concepts like foreign keys in the Vocabulary, there are
“associations” between entities. Traversing an association in the Vocabulary is equivalent to traversing a
relationship between database tables. When a term like Aircraft.tailNumber is used in a rule, Studio
creates a collection of tailNumbers from all records in the Aircraft table. This collection of data is then
fed to the rule for evaluation. If, however, the rule uses FlightPlan.aircraft.tailNumber, then Studio
creates a collection of only those tailNumbers from the Aircraft table that have FlightPlans related
to them. It identifies these aircraft instances by matching the tailNumber in the Aircraft table with the
tailNumber (foreign key) in the FlightPlan table. If the Aircraft table contains 7 instances of aircraft
(7 unique rows in the table), but the FlightPlan table contains only 3 unique instances of flight plans, the
term FlightPlan.aircraft.tailNumber creates a collection of only 3 tail numbers—those instances
from the Aircraft table that have flight plans listed in the FlightPlan table. In database terminology, the
scope of the rule determines how the tables are joined.

When FlightPlan is used as the scope for the rule, Corticon Studio automatically ensures that the collection
of data contains matching foreign keys. That is why, when the rule using proper scope, the rule only fired 3
times – there are only 3 examples of Aircraft-Cargo combinations where the keys match. This also explains
why, prior to using scope, the rule produced 6 irrelevant outcomes—6 combinations of Aircraft and Cargo
that were processed by the rule do not, in fact, exist in the FlightPlan table.

While the differences in processing requirements are not extreme in this simple example, for a large company
with a fleet of hundreds of aircraft and several thousand unique cargo shipments every day, the system
performance differences could be enormous.

TestYourself questions for Rule scope and context
Note: Try this test, and then go to TestYourself answers for Rule scope and context on page 351 to see how
you did.

Use the following Vocabulary to answer the questions.

Progress Corticon: Rule Modeling: Version 6.398

Chapter 3: Rule scope and context

99Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rule scope and context

1. How many root-level entities are in the Vocabulary?

2. Which of the following terms are allowed by the Vocabulary?

Award.movieDVD.actorActor.rolesMovie.roles

3. Which of the following terms are not allowed by the Vocabulary?

Movie.dVD.extrasMovie.roles.actorMovie.supplierMovie.oscar

4. Which Vocabulary term represents the following phrases?

• A movie's Oscars ____________________

• A movie's roles ____________________

• An actor's roles ____________________

• A DVD's distributor ____________________

• A movie's DVD extras ____________________

• An actor's Oscars ____________________

5. Which of the following terms represents the phrase “an actor in a role of a movie”

Actor.movie.rolesDVD.actor.movieActor.roles.movieMovie.roles.dVD

6. Because the association between Actor and Role is bidirectional, you can use both Actor.roles and
_____________ in the rules.

7. Which two entities are associated with each other by more than one role?

8. What are the role names?

9. Besides roles, how else could these two relationships be represented in the Vocabulary to convey the same
business meaning?

10.What is the advantage of using roles in this way?

11.When more than one role is used to associate two entities, each role name must be:

melifluouscolorfuluniquefriendly

12. True or False. Rules evaluate only data that shares the same scope

13.Write a conditional expression in a Rulesheet for each of the following phrases:

• If a movie's DVD has deleted scenes…

• If an actor played a role in a movie winning an Oscar…

• If the DVD is an import…

• If the movie was released more than 50 years before the DVD…

• If the actor ever played a leading role…

• If the movie was nominated for a Golden Globe…

Progress Corticon: Rule Modeling: Version 6.3100

Chapter 3: Rule scope and context

• If the distributor offers any drama DVDs…

Given the rule “Disney animated classics are priced in the high tier”, answer the following questions:

14.Which term should be used to represent Movie?

15.Which term should be used to represent DVD?

16. True or False. The following Rulesheet correctly relates the Movie and DVD entities?

17. Given the business intent, how many times do you want the rule to fire given this Input Testsheet?

18. Given the Ruletest above, how many times does the rule actually fire?

101Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rule scope and context

19. Assume that you update the Rulesheet to include another rule, as shown. Answer the following questions:

• Assuming the same Ruletest Input as question 17, what result do you want for Cinderella?

• What result do you want for Toy Story?

• What results do you get when the test is executed?

• How many times does each rule fire?

• How many total rule firings occurred?

• This set of combinations is called a ________________

• Does the result make business sense?

• What changes should be made to the Rulesheet so that it functions as we intend?

20. True or False. Whenever rules contain scope, you must define aliases in the Scope section of the Rulesheet.

21. Scope is another way of defining a specific _______________ in the Vocabulary

22. If you change the spelling of an alias in the Scope section, then everywhere that alias is used in the Rulesheet
will:

be ignoredbe updatedbe deletedturn red

23. True or False. The spelling of an alias can be the same as the Vocabulary entity it represents?

Progress Corticon: Rule Modeling: Version 6.3102

Chapter 3: Rule scope and context

4
Rule writing techniques

The Corticon Studio Rulesheet is a very flexible device for writing and organizing rules. It is often possible to
express the same business rule multiple ways in a Rulesheet, with all forms producing the same logical results.
Some common examples, as well as their advantages and disadvantages, are discussed in this set of topics.

For details, see the following topics:

• How to work with rules and filters in natural language

• Filters versus conditions

• Qualify rules with ranges and lists

• How to use standard Boolean constructions

• How to embed attributes in posted rule statements

• How to include apostrophes in strings

• TestYourself questions for Rule writing techniques and logical equivalents

How to work with rules and filters in natural language
Progress Corticon lets you use Natural Language (NL) words, phrases, and sentences as substitute terms in
Rulesheet conditions and actions, making it easier to discuss the rules with stakeholders and analysts.

To use natural language on a Rulesheet:

1. Right-click within a Rulesheet, and then choose Natural Language.

2. The Natural Language view opens, and typically places itself above the Rulesheet, as shown:

103Progress Corticon: Rule Modeling: Version 6.3

Note: If the Natural Language window does not open, chooseWindow>Show View>Natural Language.

3. Enter plain language descriptive text for each condition and action, as shown:

While your use of natural language might vary, it is good practice to use a consistent, clear style. Here are
some tips:

• Use If in the text for conditions and Then in the text for actions.

• Conditions that are True/False often read better as questions.

• Adding ellipses helps a reader continue the expression with the values in its column cells.

• If you enter no natural language text, then the existing expression is shown.

4. Expose your natural language expressions in the Rulesheet by either clicking the Show Natural Language

toolbar button , or Rulesheet > Show Natural Language. The natural language is displayed as shown:

Progress Corticon: Rule Modeling: Version 6.3104

Chapter 4: Rule writing techniques

In Natural Languagemode, the values in rule columns can be edited but the Condition and Action expressions
are locked and cannot be edited.

5. Save the Rulesheet to store its expressions as well as its natural language data.

6. You can revert to the actual, editable expressions by clicking the Hide Natural Language toolbar button

, or Rulesheet > Hide Natural Language.

7. Close the Natural Language view by clicking its close button.

Using natural language as an aid to Rulesheet design

You can create natural language phrases for the conditions, actions, and filters before defining those expressions.

Adding the natural language phrase makes the next line available for additional entries. Then, in the Rulesheet,
define the expression that satisfies the natural language phrase, as shown:

105Progress Corticon: Rule Modeling: Version 6.3

How to work with rules and filters in natural language

Localization with natural language

When your stakeholders are comfortable in different natural languages, you can accommodate them easily
with the natural language feature.

Progress Corticon: Rule Modeling: Version 6.3106

Chapter 4: Rule writing techniques

When you enable locales, the Natural Language window adds columns for the other locales. You can then
define Natural Language text for each of those locales, as shown:

Filters versus conditions
The Filters section of a Rulesheet can contain one or more master conditional expressions for that Rulesheet.
In other words, other business rules fire if and only if data survives the Filter, and shares the same scope as
the rules. Using the air cargo example from the previous chapter, model the following rule:

Figure 59: Rulesheet using a filter and nonconditional rule

107Progress Corticon: Rule Modeling: Version 6.3

Filters versus conditions

Here, the value of an aircraft's maxCargoWeight attribute is assigned by column 0 in the Conditions/Actions
pane (what is sometimes called a nonconditional or action-only rule because it has no conditions). The filter
acts as a master conditional expression because only aircraft that satisfy the filter. In other words, only those
aircraft of aircraftType = '747', successfully “pass through” to be evaluated by rule column 0, and are
assigned a maxCargoWeight of 200000. This effectively filters out all non-747 aircraft from evaluation by
rule column 0.

If this filter were not present, all Aircraft, regardless of aircraftType, would be assigned a
maxCargoWeight of 200000 kilograms. Using this method, additional Rulesheets can be used to assign
different maxCargoWeight values for each aircraftType. The Filters section can be thought of as a
convenient way to quickly add the same conditional expression or constraint to all other rules in the same
Rulesheet.

You can also achieve the same results without using filters. The following figure shows how you use a
Condition/Action rule to duplicate the results of the previous Rulesheet. The rule is restated as an if/then type
of statement: if the aircraftType is 747, then maxCargoWeight equals 200000 kilograms.

Figure 60: Rulesheet using a conditional rule

Regardless of how you choose to express logically equivalent rules in a Rulesheet, the results will be equivalent.
While the logical result may be identical, the time required to produce those results may not be. See How to
optimize Rulesheets on page 290 for information about compression techniques that remove redundancies.

There may be times when it is advantageous to choose one way of expressing a rule over another, at least in
terms of the visual layout, organization, and maintenance of the business rules and Rulesheets. The example
discussed in the preceding paragraphs was very simple because only one action was taken as a result of the
filter or condition. In cases where there are multiple actions that depend on the evaluation of one or more
conditions, it may make the most sense to use the Filters section. Conversely, there may be times when using
a condition makes the most sense, such as the case where there are numerous values for the condition that
each require a different action or set of actions as a result. In the preceding example, there are different types
of aircraft in the company's fleet, and each has a different maxCargoWeight value assigned to it by rules.
This could easily be expressed on one Rulesheet by using a single row in the Conditions section. It would
require many Rulesheets to express these same rules using the Filters section.

Qualify rules with ranges and lists
You can use values for any data type except Boolean in conditions, condition cells, and filters.

These values can be imprecise. They can be in the form of a range expressed in the format: x..y, where x
and y are the starting and ending values for the range.

Progress Corticon: Rule Modeling: Version 6.3108

Chapter 4: Rule writing techniques

The values can also be very specific. They can be in the form of a list expressed in the format {x,z,y}, where
the values are in any order but must adhere to the data type or the defined labels when the data type is bound
to an enumerated list with labels.

Ranges and lists in conditions and filters
Conditions and filters can qualify data by testing for inclusion in a from-to range of values or in a comma-delimited
list. The result returned is true or false. All attribute data types except Boolean can use ranges and lists in
conditions and filters.

Value ranges in condition and filter expressions
You can use value range expressions in conditions or filters.

Syntax of value ranges in conditions and filter rows
When you use the in operator to specify a range of values, you can specify the range in a several ways. The
following illustration shows how you can encapsulate a range:

Figure 61: Rulesheet filters showing ways to encapsulate a range

where:

• Filter 8 does no encapsulation.

• Filter 9 uses braces for encapsulation. Its delimiter in the expression is a comma, rather than two dots like
the others. Because this syntax defines a set and overloads the syntax for a list, it is a good practice to not
use it to encapsulate a range.

• Filters 10 through 13 use (and mix) parentheses and brackets where a bracket on either side expresses
that the value on that side also passes the test.

109Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Examples of value ranges in filter rows
The following value ranges show how the Corticon data types can be used as Filter expressions.

Figure 62: Rulesheet filters showing the syntax of ranges for each data type

Notice that ranges are always from..to. The examples show that negative decimal and integer values can be
used, and that uppercase and lowercase characters are filtered separately.

Value lists in condition and filter expressions
You can use value list expressions in conditions or filters.

Syntax of value list in conditions and filter rows
When you use the in operator to specify a list of values, you can encapsulate the range in only one way:

Figure 63: Rulesheet Filters showing encapsulation of a list

The value list is always enclosed in braces. The order of the items in the comma-delimited list is arbitrary.

Progress Corticon: Rule Modeling: Version 6.3110

Chapter 4: Rule writing techniques

Ranges and value sets in condition cells
When using values in condition cells for attributes of any data type except Boolean, the values do not need to
be discreet. They can be in the form of a range. A value range is typically expressed in the following format:
x..y, where x and y are the starting and ending values for the range inclusive of the endpoints if there is no
other notation to indicate otherwise, as illustrated:

Figure 64: Rulesheet using value ranges in the column cells of a condition row

In this example, a maxCargoWeight value is assigned to each Aircraft depending on the flightNumber
value from the FlightPlan that Aircraft is associated with. The value range 101..200 represents all
values (integers in this case) between 101 and 200, including the range endpoints 101 and 200. This is an
inclusive range; the starting and ending values are included in the range.

111Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Corticon Studio also gives you the option of defining value ranges where one or both of the endpoints are not
inclusive, meaning that they are not included in the range of values. This is the same idea as the difference
between greater than and greater than or equal to. The following figure shows the same Rulesheet as in the
previous figure, but with one difference: the value range was changed from 201..300 to (200..300]. The
starting parenthesis (indicates that the starting value for the range, 200, is exclusive; it is not included in the
range. The ending bracket] indicates that the ending value is inclusive. Because flightNumber is an integer
value, and therefore there are no fractional values allowed, so 201..300 and (200..300] are equivalent.

Figure 65: Rulesheet using open-ended value ranges in condition cells

All of the possible combinations of parenthesis and bracket notation for value ranges and their meanings are:

Figure 66: Rulesheet using open-ended value ranges in condition cells

If a value range has no enclosing parentheses or brackets, it is assumed to be inclusive. It is therefore not
necessary to use the [..]notation for a closed range in Corticon Studio. However, should either end of a value
range have a parenthesis or a bracket, then the other end must also have a parenthesis or a bracket. For
example, x..y) is not allowed, and is properly expressed as [x..y).

Value ranges can also be used in the Filters section of the Rulesheet. See the Ranges and lists in conditions
and filters on page 109 for details about usage.

Progress Corticon: Rule Modeling: Version 6.3112

Chapter 4: Rule writing techniques

Boolean condition versus values set
A simple Boolean Condition that evaluates to either True or False might look llike this:

Figure 67: Rulesheet using a conditional rule

The action related to this condition is either selected or not, on or off, meaning the value of maxCargoWeight
is either assigned the value of 200,000 or it is not. (Action statements are activated by selecting the check
box that automatically appears when the cell is clicked.)

However, there is another way to express both conditions and actions using values sets.
Figure 68: Rulesheet illustrating use of multiple values in the same condition row

By using different values in the column cells of Condition and Action rows in this Rulesheet, you can write
multiple rules (represented as different columns in the table) for different condition-action combinations.
Expressing these same rules using Boolean expressions requires many more Condition and Action rows, and
would fail to take advantage of the semantic pattern that these three rules share.

113Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Exclusionary syntax
The following examples are logically equivalent:

Figure 69: Exclusionary logic using Boolean condition, Pt. 1

Figure 70: Exclusionary logic using Boolean condition, Pt. 2

Figure 71: Exclusionary logic using negated value

Progress Corticon: Rule Modeling: Version 6.3114

Chapter 4: Rule writing techniques

Notice that the last example uses the unary function not, described in more detail in theRule Language Guide,
to negate the value 747 selected from the values set.

Once again, you can see that the same rule can be expressed in different ways on the Rulesheet, with identical
results. The rule modeler decides which way of expressing the rule is preferable in a given situation. Progress
recommends, however, avoiding double negatives. Most people find it easier to understand attribute=T
instead of attribute<>F, even though logically the two expressions are equivalent.

Note: This discussion of Boolean logic assumes bi-value logic. If tri-value logic is assumed (such as, for a
non-mandatory attribute), meaning the null value is available in addition to true and false, then these two
expressions are not equivalent. If attribute = null, then the truth value of attribute<>F is true while that of
attribute=T is false.

How to use other in condition cells
Sometimes it is easier to define values we don't want matched than it is to define those we do. In the example
shown above in Exclusionary Logic Using Negated Value, a maxCargoWeight is assigned when
aircraftType is not a 747. But, what would you write in the Conditions cell if you want to specify any
aircraftType other than those specified in any of the other Conditions cells? For this, you use a special
term in the Operator Vocabulary named other, shown in the following figure:

Figure 72: Literal term other in the Operator Vocabulary

The term other provides a simple way of specifying any value other than any of those specified in other cells
of the same Conditions row. The following figure illustrates how you can use other in the example.

Here, a new rule (column 4) was added that assigns a maxCargoWeight of 50000 to any aircraftType
other than the specific values identified in the cells in Condition row a (for example, a 727). The Rulesheet is
now complete because all possible condition-action combinations are explicitly defined by columns in the
decision table.

115Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Numeric value ranges in conditions
Figure 73: Rulesheet using numeric value ranges in condition values set

In this example, an integer2 value is assigned to Entity1 depending on its integer1 value. The value
range 101..200 represents all values (integers in this case) between 101 and 200, including 101 and 200.
This is an inclusive range because both the starting and ending values are included in the range.

String value ranges in condition cells
When using value range syntax with String types, be sure to enclose literal values inside single quotation marks,
as shown in the following figure. Corticon Studio will add the single quotation marks for you, but always check
to make sure it has interpreted your entries correctly.

Figure 74: Rulesheet using String value ranges in condition values set

Progress Corticon: Rule Modeling: Version 6.3116

Chapter 4: Rule writing techniques

Value sets in condition cells
Most conditions implemented in the Rules section of the Rulesheet use a single value in a cell, as shown:

Figure 75: Rulesheet with one value selected in condition cell

Sometimes, however, it is useful to combine more than one value in the same cell. You do this by holding
CTRL while clicking multiple values from the Condition cell's drop-down list. Then, pressing ENTER encloses
the resulting set in braces {..} in the cell as shown in the sequence of the next two figures. Additional values
may also be typed into Cells.

Figure 76: Rulesheet with two values selected in condition cell

Figure 77: Rulesheet with value set in condition cell

117Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

The rule implemented in Column 1 of the preceding figure is logically equivalent to the Rulesheet shown in the
following figure:
Figure 78: Rulesheet with two rules instead of a value set

Both are implementations of the following rule statement:

If you write rules using the logical OR operator in separate columns, performing a Compression reduces
the Rulesheet to the fewest number of columns possible by creating value sets in cells wherever possible. Fewer
columns results in faster Rulesheet execution, even when those columns contain value sets. Compressing the
Rulesheet in Rulesheet with two rules instead of a value set results in the Rulesheet in Rulesheet with value
set in condition cell.

Condition cell value sets can also be negated using the NOT operator. To negate a value, type not in front of
the leading brace {, as shown in Negating a Value Set in a Condition Cell. This is an implementation of the
following rule statement:

Given the condition cell's value set, the rule statement is equivalent to:

Figure 79: Negating a value set in a condition cell

Value sets can also be created in the Overrides Cells at the bottom of each column. This allows one rule to
override multiple rules in the same Rulesheet.

Progress Corticon: Rule Modeling: Version 6.3118

Chapter 4: Rule writing techniques

Variables as condition cell values
You can use a variable as a condition's cell value. However, there are constraints:

• Either all of the rule cell values for a condition row contain references to the same variable (with the exception
of dashes), or none of the rule cell values for a condition row reference any variable.

• Only one variable can be referenced by various rules for the same condition row.

• Logical expressions in the various rules for the same condition row should be logically non-overlapping.

• A condition value that uses a colon, such as A:B, is not valid.

Derived value sets are created by accounting for all logical ranges possible around the variable.

Note: The issue with using multiple attributes in a condition row (or attributes mixed with literals) is a warning,
not an error; as such, analysis functions are not available.

The following Rulesheet uses the Cargo Vocabulary to illustrate the valid and invalid use of variables. Note
that the Vocabulary editor marks invalid values in red.

Derived values when using variables
The following tables abbreviate the attribute references shown in the illustration.

Table 2: Rulesheet columns

Derived Value Set321Conditions

{< C.v, > C.v, C.v}C.v> C.v< C.vA.maxCV

{<= C.v, > C.v }> C.v<= C.vA.maxCV

{< C.v, > C.v, C.v }> C.v< C.vA.maxCV

{< C.v, >= C.v}< C.vA.maxCV

119Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Incorrect use of variables

Table 3: Rulesheet condition f: Attempt to use multiple variables

321Conditions

C.v> FP.c.v< C.vA.maxCV

Table 4: Rulesheet condition g: Attempt to mix variables and literals

321Conditions

10..155< C.vA.maxCV

Table 5: Rulesheet condition h: Attempt to use logically overlapping expressions

321Conditions

C.v<= C.v< C.vA.maxCV

DateTime, date, and time value ranges in condition cells
When using value range syntax with date types, be sure to enclose literal date values inside single quotation
marks, as shown:

Figure 80: Rulesheet using a date value range in condition cells

Progress Corticon: Rule Modeling: Version 6.3120

Chapter 4: Rule writing techniques

Inclusive and exclusive ranges
Corticon Studio also gives you the option of defining value ranges where one or both of the starting and ending
values are not inclusive, meaning that the starting and ending value is not included in the range of
values. Rulesheet using an integer value range in condition values set shows the same Rulesheet as in
Rulesheet using numeric value ranges in condition values set, but with one difference: the value range 201..300
was changed to (200..300]. The starting parenthesis (indicates that the starting value for the range, 200,
is excluded. It is not included in the range of possible values. The ending bracket] indicates that the ending
value is inclusive. Because integer1 is an integer value, and therefore no fractional values are allowed,
201..300 and (200..300] are equivalent, and the values set in Rulesheet using an integer value range in
condition values set is still complete, as it was in Rulesheet using numeric value ranges in condition values
set.

Figure 81: Rulesheet using an integer value range in condition values set

All of the possible combinations of parenthesis and bracket notation for value ranges and their meanings are:

As illustrated in Rulesheet using numeric value ranges in condition values set and Rulesheet using an integer
value range in condition values set, if a value range has no enclosing parentheses or brackets, then it is
assumed to be closed. It is, therefore, not necessary to use the [..] notation for a closed range in Corticon
Studio. In fact, if you try to create a closed value range by entering [..], then the brackets are automatically
removed. However, should either end of a value range have a parenthesis or a bracket, then the other end
must also have a parenthesis or a bracket. For example, x..y) is not allowed, and is correctly expressed as
[x..y).

When using range notation, always ensure that x is less than y, that is, an ascending range. A range where x
is greater than y (a descending range) can result in errors during rule execution.

121Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Value ranges that overlap
One final note about value ranges: they might overlap. In other words, condition cells can contain the two
ranges 0..10 and 5..15. It is important to understand that when overlapping ranges exists in rules, the rules
containing the overlap are frequently ambiguous, and more than one rule may fire for a given set of input
Ruletest data. Rulesheet with Value Range Overlap shows an example of value range overlap.
Figure 82: Rulesheet with value range overlap

Figure 83: Rulesheet expanded with conflict check applied

Progress Corticon: Rule Modeling: Version 6.3122

Chapter 4: Rule writing techniques

Figure 84: Ruletest showing multiple rules firing for given test data

Alternatives to value ranges
As you might expect, there is another way to express a rule that contains a range of values. One alternative
is to use a series of Boolean conditions that cover the ranges of concern, as illustrated:

Figure 85: Rulesheet using Boolean conditions to express value ranges

The rules here are identical to the rules inRulesheet Using Value Ranges in the ColumnCells of a Condition
Row and Rulesheet Using Open-Ended Value Ranges in Condition Cells, but are expressed using a series
of three Boolean conditions. Recall that in a decision table, values aligned vertically in the same column
represent conditions that use the AND operator. So rule 1, as expressed in column 1, reads:

The following expresses this rule in friendlier, more natural English:

123Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

This is how the rule is expressed in the Rule Statements section in the preceding figure, Rulesheet Using
Boolean Conditions to Express Value Ranges. The same rules can also be expressed using a series of
Rulesheets with the applicable range of flightNumber values constrained by filters. Corticon Studio gives
you the flexibility to express and organize your rules any number of possible ways. As long as the rules are
logically equivalent, they produce identical results when executed.

In the case of rules involving numeric value ranges as opposed to discrete numeric values, the value range
option allows you to express your rules in a simple and elegant way. It is especially useful when dealing with
decimal type values.

How to use standard Boolean constructions
A decision table is a graphical method of organizing and formalizing logic. If you have a background in computer
science or formal logic, then you may have seen alternative methods. One such method is called a truth table.

The section "Standard Boolean Constructions" in the Rule Language guide presents several standard truth
tables (AND, NAND, OR, XOR, NOR, and XNOR) with examples of usage in a Rulesheet.

How to embed attributes in posted rule statements
It is frequently useful to embed attribute values within a Rule Statement, so that posted messages contain
actual data. Special syntax must be used to differentiate the static text of the rule statement from the dynamic
value of the attribute. As shown in Sample Rulesheet with Rule Statements Containing Embedded Attributes,
an embedded attribute must be enclosed by braces {..} to distinguish it from the static Rule Statement text.

It may also be helpful to indicate which parts of the posted message are dynamic, so a user seeing a message
knows which part is based on current data and which part is the standard rule statement. As shown in Sample
Rulesheet with Rule Statements Containing Embedded Attributes, brackets are used immediately outside the
braces so that the dynamic values inserted into the message at rule execution are enclosed withing brackets.
The use of these brackets is optional; other characters can be used to achieve the intended visual distinction.

Progress Corticon: Rule Modeling: Version 6.3124

Chapter 4: Rule writing techniques

Remember, action rows execute in numbered order (from top to bottom in theActions pane), so a rule statement
that contains an embedded attribute value must not be posted before the attribute has a value. Doing so results
in a null value inserted in the posted message.

Figure 86: Sample Rulesheet with rule statements containing embedded attributes

Figure 87: Rule Messages window showing bracketed embedded attributes

When an attribute uses an enumerated Custom Data Type, the dynamic value embedded in the posted rule
message is the value, not the label. See the Rule Modeling Guide, “Building the Vocabulary” chapter for more
information about Custom Data Types.

No expressions in Rule Statements

A reminder about the tables "Usage restrictions" in the Rule Language Guide, which specifies that the only
parts of the Vocabulary that can be embedded in rule statements are attributes. No operators or expressions
are permitted inside rule statements. Often, operators cause error messages when you try to save a Rulesheet.
Sometimes the rule statement turns red. Sometimes an embedded equation executes as you intended, but no
obvious error occurs, but the rule does not execute as intended. Remember that operators and expressions
are not supported in rule statements.

125Progress Corticon: Rule Modeling: Version 6.3

How to embed attributes in posted rule statements

How to include apostrophes in strings
String values in Corticon Studio are always enclosed in single quotation marks. But occasionally, you may want
the String value to include single quotation marks, or apostrophes. If you enter the following text in Corticon
Studio:

entity1.string1='Jane's dog Spot'

The text turns red, because Corticon Studio thinks that the string1 value is 'Jane' and the remaining text
s dog Spot' is invalid.

To properly express a String value that includes single quotation marks or apostrophes, you must use the
special character backslash (\) that tells Corticon Studio to ignore the apostrophe, as shown:

entity1.string1='Jane\'s dog Spot'

When preceded by the backslash, the second apostrophe is ignored and assumed to be just another character
within the String. This notation works in all sections of the Rulesheet, including values sets. It also works in the
Possible Values section of the Vocabulary Editor.

TestYourself questions for Rule writing techniques
and logical equivalents

Note: Try this test, and then go to TestYourself answers for Rule writing techniques and logical equivalents
on page 353 to see how you did.

1. Filters act as master rules for all other rules in the same Rulesheet that share the same _________.

2. An expression that evaluates to a true or false value is called a _________ expression.

3. True or False. Condition row values sets must be complete.

4. True or False. Action row values sets must be complete.

5. The special term __________ can be used to complete any condition row values set.

6. Which operator is used to negate a Boolean expression?

7. If a Boolean expression is written in a condition row, which values are automatically entered in the values
set when Enter is pressed?

8. A Filter expression written as Entity.boolean1=T is equivalent to which of the following? (Circle all that
apply.)

not
(Entity.boolean1=F)

Entity.boolean1=FEntity.boolean1<>FEntity.boolean1

9. Of all alternatives listed in Question 8, which is the best choice? Why?

10. Describe the error (if any) in each of the following value ranges. Assume all are used in Conditions values
sets.

Progress Corticon: Rule Modeling: Version 6.3126

Chapter 4: Rule writing techniques

{1…10, other}a.

b. {1..a, other}

c. {‘a'..other}

d. {1..10, 5..20, other}

e. {1..10, [10..20), other}

f. {‘red', ‘green', ‘blue'}

g. {<0, 0..15, >3}

11. True or False. The special term other can be used in Action row values sets.

12. Using best practices discussed in this section, model the following rules on a single Rulesheet:

• If the part is in stock and it has a blue tag, then the part's discount is 10%.

• If the part is in stock and it has a red tag, then the part's discount is 15%.

• If the part is in stock and it has a yellow tag, then the part's discount is 20%.

• If the part is in stock and it has a green tag, then the part's discount is 25%.

• If the part is in stock and it has any other color tag, then the part's discount is 5%.

13. True or False. A nonconditional rule is equivalent to an action expression with no condition.

14. True or False. A nonconditional rule is governed by any preconditions on the same Rulesheet.

127Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rule writing techniques and logical equivalents

Progress Corticon: Rule Modeling: Version 6.3128

Chapter 4: Rule writing techniques

5
Collections

Collections enable operations to be performed on a set of instances specified by an alias.

For details, see the following topics:

• How Corticon Studio handles collections

• How to visualize collections

• A basic collection operator

• How to filter collections

• How to use aliases to represent collections

• Sorted aliases

• Advanced collection sorting syntax

• Statement blocks

• Using sorts to find the first or last in grandchild collections

• Singletons

• Special collection operators

• Aggregations that optimize EDC database access

• TestYourself questions for Collections

129Progress Corticon: Rule Modeling: Version 6.3

How Corticon Studio handles collections
Support for using collections is extensive in Corticon Studio. The integration of collection support in the Rule
Language is so seamless and complete that the rule modeler often discovers that rules are performing multiple
evaluations on collections of data beyond what they anticipated! This is partly the point of a declarative
environment. The rule modeler need only be concerned with what the rules do, rather than how they do it. How
the system iterates or cycles through all the available data during rule execution should not be of concern.

As you saw in previous examples, a rule with term FlightPlan.aircraft was evaluated for every instance
of FlightPlan.aircraft data delivered to the rule, either by a message or by a Ruletest (which are really
the same thing, because the Ruletest serves as a quick and convenient way to create message payloads and
send them to the rules). A rule is expressed in Corticon Studio the same way regardless of howmany instances
of data are to be evaluated by it. Contrast this to more traditional procedural programming techniques, where
for-do or while-next type looping syntax is often required to ensure all relevant data is evaluated by the logic.

How to visualize collections
Collections of data can be visualized as discrete portions, subsets, or branches of the Vocabulary tree. A parent
entity is associated with a set of child entities, which are called call elements of the collection. The collection
of pilots can be illustrated as:

Figure 88: Visualization of a collection of pilots

In this figure, the aircraft entity is the parent of the collection, while each pilot is a child element of the
collection. As you saw in the role example, this collection is expressed as aircraft.pilot in the Corticon
Rule Language. It is important to reiterate that this collection contains scope. You are seeing the collection of
pilots as they relate to this aircraft. Or, more simply, you are seeing a plane and its 2 pilots, arranged in a way
that is consistent with the Vocabulary. Whenever a rule exists that contains or uses this same scope, it also
automatically evaluates this collection of data. And, if there are multiple collections with the same scope (for
example, several aircraft, each with its own collection of pilots), then the rule automatically evaluates all those
collections as well. In the Corticon lexicon, evaluate has a different meaning than fire. Evaluate means that a
rule's scope and conditions will be compared to the data to see if they are satisfied. If they are satisfied, then
the rule fires, and its actions are executed.

Progress Corticon: Rule Modeling: Version 6.3130

Chapter 5: Collections

Collections can be much more complex than this simple pilot example. For instance, a collection can include
more than one type or level of association:

Figure 89: Three-level collection

This collection is expressed as parent.child.grandchild in the Corticon Rule Language.

Note: The parent and child nomenclature is a bit arbitrary. Assuming bidirectional associations, a child from
one perspective could also be a parent in another.

A basic collection operator
As an example, use the ->size operator.

For more information, see "Size of collection" in the Corticon.js Rule Language Guide.

This operator returns the number of elements in the collection that it follows in a rule expression. Using the
collection from Visualization a Collection of Pilots:

aircraft.pilot -> size

returns the value of 2. In the expression:

aircraft.crewSize = aircraft.pilot -> size

crewSize (assumed to be an attribute of Aircraft) is assigned the value of 2.

Corticon Studio requires that all rules containing collection operators use unique aliases to represent the
collections. How to use aliases to represent collections is described in greater detail in this chapter. A more
accurate expression of the previous rule becomes:

plane.pilot -> size

or

plane.crewsize = plane.pilot -> size

where plane is an alias for the collection of pilots on aircraft.

131Progress Corticon: Rule Modeling: Version 6.3

A basic collection operator

How to filter collections
The process of screening specific elements from a collection is known as filtering, and the Corticon Studio
supports filtering by a special use of Filter expressions. See the Filters and preconditions on page 209 topic for
more details.

How to use aliases to represent collections
Aliases provide a means of using scope to specify elements of a collection; more specifically, you use aliases
(expressed or declared in the Scope section of the Rulesheet) to represent copies of collections. This concept
is important because aliases give you the ability to operate on and compare multiple collections, or even multiple
instances of the same collection. There are situations where such operations and comparisons are required
by business rules. Such rules are not easy (and sometimes not possible) to implement without using aliases.

Note: To ensure that the system knows which collection (or copy) you are referring to in your rules, use a
unique alias to refer to each collection.

For the purposes of illustration, a new scenario and business Vocabulary will be used. This new scenario
involves a financial services company that compares and ranks stocks based on the values of attributes such
as closing price and volume. A model for doing this kind of ranking can get very complex in real life; however,
this example is kept simple. The new Vocabulary is illustrated in a UML class diagram:

Figure 90: Security Vocabulary UML class diagram

This Vocabulary consists of only two entities:

Security: Represents a security (stock) with attributes like security name (secName), ticker symbol, and
rating.

SecInfo: Is designed to record information for each stock for each business day (busDay); attributes include
values recorded for each stock (closePrice and volume) and values determined by rules (totalWeight
and rank) each business day.

The association between Security and SecInfo is 1..* (one-to-many) because there are multiple instances
of SecInfo data (multiple days of historical data) for each Security.

In this scenario, three rules determine a security's rank:

Progress Corticon: Rule Modeling: Version 6.3132

Chapter 5: Collections

Finally, rules are used to assign a rank based on the total weight. It is interesting to note that although the rules
refer to a security's closing price, volume, and rule weights, these attributes are actually properties of the
SecInfo entity. The Rulesheet that accomplishes these tasks is this:

Figure 91: Rulesheet with ranking model rules 1 and 2

In the preceding figure, two business rules are expressed in a total of four rule models (one for each possible
outcome of the two business rules). The rules are straightforward, but the shortcuts (alias values) used in these
rules are different than other rules you have seen. In the Scope section, you see that Security is the scope
for the Rulesheet, which is not a new concept. But then, there are two aliases for the SecInfo entities associated
with Security: secinfo1 and secinfo2. Each of these aliases represents a separate but identical collection
of the SecInfo entities associated with Security. In this Rulesheet, you constrain each alias by using filters.
In a later example, you will see how more loosely constrained aliases can represent many different elements
in a collection when the rules engine evaluates rules. In this example, though, one instance of SecInfo
represents the current business day (today), and the other instance represents the previous business day
(today.addDays(-1).)

Note: For details about the .addDays operator, see that topic in the Rule Language Guide.

After the aliases are created and constrained, you can use them in your rules where needed. In the figure
Rulesheet with Ranking Model Rules 1 and 2, you see that the use of aliases in the Conditions section
allows comparison of closePrice and volume values from one specific SecInfo element (the one with
today's date) of the collection with another (the one with yesterday's date).

133Progress Corticon: Rule Modeling: Version 6.3

How to use aliases to represent collections

The following figure shows a second Rulesheet that uses a nonconditional rule to calculate the sum of the
partial weights from the model rules determined in the first Rulesheet, and conditional rules to assign a rank
value between 1 and 4 to each security based on the sum of the partial weights. Because you are only dealing
with data from the current day in this Rulesheet (as specified in the filters), only one instance of SecInfo per
Security applies, and we do not need to use aliases.

Figure 92: Rulesheet with total weight calculation and rank determination

You can test your new rules using a Ruleflow to combine the two Rulesheets. In a Ruletest that executes the
Ruleflow, you expect to see the following results:

1. The Security.secInfo collection that contains data for the current business day (the expectation is that
this collection reduces to a single secinfo element, because only one secinfo element exists for each
day) should be assigned to alias secinfo1 for evaluating the model rules.

2. The SecInfo instance that contains data for the previous business day (again, the collection filters to a
single secinfo element for each Security) should be assigned to alias secinfo2 for evaluating the
model rules.

3. The partial weights for each rule, sum of partial weights, and resulting rank value should be assigned to the
appropriate attributes in the current business day's SecInfo element.

Progress Corticon: Rule Modeling: Version 6.3134

Chapter 5: Collections

A Ruleflow constructed for testing the ranking model rules is as shown:

Figure 93: Ruleflow to test two Rulesheets in succession

Figure 94: Ruletest for testing security ranking model rules

In this figure, one Security object and three associated SecInfo objects were added from the Vocabulary.
The current day at the time of the Ruletest is 11/12/2020, so the three SecInfo objects represent the current
business day and two previous business days. The third business day is included in this Ruletest to verify that
the rules are using only the current and previous business days. None of the data from the third business day
should be used if the rules are executing correctly. Based on the values of closePrice and volume in the
two SecInfo objects being tested, you expect to see the highest rank of 4 assigned to your security in the
current business day's SecInfo object.

135Progress Corticon: Rule Modeling: Version 6.3

How to use aliases to represent collections

Figure 95: Ruletest for security ranking model rules

Both closePrice and volume for 11/12/2020 were higher than the values for those same attributes on
11/11/2020; therefore, both rule1Weight and rule2Weight attributes were assigned their high values by
the rules. Accordingly, the totalWeight value calculated from the sum of the partial weights was the highest
possible value, and a rank of 4 was assigned to this security for the current day.

As previously mentioned, the preceding example was tightly constrained in that the aliases were assigned to
two specific elements of the referenced collections. What about the case where there are multiple instances
of an entity that you would like to evaluate with your rules?

Progress Corticon: Rule Modeling: Version 6.3136

Chapter 5: Collections

The second example is also based on the security ranking scenario, but, in this example, the rank assignment
that was accomplished will be done in a different way. Instead, you will rank a number of securities based on
their relative performance to one another, rather than against a preset ranking scheme. In the rules for the new
example, you compare the totalWeight value that is determined for each security for the current business
day against the totalWeight of every other security, and determine a rank based on this comparison of
totalWeight values. A Rulesheet for this alternate method of ranking securities is shown in the next figure.

Figure 96: Rulesheet with alternate rank determination rules

In these new ranking rules, aliases were created to represent specific instances of Security and their
associated collections of SecInfo. As in the previous example, filters constrain the aliases, most notably in
the case of the SecInfo instances, where secInfo1 and secInfo2 are filtered for a specific value of busDay
(today's date). However, our Security instances were loosely constrained. You have a filter that prevents
the same element of Security from being compared to itself (when sec1 = sec2). No other constraints are
placed on the Security aliases.

137Progress Corticon: Rule Modeling: Version 6.3

How to use aliases to represent collections

Note that single elements of Security are not assigned to our aliases. Instead, the rules engine is instructed
to evaluate all allowable combinations (that is, all those combinations that satisfy the first filter) of Security
elements in the collection in each of the aliases (sec1 and sec2). For each allowable combination of Security
elements, the totalWeight values from the associated SecInfo element for busDay = today are compared,
and increment the rank value for the first SecInfo element (secinfo1) by 1 if its totalWeight is greater
than that of the second SecInfo object (secinfo2). The end result should be the relative performance ranking
of each security.
Figure 97: Input Testsheet for testing alternate security ranking model rules

This figure shows a Ruletest constructed to test these ranking rules. In the data, four Security elements and
an associated secInfo element for each were added. Note that each alias represents all four security
elements and their associated secInfo elements. The current day at the time of the Ruletest is 2/9/2025, so
each Security.secInfo.busDay attribute is given the value of 2/9/2025 (if additional secinfo elements
in each collection were added, they would have earlier dates, and therefore would be filtered out by the
preconditions on each alias). Each Security.secInfo.rank was initially set equal to 1 so that the lowest
ranked security still has a value of 1. The lowest ranked security is the one that loses all comparisons with the
other securities. In other words, its weight is less than the weights of all other securities. If a security's weight
is less than all the other security weights, its rank will never be incremented by the rule, so its rank will remain
1. The values of totalWeight for the SecInfo objects are all different; therefore, each security ranked
between 1 and 4 with no identical rank values is expected.

Progress Corticon: Rule Modeling: Version 6.3138

Chapter 5: Collections

Note: If there were multiple Security.secInfo elements (multiple securities) with the same totalWeight
value for the same day, then the final rank assigned to these objects is expected to be the same as well.
Further, if there were multiple Security.secInfo entities sharing the highest relative totalWeight value
in a given Ruletest, then the highest rank value possible for that Ruletest would be lower than the number of
securities being ranked, assuming all rank values are initialized at 1.

Figure 98: Results Testsheet for alternate security ranking model rules

139Progress Corticon: Rule Modeling: Version 6.3

How to use aliases to represent collections

In this figure, the Ruletest results are as expected. The security with the highest relative totalWeight value
ends the Ruletest with the highest rank value after all rule evaluation is complete. The other securities are
also assigned rank values based on the relative ranking of their totalWeight values. The individual rule
firings that resulted in these outcomes are highlighted in the message section at the bottom of the results sheet.

It is interesting to note that nowhere in the rules is it stated how many security entities will be evaluated. This
is another example of the ability of the declarative approach to produce the intended outcome without requiring
explicit, procedural instructions.

Sorted aliases
You can create a special kind of alias in the Scope section of a Rulesheet. The technique uses the specialized
Sequence operator ->next against a sorted alias (a special cached sequence) inside a filter expression. The
Rulesheet is set into a Ruleflow that iterates to bind the alias in each successive invocation to the next element
in the sequence.

The following example shows a Rulesheet based on the Cargo Vocabulary. The Cargo entity and its weight
attribute were brought into the scope:

The operators sortedBy and sortedByDesc enable sorting in ascending or descending order of the numeric
or alphabetic values of the attribute in the set of data. Note that an attribute with a Boolean data type is not
valid for this operation.

Progress Corticon: Rule Modeling: Version 6.3140

Chapter 5: Collections

Dragging the sortedBy operator and dropping it (you cannot type it in) on the attribute weight places it in
the scope, yet an error shows:

The error message notes that a sorted alias node requires an alias name. When you enter an alias name, the
scope is complete.

A filter expression is added to establish that, when you iterate through the list, each pass presents the next
sequential item in the sorted set. You defined this by dragging sortedBy from the scope to filter line 1, and
then appended the ->next operator. A rule statement based on sorted load that echoes the weight was added
so you can see the results in the tests.

The Rulesheet is saved and a Ruleflow is created, adding in the Rulesheet. Then, you drag an Iterative
operation to the Rulesheet in the Ruleflow and save it.

141Progress Corticon: Rule Modeling: Version 6.3

Sorted aliases

A Ruletest with a few Cargo items was created, each with a weight that is expected to sequence numerically
when you run the test. Each iteration posts a message, and that message (the corresponding Rule Statement)
contains the embedded attribute load weight. Because each member of the load collection will trigger the
nonconditional rule, and even though the elements will be processed in no particular order, you expect to see
a set of resulting messages with load weight in order. Running the tests repeatedly outputs the weights in
ascending order every time.

If you change the operator to sortByDesc, the results are shown in descending order by weight, as expected.

Progress Corticon: Rule Modeling: Version 6.3142

Chapter 5: Collections

Advanced collection sorting syntax
Collection syntax contains some subtleties worth learning. It is helpful when writing collection expressions to
step through them, left to right, as though you were reading a sentence. This helps you better understand how
the pieces combine to create the full expression. It also helps you to know what else you can safely add to the
expression to increase its utility. Use this approach in order to dissect the following expression:

Collection1 -> sortedBy(attribute1) -> last.attribute2

1. Collection1

This expression returns the collection {e1, e2, e3, e4, e5,…en} where ex is an element (an entity) in
Collection1. You already know that alias Collection1 represents the entire collection.

2. Collection1 -> sortedBy(attribute1)

This expression returns the collection {e1, e2, e3, e4, e5,…en} arranged in ascending order based on the
values of attribute1 (call it the index).

3. Collection1 -> sortedBy(attribute1) -> last

This expression returns {en} where en is the last element in Collection1 when sorted by attribute1.

This expression returns a specific entity (element) from Collection1. It does not return a specific value,
but once you identify a specific entity, you can easily reference the value of any attribute it contains, as in
the following, which returns {en.attribute2}:

4. Collection1 -> sortedBy(attribute1) -> last.attribute2

Entity Context

The complete expression not only returns a specific value, but just as important, it also returns the entity to
which the value belongs. This entity context is important because it allows you to do things to the entity
itself, like assign a value to one of its attributes. For example:

Collection1 -> sortedBy(attribute1) -> last.attribute2=‘xyz’

The preceding expression assigns the value of xyz to attribute2 of the entity whose attribute1 is
highest in Collection1. Contrast this with the following:

Collection1.attribute1 -> sortedBy(attribute1) -> last

This expression returns a single integer value, like 14.

Notice that all you have now is a number, a value. You lost the entity context, so you cannot do anything
to the entity that owns the attribute with value of 14. In many cases, this is just fine. Take for example:

Collection1.attribute1 -> sortedBy(attribute1) -> last > 10

In preceding expression, it is not important that you know which element has the highest value of
attribute1, all you want to know is if the highest value (whomever it “belongs” to) is greater than 10.

Understanding the subtleties of collection syntax and the concept of entity context is important because it
helps you use the returned entities or values correctly, for example:

Return the lower of the following two values:

• 12

• The age of the oldest child in the family

143Progress Corticon: Rule Modeling: Version 6.3

Advanced collection sorting syntax

What is really being compared here? Do you care which child is oldest? Do you need to know his or her
name? No. You simply need to compare the age of that child (whichever one is oldest) with the value of 12.
So, this is the expression that models this logic:

family.age -> sortedByDesc(age) -> first.min(12)

The .min operator is an operator that acts upon numeric data types (Integer or Decimal). And because
family.age -> sortedByDesc(age) -> first returns a number, it is legal and valid to use .min
at the end of this expression.

What about this scenario: Name the youngest child Junior.

family -> sortedByDesc(age) -> last.name='Junior'

Now return a specific entity – that of the youngest child – and assign to its name a value of Junior. You
need to keep the entity context in order to make this assignment, and the preceding expression accomplishes
this.

Statement blocks
Sequence operators can easily extract an attribute value from the first, last, or other specific element in a sorted
collection (see ->first, ->last, or ->at(n) for examples). This is especially useful when the attribute's
value is involved in a comparison in a conditional or preconditional rule. Sometimes, however, you want to
identify a particular element in a sequence and flag or tag it for use in subsequent rules. This can be
accomplished using special syntax called statement blocks.

Statement blocks, permitted only in the Action rows of the Rulesheet, use special variables, prefixed by a
question mark character (?) to hold or pin an element so that further action can be taken on it, including tagging
it by assigning a value to one of its attributes. These special holder variables can be declared when needed,
meaning they do not need to be defined anywhere prior to use.

For example, in a sales management system, the performance of sales representatives is analyzed every
quarter, and the highest grossing sales representative is awarded Salesperson of the Quarter. This special
status is then used to automatically increase the representative's commission percentage on sales made in
the following quarter. The generic Vocabulary used in previous examples is used, but with these assumptions:

MeaningVocabulary Term

A salespersonEntity2

Collection of salespeopleEntity1.entity2

A salesperson's nameEntity2.string1

A salesperson's quarterly salesEntity2.decimal1

A salesperson's awardEntity2.string2

A salesperson's commission percentageEntity2.decimal2

Progress Corticon: Rule Modeling: Version 6.3144

Chapter 5: Collections

Using this Vocabulary, construct the following Rulesheet:

Figure 99: Rulesheet using statement block to identify and reward winner

Important Notes about Statement Blocks

As expressed in Action row A in the preceding figure, a statement block consists of two separate expressions:

1. The first part assigns an element of a sequence to a special holder variable, prefixed by the ? character.
This variable is unusual because it represents an element, not a value. Here, the highest grossing salesperson
is expressed as the last element of the collection of salespeople (e2), sorted in ascending order according
to quarterly sales (decimal1). Once identified by the sequencing operator ->last, this salesperson is
momentarily held by the ?tag variable, which was declared when it was needed.

2. The second part of the statement—the part following the semicolon—assigns a value to an attribute of the
element held by the ?tag. In the example, a value of 'Salesperson of the Quarter' is assigned to
the string2 attribute of the salesperson held by ?tag. In effect, the highest grossing salesperson with
this award is tagged.

These two parts must be included on the same Action row, separated by a semicolon. If the two parts are
separated in different sections or in different rows of the same section, then the element represented by the ?
variable is lost. In other words, the ?tag loses its grip on the element identified by the sequencing operator.

Note: Using semicolons: The semicolon is an action statement end character that creates a compound action
statement., Each action statement is executed sequentially. Its use, however, can make it harder to read action
statements in Rulesheets and reports. It is a good practice to use semicolons only when there is no alternative,
as in this example.

Now that the winner has been tagged, you can use the tagged element (awardee) to take additional actions.
In the Conditional rule, the commission percentage of the winner is increased by 5% using the increment
operator.

145Progress Corticon: Rule Modeling: Version 6.3

Statement blocks

The next figure shows a Ruletest Input and Output pane. As expected, the highest grossing salesperson was
awarded Salesperson of the Quarter honors, and their commission was increased by 5%.

Figure 100: Output panel with winner and adjusted commission in bold

Using sorts to find the first or last in grandchild
collections

The SortedBy->first and SortedBy->last constructs work as expected for any first-level collection
regardless of data type, determining the value of the first or last element in a sequence that was derived from
a collection.

When associations are involved, you have to take care that the collection operator is not working at a grandchild
level. You could construct a single collection of multiple children (rather than multiple collections of a single
child) by “bubbling up” the relevant value into the child level, and then sort at that level. Another technique is
to change the scope to treat the root level entity as the collection, and then apply filters so that only the ones
matching the common attribute values across the associations are considered. When you apply
SortedBy->first or SortedBy->last, the intended value is the result.

Progress Corticon: Rule Modeling: Version 6.3146

Chapter 5: Collections

Singletons
Singletons are collection operations that scan a set to extract one arithmetic value: the first, the last, the trend,
the average, or the element at a specified position. This behavior was seen when the sortedAlias found
the first and last element in an iterative list (as well as the elements in between) in the given order.

To examine this feature, the Aircraft entity and its maxCargoWeight is brought into the scope as well as
Cargo (with the alias load) and its attribute weight. The nonconditional action you enter is:

"Show me the maximum cargo weight by examining all the cargo in the load, sorting them by weight from small
to large, and returning the smallest one first."

That is entered as:

Aircraft.maxCargoWeight=load->sortedBy(weight)->first.weight

When you extend the test used for sorted aliases, you need to add an Aircraft with maxCargoWeight to
show the result of the test. The result is as expected: the lightest item passed the test.

147Progress Corticon: Rule Modeling: Version 6.3

Singletons

The same result is output when you modify the rule to select the last item when you sort the items by descending
weight.

Figure 101:

Now, reverse the test to select the first item when you sort the items by descending weight:

Progress Corticon: Rule Modeling: Version 6.3148

Chapter 5: Collections

The heaviest item is output:

Note: Singletons do not operate against an iterative Ruleflow as was required by Sorted Aliases. The tests
apply directly to the Rulesheet.

Special collection operators
There are two special collection operators available in Corticon Studio's Operator Vocabulary that allow you
to evaluate collections for specific conditions. These operators are based on two concepts from the predicate
calculus: the universal quantifier and the existential quantifier. These operators return a result about the
collection, rather than about any particular element within it. Although this is a simple idea, it is actually a very
powerful capability. Some decision logic cannot be expressed without these operators.

149Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

Universal quantifier
The meaning of the universal quantifier is that a condition enclosed by parentheses is evaluated (its truth value
is determined) for all instances of an entity or collection. This is implemented as the ->forAll operator in the
Operator Vocabulary. This operator will be demonstrated with an example created using the Vocabulary from
the security ranking model. Note that these operators act on collections, so all the examples shown will declare
aliases in the Scope section.

Figure 102: Rulesheet with universal quantifier (“for all”) condition

In this figure, you see the following condition:

secinfo ->forAll(secinfo.rank >= 3)

The exact meaning of this condition is that for the collection of SecInfo elements associated with a Security
(represented and abbreviated by the alias secInfo), evaluate if the expression in parentheses (secinfo.rank
>= 3) is true for all elements. The result of this condition is Boolean because it can only return a value of true
or false. Depending on the outcome of the evaluation, a value of either High or Low will be assigned to the
rating attribute of the Security entity, and the corresponding Rule Statement will be posted as a message
to the user.

Progress Corticon: Rule Modeling: Version 6.3150

Chapter 5: Collections

The following figure shows a Ruletest constructed to test the “for all” condition rules.

Figure 103: Ruletest for testing “for all” condition rules

151Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

In this Ruletest, a collection of three SecInfo elements associated with a Security entity is evaluated.
Because the rank value assigned in each SecInfo object is at least 3, you should expect that the “for all”
condition will evaluate to true, and a rating value of High will be assigned to the Security object when the
Ruletest is run through the rules engine. This outcome is confirmed in the Ruletest results, as shown:

Figure 104: Ruletest for “for all” condition rules

Existential quantifier
The other special operator available is the existential quantifier. The meaning of the existential quantifier is that
there exists at least one element of a collection for which a given condition evaluates to true. This logic is
implemented in the Rulesheet using the ->exists operator in the Operator Vocabulary.

Progress Corticon: Rule Modeling: Version 6.3152

Chapter 5: Collections

You can construct a Rulesheet to determine the rating value for a Security entity by evaluating a collection
of associated SecInfo elements with the existential quantifier. In this example, volume rather than rank is
used to determine the rating value for the security. The Rulesheet for this example is shown in the following
figure:

Figure 105: Rulesheet with existential quantifier (“exists”) condition

In this Rulesheet, you see the following condition

secinfo ->exists(secinfo.volume >1000)

Notice again the required use of an alias to represent the collection being examined. The exact meaning of
the condition in this example is that for the collection of SecInfo elements associated with a Security (again
represented by the secinfo alias), determine if the expression in parentheses (secinfo.volume > 1000)
holds true for at least one Secinfo element. Depending on the outcome of the exists evaluation, a value
of either High Volume or Normal Volume will be assigned to the rating attribute of the Security object,
and the corresponding Rule Statement will be posted as a message to the user.

153Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

The following figure shows a Ruletest constructed to test the exists condition rules.

Figure 106: Ruletest for testing (“exists”) condition rules

Progress Corticon: Rule Modeling: Version 6.3154

Chapter 5: Collections

A collection of three SecInfo elements associated with a single Security entity will be evaluated. Because
the volume attribute value assigned in at least one of the SecInfo objects (secInfo[2]) is greater than
1000, you should expect that the exists Condition will evaluate to true and a rating value of High Volume
will be assigned to our Security object when the Ruletest is run through the rules engine. This outcome is
confirmed in the Ruletest shown in the following figure:

Figure 107: Ruletest output for (“exists”) condition rules

155Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

Another example using the existential quantifier
Collection operators are powerful parts of the Corticon Rule Language. In some cases, they may be the only
way to implement a particular business rule. For this reason, another example is provided.

Business problem: An auto insurance company has a business process for handling auto claims. Part of this
process involves determining a claim’s validity based on the information submitted on the claim form. For a
claim to be classified as valid, both the driver and vehicle listed on the claim must be covered by the policy
referenced by the claim. Claims that are classified as invalid will be rejected, and will not be processed for
payment.

From this short description, extract the primary business rule statement:

1. A claim is valid if the driver and vehicle involved in a claim are both listed on the policy against which the
claim is submitted.

In order to implement the business rule, the following UML Class Diagram is proposed. Note the following
aspects of the diagram:

• A policy can cover one or more drivers

• A policy can cover one or more vehicles

• A policy can have zero or more claims submitted against it.

• The claim entity was denormalized to include driverName and vehicleVin .

Note: Alternatively, the Claim entity could have referenced Driver.name and Vehicle.vin (by adding
associations between Claim and both Driver and Vehicle), respectively, but the denormalized structure is
probably more representative of a real-world scenario.

Figure 108: UML Class Diagram

Progress Corticon: Rule Modeling: Version 6.3156

Chapter 5: Collections

This model is realized in Corticon Studio as:
Figure 109: Vocabulary for insurance claims

Model the following rules in Corticon Studio, as shown:

157Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

1. For a claim to be valid, the driver’s name and vehicle ID listed on the claim must also be listed on the claim’s
policy.

2. If either the driver’s name or vehicle ID on the claim is not listed on the policy, then the claim is not valid.

Figure 110: Rulesheet for insurance claims

Progress Corticon: Rule Modeling: Version 6.3158

Chapter 5: Collections

This appears very straightforward. But a problem arises when there are multiple drivers or vehicles listed on
the policy. In other words, when the policy contains a collection of drivers or vehicles. The Vocabulary permits
this scenario because of the cardinalities that were assigned to the various associations. This problem is
demonstrated in the following Ruletest:
Figure 111: Ruletest input for insurance claims

159Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

Notice in the Rulestest that there are three drivers and three vehicles listed on (associated with) a single policy.
When you run this Ruletest, you see the results:
Figure 112: Ruletest output for insurance claims

As you can see from the Ruletest results, the way Corticon Studio evaluates rules involving comparisons of
multiple collections means that the validClaim attribute may have inconsistent assignments – sometimes
true, sometimes false (as in this Ruletest). It can be seen from the following table below that, given the
Ruletest data, 4 of 5 possible combinations evaluate to false, while only 1 evaluates to true. This conflict
arises because of the nature of the data evaluated, not the rule logic, so Studio’s Conflict Check feature does
not detect it.

validClaimRule 3 firesRule 2 firesRule 1 firesClaim.policy.
vehicle.vin

Claim.
vehicleVin

Claim.policy.
driver.name

Claim.
driverName

TrueX123-ABC123-ABCJoeJoe

FalseXSueJoe

FalseXMaryJoe

Progress Corticon: Rule Modeling: Version 6.3160

Chapter 5: Collections

validClaimRule 3 firesRule 2 firesRule 1 firesClaim.policy.
vehicle.vin

Claim.
vehicleVin

Claim.policy.
driver.name

Claim.
driverName

FalseX987-XYZ123-ABC

FalseX456-JKL123-ABC

The existential quantifier will be used to rewrite these rules:
Figure 113: Rulesheet with rules rewritten using the existential quantifier

This logic tests for the existence of matching drivers and vehicles within the two collections. If matches exist
within both, then the validClaim attribute evaluates to true, otherwise validClaim is false.

Now the same Ruletest data as before is used to test these new rules. The following figure shows the results:

161Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

Notice that only one rule fired, and that validClaimwas assigned the value of true. This implementation
achieves the intended result.

Aggregations that optimize EDC database access
A subset of collection operators are known as aggregation operators because they evaluate a collection to
compute one value. These aggregation operators are as highlighted:

Progress Corticon: Rule Modeling: Version 6.3162

Chapter 5: Collections

When these aggregations are applied through the Enterprise Data Connector in a Rulesheet set to Extend to
Database, the performance effect against large tables can be minimized by performing non-conditional actions
that force the calculations onto the database. For an example of this, see Optimize aggregations that extend
to database on page 252

TestYourself questions for Collections
Note: Try this test, and then go to TestYourself answers for Collections on page 354 to see how you did.

1. Children of a Parent entity are also known as ____________ of a collection.

2. True or False. All collections must have a parent entity.

3. True or False. Root-level entities can form a collection.

4. True or False. A collection operator must operate on a collection alias.

5. List three Collection operators and describe what they do.

6. Which reference contains usage details and examples for every collection operator?

7. Write a Rule Statement that is equivalent to the syntax Order.total = items.price->sum.

8. In the syntax in Question 7, which term is the collection alias?

9. If items is an alias representing the LineItem entities associated with an Order entity, then what would
you expect the cardinality of this association to be?

163Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Collections

10. Is Order.lineItem.price->sum an acceptable replacement for the syntax in Question 7? Why or why
not?

11. If you are a Vocabulary designer and want to prevent rule authors from building rules with LineItem.order
terms, what can you do to prevent it?

12.When collection operators are not used in a Rulesheet, aliases are (circle all that apply)

ConvenientColorfulMandatoryOptional

13. If a nonconditional rule states LineItem.price = 100, and my Input Testsheet contains 7 LineItem
entities, then a collection of data is processed by this rule. Is a collection alias required? Why or why not?

14.Which collection operator is known as the universal quantifier?

15.Which collection operator is known as the existential quantifier?

For questions 16-18, refer to the following Vocabulary

Progress Corticon: Rule Modeling: Version 6.3164

Chapter 5: Collections

16.Write expressions for each of the following phrases:

a. If an actor has had more than 3 roles

b. If a movie has not been released on DVD

c. If a movie has at least one DVD with deleted scenes

d. If a movie won at least one Golden Globe

e. If the movie had more than 15 actors

f. If there are at least 100 copies available of a movie

g. If there are less than 2 copies available of a movie

h. If the DVD can be obtained from more than 1 supplier

165Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Collections

17.Which entities could be grandchildren of Movie?

18.Which entites could be children of Role?

19. Describe the difference between ->forAll and ->exists operators.

20. Describe the difference between ->notEmpty and ->isEmpty operators.

21.Why are aliases required to represent collections?

Progress Corticon: Rule Modeling: Version 6.3166

Chapter 5: Collections

6
Rules containing calculations and equations

Rules that contain equations and calculations are no different than any other type of rule. Calculation-containing
rules can be expressed in any of the sections of the Rulesheet.

Terminology that will be used throughout this section
In the simple expression A = B, A is the left-hand side (LHS) of the expression, and B is the right-hand side
(RHS). The equals sign is an operator, and is included in the Operator Vocabulary in Corticon Studio. But,
even such a simple expression has its complications. For example, does this expression compare the value
of A to B in order to take some action, or does it instead assign the value of B to A ? In other words, is the
equals operator performing a comparison or an assignment? This is a common problem in programming
languages, where a common solution is to use two different operators to distinguish between the two meanings:
the symbol == might signify a comparison operation, whereas := might signify an assignment.

In Corticon Studio, special syntax is unnecessary because the Rulesheet helps to clarify the logical intent of
the rules. For example, typing A=B into a Rulesheet's Condition row (and pressing Enter) automatically causes
the Values set {T,F} to appear in the rule column cell drop-down lists. This indicates that the rule modeler
has written a comparison expression, and Studio expects a value of true or false to result from the
comparison. A=B, in other words, is treated as a test: is A equal to B?

However, when A=B is entered into an Action or Nonconditional row (Actions rows in Column 0), it becomes
an assignment. In an assignment, the RHS of the equation is evaluated and its value is assigned to the LHS
of the equation. In this case, the value of B is assigned to A. As with other actions, you can activate or deactivate
this action for any column in the decision table (numbered columns in the Rulesheet) by checking the box that
automatically appears when the Action's cell is clicked.

In the Rule Language Guide, the equals operator (=) is described separately in both its assignment and
comparison contexts.

167Progress Corticon: Rule Modeling: Version 6.3

Note: A Boolean attribute does not reset when non-Boolean input is provided for a non-conditional
rule

While this is the expected behavior in the Corticon language, it can cause unexpected results. On input of a
Boolean attribute, if the value of the element is true or 1, Corticon interprets that as a true Boolean value,
otherwise it defaults to a false Boolean value. Attributes in the input document are not modified unless the
value is changed in the rule; that is, setting a true Boolean attribute to the value of true does not modify the
element.
You can have reliable behavior when you use following workaround. To guarantee a modification in the data,
you need to guarantee that the rules change the value of the attribute. For example, instead of action...

Entity_1.booleanAttr1 = T

...first set the value of the attribute to null, and then set it to true:

Entity_1.booleanAttr1 = null
Entity_1.booleanAttr1 = T

For details, see the following topics:

• Operator precedence and order of evaluation

• Data type compatibility and casting

• Supported uses of calculation expressions

• Unsupported uses of calculation expressions

• TestYourself questions for Rules containing calculations and equations

Operator precedence and order of evaluation
Operator precedence is the order in which Corticon Studio evaluates multiple operators in an equation. Operator
precedence is described in the following table (also in the Rule Language Guide.) This table specifies for
example, that 2*3+4 evaluates to 10 and not 14 because the multiplication operator * has a higher precedence
than the addition operator +. It is a good practice, however, to include clarifying parentheses even when Corticon
Studio does not require it. This equation would be better expressed as (2*3)+4. Note the addition of
parentheses does not change the result. When expressed as 2*(3+4), however, the result is 14.

Progress Corticon: Rule Modeling: Version 6.3168

Chapter 6: Rules containing calculations and equations

The precedence of operators affects the grouping and evaluation of expressions. Expressions with
higher-precedence operators are evaluated first. When several operators have equal precedence, they are
evaluated from left to right. The following table summarizes Corticon's Rule Operator precedence and their
order of evaluation .

ExampleOperator NameOperatorOperator
precedence

(5.5 / 10)Parenthetic expression()1

-10Unary negative-2

not 10Boolean testnot

5.5 * 10Arithmetic: Multiplication*3

5.5 / 10Arithmetic: Division/

5 ** 2

25 ** 0.5

125 ** (1.0/3.0)

Arithmetic: Exponentiation (Powers and Roots)**

5.5 + 10Arithmetic: Addition+4

10.0 – 5.5Arithmetic: Subtraction-

5.5 < 10Relational: Less Than<5

5.5 <= 5.5Relational: Less Than Or Equal To<=

10 > 5.5Relational: Greater Than>

10 >= 10Relational: Greater Than Or Equal To>=

5.5=5.5Relational: Equal=

5.5 <> 10Relational: Not Equal<>

(ent1.dec1 > 5.5 and
ent1.dec1 < 10)

Logical: AND(expression and
expression)

6

(ent1.dec1 > 5.5 or
ent1.dec1 < 10)

Logical: OR(expression or
expression)

Note: Even though expressions within parentheses that are separated by logical AND/OR operators are valid,
the component expressions are not evaluated individually when testing for completeness, and might cause
unintended side effects during rule execution. The best practice within a Corticon Rulesheet is to represent
AND conditions as separate condition rows and OR conditions as separate rules -- doing so allows you to get
the full benefit of Corticon’s logical analysis.

Note: It is recommended that you place arithmetic exponentiation expressions in parentheses.

169Progress Corticon: Rule Modeling: Version 6.3

Operator precedence and order of evaluation

Data type compatibility and casting
An important prerequisite of any comparison or assignment operation is data type compatibility. In other words,
the data type of the equation's LHS (the data type of A) must be compatible with whatever data type results
from the evaluation of the equation's RHS (the data type of B). For example, if both attributes A and B are
Decimal types, then there will be no problem assigning the Decimal value of attribute B to attribute A.

Similarly, a comparison between the LHS and RHS does not make sense unless both refer to the same kinds
of data. How does one compare orange (a String) to July 4, 2014 12:00:00 (a DateTime)? Or false
(a Boolean) to 247.82 (a Decimal)?

In general, the data type of the LHS must match the data type of the RHS before a comparison or assignment
can be made. (The exception to this rule is the comparison or assignment of an Integer to a Decimal. A Decimal
can safely contain the value of an Integer without using any special casting operations.) Expressions that result
in inappropriate data type comparison or assignment should turn red in Studio.

In the examples that follow, the generic Vocabulary from the Rule Language Guide will be used because the
generic attribute names indicate their data types:

Figure 114: Generic Vocabulary used in the Rule Language Guide

Progress Corticon: Rule Modeling: Version 6.3170

Chapter 6: Rules containing calculations and equations

The following figure shows a set of Action rows that illustrate the importance of data type compatibility in
assignment expressions:

Figure 115: Data type mismatches in assignment expressions

Let's examine each of the Action rows to understand why each is valid or invalid.

A—This expression is valid because the data types of the LHS and RHS sides of the equation are compatible.
They are both Boolean.

B—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a DateTime and the RHS resolves to a String.

C—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a String and the RHS resolves to a DateTime.

D—This expression is valid because the data types of the LHS and RHS sides of the equation are compatible
even though they are different! This is an example of the one exception to Corticon's general rule regarding
data type compatibility: Decimals can hold Integer values.

E—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a Boolean, and the RHS resolves to a Decimal.

Note that the Problems window contains explanations for the red text shown in the Rulesheet.

171Progress Corticon: Rule Modeling: Version 6.3

Data type compatibility and casting

The following figure shows a set of Conditional expressions that illustrate the importance of data type compatibility
in comparisons:

Figure 116: Datatype mismatches in comparision expressions

Let's examine each of these conditional expressions to understand why each is valid or invalid:

a—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. They are both Strings. Note that Corticon Studio confirms the validity of the expression by recognizing
it as a comparison and automatically entering the values set {T,F} in the Values column.

b—This comparison expression is invalid because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a String, and the RHS resolves to a DateTime. Note that, in addition to
the red text, Corticon Studio emphasizes the problem by not entering the values set {T,F} in the Values
column.

c—This comparison expression is invalid because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a Boolean, and the RHS resolves to a Decimal.

d—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. This is another example of the one exception to Corticon's general rule regarding data type
compatibility: Decimals can be compared to Integer values.

e—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. Like d, this also illustrates the exception to Corticon's general rule regarding data type compatibility:
Decimals can be compared to Integer values. Unlike an assignment, however, whether the Integer and Decimal
types occupy the LHS or RHS of a comparison is unimportant.

Progress Corticon: Rule Modeling: Version 6.3172

Chapter 6: Rules containing calculations and equations

Data type of an expression
It is important to emphasize that the idea of a data type applies not only to specific attributes in the Vocabulary,
but to entire expressions. The previous examples were simple, and the data types of the LHS or the RHS of
an equation correspond to the data types of those single attributes. But, the data type to which an expression
resolves could be more complicated.

Figure 117: Examples of expression datatypes

Let's examine each assignment to understand what is happening:

A—The RHS of this equation resolves to an Integer data type because the .dayOfWeek operator “extracts”
the day of the week from a DateTime value (in this case, the value held by attribute date1) and returns it as
an Integer between 1 and 7. Because the LHS also has an Integer data type, the assignment operation is valid.

B—TheRHS of this equation resolves to an Integer because the .size operator counts the number of characters
in a String (in this case the String held by attribute string1) and returns this value as an Integer. Because
the LHS also has an Integer data type, the assignment operation is valid.

C—The RHS of this equation resolves to a Boolean because the ->isEmpty collection operator examines a
collection (in this case the collection of Entity2 children associated with parent Entity1, represented by
collection alias e2) and returns true if the collection is empty (has no elements) or false if it is not. Because
the LHS also has a Boolean data type, the assignment operation is valid.

D—The RHS of this equation resolves to a Boolean because the ->exists collection operator examines a
collection (in this case, e2 again) and returns true if the expression in parentheses is satisfied at least once,
and false if it isn't. Since the LHS also has a Boolean data type, the assignment operation is valid.

E—the RHS of this equation resolves to an Integer because the ->sum collection operator adds up the values
of all occurrences of an attribute (in this case, integer2) in a collection (in this case, e2 again). Since the
LHS has a Decimal data type, the assignment operation is valid. This is the lone case where type casting
occurs automatically.

Note: The .dayOfWeek operator and others used in these examples are described fully in the Rule Language
Guide.

173Progress Corticon: Rule Modeling: Version 6.3

Data type compatibility and casting

Defeating the parser
The part of Corticon Studio that checks for data type mismatches (along with all other syntactical problems) is
the Parser. The Parser ensures that whatever is expressed in a Rulesheet can be correctly translated and
compiled into code executable by Corticon Studio's Ruletest as well as by the Decision Service. Because this
is a critical function, much effort was put into the Parser's accuracy and efficiency. But rule modelers should
understand that the Parser is not perfect, and cannot anticipate all possible combinations of the rule language.
It is still possible to “slip one past” the Parser. Here is an example:

Figure 118: LHS and RHS resolve to integers

In the preceding figure, there is an assignment expression where both LHS and RHS return Integers under all
circumstances. But making a minor change to the RHS throws this result into confusion:

Figure 119: Will the RHS still resolve to an integer?

The minor change of adding a division step to the RHS expression has a major effect on the data type of the
RHS. Prior to modification, the RHS returns an Integer, but an odd Integer! When an odd Integer is divided by
2, a Decimal always results. The Parser is smart, but not smart enough to catch this problem.

When the rule is executed, what happens? How does the Decision Service react when the rule instructs it to
force a Decimal value into an attribute of type Integer? The server responds by truncating the Decimal value.
For example, if integer2 has the value of 2, then the RHS returns the Decimal value of 2.5. This value is
truncated to 2 and then assigned to integer1 in the LHS.

Looking at this rule in isolation, it is not difficult to see the problem. But, in a complex Rulesheet, it may be
difficult to uncover this sort of problem. Your only clue to its existence may be numerical test results that do
not match the expected values. To be safe, iut is a best practice to ensure the LHS of numeric calculations
has a Decimal data type so no data is inadvertently lost through truncation.

Progress Corticon: Rule Modeling: Version 6.3174

Chapter 6: Rules containing calculations and equations

Manipulating data types with casting operators
A special set of operators is provided in the Corticon Studio's Operator Vocabulary that allows the rule modeler
to control the data types of attributes and expressions. These casting operators are described below:

Table 6: Special casting operators

Produces data of type…Applies to data of type…Casting operator

IntegerDecimal, String.toInteger

DecimalInteger, String.toDecimal

StringInteger, Decimal, DateTime, Date,
Time

.toString

DateTimeString, Date, Time.toDateTime

DateDateTime.toDate

TimeDateTime.toTime

Returning to Datatype Mismatches in Comparision Expressions, we use these casting operators to correct
some of the previous problems:

Figure 120: Using casting operators

Casting operators were used in actions rules B and C to make the data types of the LHS and RHS match.
Notice, however, that no casting operator exists to cast a Decimal into a Boolean data type for action E, hence
the error.

175Progress Corticon: Rule Modeling: Version 6.3

Data type compatibility and casting

Supported uses of calculation expressions
You can do comparisons and assignments in a few different ways:

• Calculation as a comparison in a precondition on page 177

• Calculation as an assignment in a noncondition on page 178

• Calculation as a comparison in a condition on page 178

• Calculation as an assignment in an action on page 180

To make the examples more interesting and allow for a bit more complexity in the rules, the basic Tutorial
Vocabulary (Cargo.ecore) was extended to include a fewmore attributes. The extended Vocabulary is shown
in the following figure:

Figure 121: Basic Tutorial Vocabulary Extended

The new attributes are described in the following table:

Progress Corticon: Rule Modeling: Version 6.3176

Chapter 6: Rules containing calculations and equations

Table 7: New attributes added to the Basic Tutorial Vocabulary

DescriptionData typeAttribute

The weight of an aircraft with no fuel
or cargo onboard (kilograms.)

DecimalAircraft.emptyWeight

The maximum amount of weight an
aircraft can safely lift, equal to the
sum of cargo and fuel weights

(kilograms.)

DecimalAircraft.grossWeight

The maximum amount of fuel an
aircraft can carry (liters.)

DecimalAircraft.maxfuel

The floor space required for this
cargo. (square meters.)

DecimalCargo.footprint

Indicates whether the flight plan is
approved for operation.

BooleanFlightPlan.approved

The total amount of all aircraft and
cargo weights for this flight plan

(kilograms.)

DecimalFlightPlan.planWeight

The distance the aircraft is expected
to fly (kilometers.)

DecimalFlightPlan.flightRange

The amount of fuel loaded on the
aircraft assigned to this flight plan

(liters.)

DecimalFlightPlan.fuel

Calculation as a comparison in a precondition
In the following figure, a numeric calculation is used as a comparison in the filters section of the Rulesheet:

The LHS of the expression calculates the average pressure exerted by the total cargo load on the floor of the
aircraft (sum of the cargo weights divided by the sum of the cargo containers' footprints). This result is compared
to the RHS, which is the literal value 5. You might expect to see this type of calculation in a set of rules that
deals with special cargos where a lot of weight is concentrated in a small area. This might, for example, require
the use of special aircraft with sturdy, reinforced cargo bay floors. Such a Filter expression might be the first
step in handling cargos that satisfy this special criterion.

177Progress Corticon: Rule Modeling: Version 6.3

Supported uses of calculation expressions

Calculation as an assignment in a noncondition
The example shown in the following figure uses a calculation in the RHS of the assignment to derive the total
weight carried by an Aircraft on the FlightPlan, where the total weight equals the weight of the fuel plus the
weight of all Cargos onboard plus the empty weight of the Aircraft itself.

Figure 122: A calculation in a nonconditional expression

The portion that converts a fuel load measured in liters—the unit of measure that airlines purchase and load
fuel—into a weight measured in kilograms, the unit of measure used for the weight of the cargo as well as the
aircraft and crew:

plan.fuel * 0.812

Note that this conversion is conservative because Jet A1 fuel expands as it warms so this figure is at the cool
end of its range. This portion is then added to:

load.weight -> sum

which is equal to the sum of all Cargo weights loaded onto the aircraft associated with this flight plan. The final
sum of the fuel, cargo, and aircraft weights is assigned to the flight plan's planWeight. Note that parentheses
are not required. The calculation will produce the same result without them. The parentheses were added to
improve clarity.

Calculation as a comparison in a condition
After planWeight is derived by the nonconditional calculation in the following figure, it can immediately be
used elsewhere in this or subsequent Rulesheets.

Note: Subsequent Rulesheets means Rulesheets executed later in a Ruleflow. The concept of a Ruleflow is
discussed in the Quick Reference Guide.

Progress Corticon: Rule Modeling: Version 6.3178

Chapter 6: Rules containing calculations and equations

An example of such usage appears in the following figure:

Figure 123: planWeight Derived and used in same Rulesheet

In Condition row a, planWeight is compared to the aircraft's grossWeight to make sure that the aircraft is
not overloaded. An overloaded aircraft must not be allowed to fly, so the approved attribute is assigned a
value of false.

This has the advantage of being both clear and easy to reuse—the term planWeight, once derived, can be
used anywhere to represent the data produced by the calculation. It is also much simpler to use a single attribute
in a rule expression than it is a long, complicated equation.

But, this does not mean that the equation cannot be modeled in a conditional expression, if preferred. The
example shown in the following figure places the calculation in the LHS of the Conditional comparison to derive
planWeight and compare it to grossWeight all in the same expression.

Figure 124: Calculation in a conditional expression

This approach might be preferable if the results of the calculation were not expected to be reused, or if adding
an attribute like planWeight to the Vocabulary were not possible. Often, attributes like planWeight are very
convenient intermediaries to carry calculated values that will be used in other rules in a Rulesheet. In cases
where such attributes are conveniences, and are not used by external applications consuming a Rulesheet,
they can be designated as transient attributes in the Vocabulary, which causes their icons to change from
blue/yellow to orange/yellow.

179Progress Corticon: Rule Modeling: Version 6.3

Supported uses of calculation expressions

Calculation as an assignment in an action
The following figure shows two rules that each make an assignment to maxFuel, depending on the type of
aircraft:
Figure 125: A calculation in an action expression

In rule 1, the maxFuel load for 747s is derived by subtracting maxCargoWeight and emptyWeight from
grossWeight. In rule 2, maxFuel for DC-10s is assigned the literal value 100000.

Unsupported uses of calculation expressions
Some calculation expressions you might want to try do not provide expected or reliable results.

Calculations in value sets and column cells—The Conditional expression shown below is not supported by
Studio, even though it does not turn red. Some simpler equations may actually work correctly when inserted
in the Values cell or a rule column cell, but it is a dangerous habit to get into because more complex equations
generally do not work. It is best to express equations as shown in the previous sections.

Figure 126: Calculation in a Values Cell and Column

Progress Corticon: Rule Modeling: Version 6.3180

Chapter 6: Rules containing calculations and equations

Calculations in rule statements—Even though it is possible to embed attributes from the Vocabulary inside
Rule Statements, it is not possible to embed equations or calculations in them. Operators and equation syntax
not enclosed in braces {..} are treated like all other characters in the Rule Statement: Nothing will be calculated.
If the Rule Statement shown in the following figure is posted by an action in rule 1, then the message will be
displayed exactly as shown; it will not calculate a result of any kind.

Figure 127: Calculation in a Rule Statement

Likewise, including equation syntaxwithin curly brackets along with other Vocabulary terms is also not permitted.
Doing so can cause your text to turn red, as shown:

Figure 128: Embedding a calculation in a rule statement

However, even if the syntax does not turn red, you should not perform calculations in Rule Statements—it may
cause unexpected behavior. When red, the tool tip should give you some guidance as to why the text is invalid.
In this case, the exponent operator (**) is not allowed in an embedded expression.

TestYourself questions for Rules containing
calculations and equations

Note: Try this test, and then go to TestYourself answers for Rules containing calculations and equations on
page 355 to correct yourself.

1. What are the two possible meanings of the equals operator =? In which sections of the Rulesheet is each
of these meanings applicable?

2. What is the result of each of the following equations?

a. 10 + 20 / 5 – 4

b. 2 * 4 + 5

c. 10 / 2 * 6 – 8

d. 2 ** 3 * (1 + 2)

e. -5 * 2 + 5 * 2

3. Is the following assignments expression valid? Why or why not? Entity1.integer1 =
Entity1.decimal1

4. What is the data type of each of the following expressions based on the scope shown in the following figure?

181Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rules containing calculations and equations

• e1.dateTime1.year

• e1.string1.toUpper

• e2 -> forAll (integer1 = 10)

• e2.decimal1 -> avg

• e1.boolean1

• e1.decimal1 > e1.decimal2

• e2.string2.contains(‘abc')

5. Write “valid” or “invalid” for each of the following assignments

• e1.decimal1 = e2.integer1

• e2.decimal2 = e2.string2

• e1.integer1 = e2.dateTime1.day

• e2.integer1 = e2 -> size

• e1.boolean2 = e2 -> exists (string1 = ‘abc')

• e2.boolean2 = e1.string1.toBoolean

• e1.boolean2 = e2 -> isEmpty

6. The part of Corticon Studio that checks for syntactical problems is called the __________.

7. True or False. If an expression typed in Corticon Studio does not turn red, then the expression is guaranteed
to work as expected.

Referring to the following illustration, answer questions 8 through 10:

Progress Corticon: Rule Modeling: Version 6.3182

Chapter 6: Rules containing calculations and equations

8. What does Filters row 1 test?

9. What does Conditions row “a” test? Is there a simpler way to accomplish this same thing using a different
operator available in the Corticon Rule Language?

10.Write a Rule Statement for rule column 1. (Assume that the only action required for this rule is to post a
Warning message as shown.)

11. True or False. The following sections of the Rulesheet accept equations and calculations:

• Scope

• Rule Statements

• Condition rows

• Action rows

• Column 0

• Condition cells

• Action cells

• Filters

183Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rules containing calculations and equations

Progress Corticon: Rule Modeling: Version 6.3184

Chapter 6: Rules containing calculations and equations

7
Rule dependency in chaining and looping

This section explores how Corticon determines the sequencing of rules, and looping, which involves controls
you can set over the revisiting, re-evaluating, and possible re-firing of rules.

What is rule dependency?

Dependencies between rules exist when a conditional expression of one rule evaluates data produced by the
action of another rule. The second rule is said to be dependent on the first.

For details, see the following topics:

• Forward chaining

• Rulesheet processing modes of looping

• Looping controls in Corticon Studio

• Looping examples

• How to use conditions as a processing threshold

• TestYourself questions for Rule dependency chaining and looping

Forward chaining
The first step in learning to use looping is to understand how it differs from the normal inferencing behavior of
executing rules, whether executed by Corticon Studio or Corticon Server. When a Ruleflow is compiled into a
Decision Service, a dependency network for the rules is automatically generated. Corticon uses this network
to determine the order in which rules fire at run time. For example, in the following simple rules, the proper
dependency network is 1 > 2 > 3 > 4.

185Progress Corticon: Rule Modeling: Version 6.3

This is not to say that all three rules will always fire for a given test—clearly, a test with B as the initial value
will only cause rules 2, 3, and 4 to fire. But, the dependency network ensures that rule 1 is always evaluated
before rule 2, and rule 2 is always evaluated before rule 3, and so on. This mode of Rulesheet execution is
called optimized inferencing, meaning that the rules execute in the optimal sequence determined by the
dependency network generated by the compiler.Optimized inferencing is the default mode of rule processing
for all Rulesheets.

Optimized inferencing processing is a powerful capability that enables the rule modeler to break up complex
logic into a series of smaller, less complex rules. Once broken up into smaller or simpler rules, the logic is
executed in the proper sequence automatically, based on the dependencies determined by the compiler.

An important characteristic of optimized inferencing processing: the flow of rule execution is single-pass,
meaning a rule in the sequence is evaluated once and never revisited, even if the data values (or data state)
evaluated by its Conditions change over the course of rule execution. In the preceding example, this effectively
means that rule execution ceases after rule 4. Even if rule 4 fires (with resulting value = B), the second rule
will not be revisited, re-evaluated, or re-fired even though its condition (if value = B) would be satisfied by the
current value (state). You can force rule 2 to be re-evaluated only if a one of Corticon Studio's looping processing
modes is enabled for the Rulesheet. Remember, just because sequential processing occurs automatically does
not mean looping occurs too. Looping and its enablement are discussed next.

Progress Corticon: Rule Modeling: Version 6.3186

Chapter 7: Rule dependency in chaining and looping

Rulesheet processing modes of looping
Occasionally, you need rules to be re-evaluated and re-fired (if satisfied). This scenario requires the Corticon
rule engine to make multiple passes through the same Rulesheet. This behavior is called advanced inferencing,
and to enable it in Rulesheet execution, you must set Rulesheet processing mode to Advanced Inferencing
by selecting Rulesheet > Processing Mode > Advanced Inferencing from the Studio menubar, as shown:

Figure 129: Selecting Advanced Inferencing processing mode for a Rulesheet

We emphasize it here with an orange highlight to the immediate left of the Conditions header.

If the rule engine is permitted to loop through the rules, the following events occur:

Given a value of A as the initial data, the condition in rule 1 will be satisfied and the rule will fireirclsetting the
value to B. The second rule's condition is then satisfied, so the value will advance (or be reset) to C, and so
on, until the value is once again B after the fourth rule fires. Up to this point, the rule engine is exhibiting standard,
optimized inferencing behavior.

187Progress Corticon: Rule Modeling: Version 6.3

Rulesheet processing modes of looping

Here is the new part: the value (state) changed since the second rule last fired, so the rule engine will re-evaluate
the condition, and, finding it satisfied, will fire the second rule again, advancing the value to C. The third rule
will also be re-evaluated and re-fired, advancing the value to D, and so on. This sequence is illustrated in the
following figure.

Figure 130: Loop Iterations

Here is the key to understanding looping: when a looping processing mode is enabled, rules are continually
re-evaluated and re-fired in a sequence determined by their dependency network as long as the data state
changed since their last firing. Once the data state no longer changes, looping ceases.

Notice that the last column of the table indicates the number of loop iterations. The first loop does not begin
until rule 2 fires for the second time. The first time through the rules (steps 1-4) does not count as the first loop
iteration because the loop does not actually start until step 5.

Types of loops

Infinite loops
In the illustration in the "Rulesheet processing modes of looping" topic, looping between rules 2, 3, and 4
continues indefinitely because there is nothing to stop the cycle. Some loops, especially those inadvertently
introduced, are not self-terminating. Because these loops will not end by themselves, they are called infinite
loops. Infinite loops can be especially vexing to a rule modeler because it is not always apparent when a
Rulesheet has entered one. A good indication, however, is that rule execution takes longer than expected to
complete. A special control is provided to prevent infinite loops. This control is described in the Terminating
infinite loops topic.

Trivial loops
Single-rule loops, or loops caused by rules that depend logically on themselves, are also known as trivial loops,
a special kind of loop because they consist of a single rule that successively revisits, or triggers, itself.

Progress Corticon: Rule Modeling: Version 6.3188

Chapter 7: Rule dependency in chaining and looping

To enable the self-triggering mode of looping, selectRulesheet > ProcessingModes > Advanced Inferencing
with Self-Triggering from the Corticon Studio menubar, as shown:

Figure 131: Selecting Advanced Inferencing with Self-Triggering processing mode for a Rulesheet

Notice the icon to the left of the Conditions header. It contains an additional tiny arrow, which indicates
self-triggering is active.

Here is an example of a loop created by a self-triggering rule:

Figure 132: Example of an infinite single-rule loop

When Cargo.weight has a value equal to or greater than 0, then rule 1 fires and the value of Cargo.weight
is incremented by 1. Data state has now changed—in other words, the value of at least one of the attibutes
has changed. In this case, it is the value of Cargo.weight.

Because rule 1 executing that caused the data state change, and because self-triggering is enabled, the same
rule 1 will be re-evaluated. Now, if the value of Cargo.weight satisfies the rule initially, it will do so again, so
the rule fires again, and self-triggers again. And so on, and so on. This is also an example of an infinite loop,
because no logic exists in this rule to prevent it from continuing to loop and fire.

189Progress Corticon: Rule Modeling: Version 6.3

Rulesheet processing modes of looping

An exception to self-triggering
Self-triggering logic can also be modeled in Column 0 of the Rulesheet, as shown:

Figure 133: Example of an infinite loop created by a self-triggering rule

This figure is also a good example of why it might be appropriate to disable self-triggering processing. You
only want the weight to increment once, not enter into an infinite loop, which it would otherwise do,
unconditionally. This is a special case where you intentionally prevented this rule from iterating, even though
self-triggering is enabled. This rule will execute only once, regardless of the loop processing mode.

Another example of a loop caused by self-triggering rule, but one which is not infinite, is shown in the following
figure. The behavior described only occurs when Rulesheet processing mode is set to Advanced Inferencing
with Self-Triggering.

Figure 134: Example of a finite single-rule loop

In the preceding figure, the rule continues to fire until Cargo.weight reaches a value of 21, whereupon it
fails to satisfy the condition, and firing ceases. The loop terminates with Cargo.weight containing a final
value of 21.

It is important to note that in all three examples, an initial Cargo.weight value of 0 or higher was necessary
to activate the loop. A negative (or null) value, for example, would not have satisfied the rule's condition and
the loop would not have begun.

Multi-rule loops
As the name suggests, multi-rule loops exist when two or more rules are mutually dependent. As with single-rule
loops, the Rulesheet containing the looping rules must be configured to process them. This is accomplished
as before. Choose Rulesheet > Processing Mode > Advanced Inferencing from the Studio menubar, as
shown previously in Selecting advanced inferencing processing mode for a Rulesheet.

Progress Corticon: Rule Modeling: Version 6.3190

Chapter 7: Rule dependency in chaining and looping

Here is an example of a multi-rule logical loop:

Figure 135: Example of a finite multi-rule loop

In the figure, rule 2 is dependent upon rule 1, and rule 1 is dependent upon rule 2. Rule 3 was also added,
which does not participate in the 1—2 loop, but generates a Violation message when the 1—2 loop finally
terminates. Note, rule 3 does not cause the 1—2 loop to terminate, it just announces that the loop has terminated.
Now you will see how they behave. In Ruletest for the multi-rule Rulesheet, you see a simple Ruletest.

Figure 136: Ruletest for the multi-rule Rulesheet

191Progress Corticon: Rule Modeling: Version 6.3

Rulesheet processing modes of looping

Cargo.weight has a starting value to get the loop going. According to the condition in rule 1, this value must
be between 1 and 10 (inclusive).

Figure 137: Ruletest for the multi-rule Rulesheet

When intentionally building looping rules, it is often helpful to post messages with embedded attribute values
(as shown in the Rule Statements section of Figure 135: Example of a finite multi-rule loop on page 191) so we
can trace the loop's operation and verify it is behaving as expected. It should be clear to the reader that the
Ruletest shown in Ruletest for the Multi-rule Rulesheet contains the expected results.

Looping controls in Corticon Studio
To handle the various aspects of rule looping, Corticon Studio provides several mechanisms for identifying and
controlling looping behavior.

Progress Corticon: Rule Modeling: Version 6.3192

Chapter 7: Rule dependency in chaining and looping

Although you have only seen simple examples so far, looping rules can get muchmore complicated. Sometimes,
rules have mutual dependencies by accident—you did not intend to include loops when we built the Rulesheet.
It is for this reason that all loop processing is disabled by default (in other words, the default Rulesheet processing
mode is optimized inferencing, which does not permit revisiting rules that were already evaluated.) You must
manually enable your preferred loop processing mode to cause the loops to execute. This is the strongest,
most foolproof mechanism for preventing unexpected looping behavior: simply keep loop processing disabled.

How to identify loops
Assuming that you have not intentionally incorporated looping logic in your Rulesheet, you need a way to
discover if unintentional loops occur in your rules.

The loop detection tool
To help identify inadvertent loops, Corticon Studio provides a Check for Logical Loops tool in the Corticon
Studio toolbar. The tool contains a powerful algorithm that analyzes dependencies between rules on the same
Rulesheet, and reports discovered loops to the rule modeler. For the Loop Detector to notice mutual
dependencies, a Rulesheet must have looping enabled using one of the choices described earlier.

Clicking the Check for Logical Loops icon displays a window that describes the mutual dependencies found
on the Rulesheet. To illustrate loop detection, a few of the same examples will be used.

Figure 138: Example of an infinite single-rule loop

193Progress Corticon: Rule Modeling: Version 6.3

Looping controls in Corticon Studio

When applied to a Rulesheet containing just the single-rule loop shown in this figure, the Check for Logical
Loops tool displays the following window:

Figure 139: Checking for logical loops in a Rulesheet

Figure 140: A single-rule loop detected by the Check for Logical Loops tool

Progress Corticon: Rule Modeling: Version 6.3194

Chapter 7: Rule dependency in chaining and looping

The Check for Logical Loops tool first lists rules where mutual dependencies exist. Then, it lists the distinct,
independent loops in which those rules participate, and finally it lists where self-triggering rules exist (if any). In
this simple single-rule loop example, only one rule contains a mutual dependency, and only one loop exists in
the Rulesheet.

Note: The Check for Logical Loops tool does not automatically fix anything, it just points out that your rules
have loops, and gives you an opportunity to remove or modify the offending logic.

How to remove loops
If the Check for Logical Loops tool detects loops, you can take one of several corrective actions:

• If no loops are what you want, then click Rulesheet > Processing Mode and de-select whichever of the
two looping options is currently selected. When done, the Check for Logical Loops tool will no longer
detect loops and the software will no longer process them.

• If loops are what you want, then take measures to ensure that none of the loops can be infinite. Normally,
this means adding conditional logic to one of the looping rules to make sure that the rule can't be satisfied
indefinitely. This is similar to the bounding of Condition 1 in Example of a finite multi-rule loop using a Values
set of 0..20. When Cargo.weight reaches 21, the rule's condition will no longer be satisfied and the
loop terminates.

• If some loops are good and some are not, then remove the inter-dependencies in the unwanted loops and
ensure that the selected loops are not infinite.

How to terminate infinite loops
By definition, infinite loops will not terminate by themselves. Therefore, Corticon provides a safety valve that
caps the number of iterations allowed before the system automatically terminates a loop. The default setting
is 100, meaning that a loop is allowed to iterate up to 100 times normally. After the number of loops exceeds
the maxloops setting, then the system automatically terminates the loop and generates a Violation error
message. This means that the final number of loop iterations will be 101: 100 normal iterations plus the final
iteration that causes the Violation message to appear and the loop to terminate. The following figure shows
a Violation message:

Figure 141: Maxloop Exceeded Violation Message

If you are comfortable writing looping rules, and want the software to be able to loop more than 100 times, be
sure to reset this property to a higher value. Keep in mind that the more iterations the system performs, the
longer rule execution may take. If the Rulesheets you intend to deploy require high iteration counts, set the
value that determines what constitutes an endless loop. For Decision Services that have Rulesheets with a
Processing mode that allows looping , it is important to limit the loop count and prevent endless loops.

In the brms.properties file, add the following property with your preferred maximum number of iterations
allowed for any loop:

com.corticon.reactor.rulebuilder.maxloops=100

195Progress Corticon: Rule Modeling: Version 6.3

Looping controls in Corticon Studio

Looping examples
The following examples show how looping can be useful in your models.

Determine the next working day when given a date

Problem
For any given date, determine the next working day. Take into consideration weekends and holidays.

Solution
Implemented correctly in Corticon Studio, these rules should start with a given input date, and increment as
necessary until the next workday is identified (workday is defined here as any day not Saturday, Sunday, or a
national holiday). A simple Vocabulary that supports these rules is shown in Example of a finite single-rule
loop.

Figure 142: Sample Vocabulary for holiday rules

Progress Corticon: Rule Modeling: Version 6.3196

Chapter 7: Rule dependency in chaining and looping

Next, the rules are implemented in the Rulesheet shown in the following figure:

Figure 143: Sample Rulesheet for determining next workday

To step through this Rulesheet:

1. Notice that the Scope section is not used. A very simple Vocabulary is used with short entity names and
no associations, so aliases are not necessary. Furthermore, none of the rules use collection operations, so
aliases representing collections are not required either.

2. The first rule executed is the nonconditional equation (in column 0) setting nextWorkDay equal to
currentDate plus one day.

3. Rule 1 (in column 1) checks to see if the DateTime of the nextWorkDaymatches any of the holidays defined
in one or more Holiday entities. If it does, then the Action row B increments nextWorkDay by one day
and posts a warning message.

4. Rule 3 checks to see if the nextWorkDay falls on a Sunday. Notice that this rule uses the .dayOfWeek
operator, which is described in full detail in the Rule Language Guide. If the day of the week is Sunday (in
other words, .dayOfWeek returns a value of 1), then the Action increments nextWorkDay by one day and
posts a warning message.

5. Rule 4 checks to see if the nextWorkDay falls on a Saturday. If the day of the week is Saturday (in other
words, .dayOfWeek returns a value of 7), then the Action row C increments nextWorkDay by two days
and posts a warning message. By incrementing 2 days, an extra iteration is skipped because we know
Sunday is also a non-workday.

Do not forget to check for conflicts: they exist in this Rulesheet. Assume that a holiday never falls on a weekend.

Note: Resolution of the conflicts is straightforward, so that is not addressed in detail here. One conflict – that
between rules 1 and 4 - is left unresolved because the assumption is that a holiday never falls on a weekend. See
Logical Analysis chapter more a complete discussion of conflict and other logical problems.

197Progress Corticon: Rule Modeling: Version 6.3

Looping examples

A modified Rulesheet displays the overrides added to resolve the conflicts in the following figure:

Figure 144: Holiday rules with ambiguities resolved by overrides

Progress Corticon: Rule Modeling: Version 6.3198

Chapter 7: Rule dependency in chaining and looping

Using the same rules as before, click the Logical Loop Checker icon in the Corticon Studio toolbar. The
following window opens:

Figure 145: Results of Logical Loop Check

This window first identifies which rules are involved in loops. The window also outlines the specific attribute
interactions that create the loops.

199Progress Corticon: Rule Modeling: Version 6.3

Looping examples

Now that you understand the looping logic in your Rulesheet, create a Ruletest to verify that the loops operate
as intended and produce the correct business results.

Figure 146: Ruletest for holiday rules

Given that July 4th, 2025 falls on a Friday, you expect nextWorkDay to contain a final value of July 7th, 2025,
a Monday, when the loops terminate. When the Ruletest runs, you see the following:

Figure 147: Ruletest output for holiday rules

As you can see, the result is a three-day weekend!

Remove duplicated children in an association

Problem
For a Customer->Address association (one-to-many), each address must be unique.

Progress Corticon: Rule Modeling: Version 6.3200

Chapter 7: Rule dependency in chaining and looping

Solution
Compare every address associated with a customer with every other address associated with that customer,
and -- when a match is found -- remove (or mark) one of the addresses.

The following example compares all pairs of addresses that meet a filter condition. That process occurs in no
specific order so you might notice that one run starts with address 4 and address 2 (id=1 < id=4), yet the
next time it runs, it might start with address 3 and address 1 (id=2 < id=3), so the results might seem
different. However, all that is required is that only one of each unique address survives.

To ensure that the filtering process is controlled, you need unique identifier attribute values to distinguish the
instances. If the address already has an attribute that is a unique identifier, then you could use that in the filter;
otherwise, you need to create a transient, integer attribute, id, in the Address entity in the Vocabulary:

Using the created identifier attribute, create a Rulesheet to identify each unique address. It uses two aliases
to run through the addresses associated with a given customer. The actions initialize the id, and then add an
incremented id value to each associated Address in memory:

After each address has a unique identity, the second Rulesheet does the removal action. It iterates through
the associations to identify whether an association has a match, and, if it does, to remove the matching
association from memory, as shown:

201Progress Corticon: Rule Modeling: Version 6.3

Looping examples

A Ruleflow puts the two Rulesheets into sequence, as shown:

A Ruletest that uses this Ruleflow as the test subject shows the "survivors" in its output:

After this processing is done, subsequent Rulesheets in the Ruleflow see only unduplicated addresses for each
customer.

Note: Rule Statements were not requested for this process. Because the duplicates are being removed during
the execution of the rule, each removed address was dropped from memory, and no longer has a meaningful
reference when the statement message is generated.

Progress Corticon: Rule Modeling: Version 6.3202

Chapter 7: Rule dependency in chaining and looping

Flagging duplicate children

You might want to identify the duplicated records rather than delete them. To do so, just uncheck (or delete)
the .remove action, and add an appropriate .comment value to the address. This examples uses, 'Duplicate',
as shown:

When the same Ruletest runs, this time shows all the input records, with duplicated records displaying their
comment values:

203Progress Corticon: Rule Modeling: Version 6.3

Looping examples

Note: Again, Rule Statements were not used. There are three duplicates: address 4 and address 1, address
4 and address 2, address 1 and address 2, so three messages (referencing 1, 4, and 4) would be generated
because all of the addresses are still in memory. Two get marked as duplicates, and one survives. In a
subsequent Rulesheet, you could delete all addresses that were flagged as 'Duplicate'.

How to use conditions as a processing threshold
Looping, which involves revisiting, re-evaluating, and possible re-firing rules, and requires you to enable one
of the looping modes, must be distinguished from another behavior that may appear to be similar.

You probably noticed Corticon's inherent ability to process multiple test scenarios at once. For example, a rule
written using the Vocabulary term Cargo.weight is evaluated (and potentially fired) for every instance of
Cargo encountered during execution. If a Ruletest contains four Cargo entities, then the rule engine tests the
rule's conditions with each of them. If any of the Cargo entities satisfy the rule's conditions, then the rule
fires. This could mean that the rule fires once, twice, or up to four times, depending on the actual data values
of each Cargo. From the prior discussion of scope, a rule will evaluates all data that shares the same scope
as the rule itself.

This iterative behavior is a natural part of the Corticon rule engine design. There is nothing that you need to
do to enable it. Note that this behavior is different from the modes of looping because the Cargo.weight rule
is not re-evaluated for a given piece of data. Rule execution is still single-pass. It is just that it makes a single
pass through each of the four Cargo entities.

The advantage of this natural iteration is that you do not need to force it. The rule engine automatically processes
all data that shares the same scope as the rule. If the Ruletest contains four Cargos, the rule will be evaluated
four times. If the Ruletest contains 4000 Cargos, the rule is evaluated 4000 times. You do not write the rule
differently in Corticon Studio.

But, this advantage can also be a disadvantage. What if you want rule execution to stop partway through its
evaluation of a given set of entity data (a binding). What if, after finding a Cargo that satisfies the rule among
the set (binding) of Cargo entities, you want to stop evaluation mid-stream? In normal operations, this is not
possible.

Here is a simple example.

Figure 148: Rulesheet and Ruletest, no threshold condition, CaPT disabled

In the preceding example, no threshold condition, CaPT disabled, you see a simple rule that sets
thing.selected = true for all thing.aSize = 'small'. Notice in the adjacent Ruletest, that each
small Thing is selected. Thing[2] and Thing[3] are both small, so they are both selected by the rule. The
rule evaluated all three Things, but finding only two that satisfy the rule's condition, only fires twice. This iteration
happened automatically.

Progress Corticon: Rule Modeling: Version 6.3204

Chapter 7: Rule dependency in chaining and looping

What if you wanted rule execution to stop after finding the first Thing that satisfies the rule? In other words,
allow the rule engine to fire for Thing[2] but stop processing before firing for Thing[3]. Is that possible?
You might think the following Rulesheet accomplishes this goal.

Figure 149: Rulesheet and Ruletest, threshold condition added, CaPT disabled

The example in this figure includes two changes: Thing.selected is defaulted to false in the Nonconditional
rule (Action row A0), and a second Condition row checks for Thing.selected = false as part of rule 1.
This is called a threshold condition.

You might think that when Thing[2] fires the rule, its value of selected (re-set to true) would be sufficient
to stop further evaluation and execution of Thing[3]. But, as you see in the adjacent Ruletest, this is not the
case. The reason is that Thing[3] is an separate entity within the binding, and is entitled to its own evaluation
of rule 1 regardless of what happended with Thing[2]. The addition of the threshold condition accomplished
nothing.

A special feature in Corticon Studio, called Use Condition as Processing Threshold (abbreviated as CaPT),
allows you to interrupt processing of the binding. You activate this option by selecting the rule column involved,
and then from the Corticon Studio menu bar, choose Rulesheet > Rule Columns(s) > Use Condition as
Processing Threshold.

When selected, CaPT causes the rule column header to display in bold type, as shown, circled in orange:

Figure 150: Rulesheet and Ruletest, threshold condition added, CaPT enabled

When CaPT is activated, it breaks out of the automatic binding iteration whenever an instance in the binding
fails to satisfy the threshold condition. In this case, Thing[2], having just fired rule 1, no longer satisfies the
threshold condition, and causes rule execution to stop before evaluating Thing[3]. If you re-ran this Ruletest,
you might see Thing[3] evaluated first, in which case rule execution stops before evaluating Thing[2].

Within a binding, sequence of evaluation of elements is random and may change from execution to execution.
There is nothing about the binding that enforces an order or sequence among the bound elements.

205Progress Corticon: Rule Modeling: Version 6.3

How to use conditions as a processing threshold

TestYourself questions for Rule dependency chaining
and looping

Note: Try this test, and then go to TestYourself answers for Rule dependency and inferencing on page 356 to
correct yourself.

1. What is the main difference between inferencing and looping?

2. A loop that does not end by itself is known as an __________ loop.

3. A loop that depends logically on itself is known as a single-rule or __________ loop.

4. True or False. The Check for Logical Loops tool in Corticon Studio will always find mutual dependencies
in a Rulesheet if they are present.

5. True or False. The Check for Logical Loops tool in Corticon Studio can fix inadvertent loops.

Referring to the following illustration, answer questions 6 through 8.

6. Given these two rules, is it necessary for the Rulesheet to use the Inferencing mode shown? Why or why
not?

7. Is there any potential harm in having this Rulesheet configured to Advanced Inferencing with Self-Triggering?
Why or why not?

8. If the Rulesheet were tested with a DVD having a price tier of High, quantity available of 150,000, and
release date within the past 6 months, what would be the outcome of the test?

9. This icon indicates which type of inferencing is enabled for this Rulesheet?

Progress Corticon: Rule Modeling: Version 6.3206

Chapter 7: Rule dependency in chaining and looping

10. This icon indicates which type of inferencing is enabled for this Rulesheet?

11. A ________________ determines the sequence of rule execution and is generated when a Rulesheet is
_______________.

207Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rule dependency chaining and looping

Progress Corticon: Rule Modeling: Version 6.3208

Chapter 7: Rule dependency in chaining and looping

8
Filters and preconditions

Conditional expressions modeled in the Filters section of a Rulesheet can behave in two ways: as filters alone
or as filters plus preconditions. Both behaviors are explained and illustrated in this section.

Filters can be set to be Database filters on page 218 when its entity is defined to persist in a datastore and the
entity is set to extend to database.

Any conditional expression entered in the Filters window of a Rulesheet is referred to as a filter, regardless of
its strict mode of behavior. This will help you differentiate the expression from its specific behaviors.

For details, see the following topics:

• What is a filter

• What is a precondition

• How to use collection operators in a filter

• Filters that use OR

• TestYourself questions for Filters and preconditions

What is a filter
A filter expression acts to limit or reduce the data in working memory to only that subset whose members satisfy
the expression. A filter does not permanently remove or delete any data; it simply excludes data from evaluation
by other rules in the same Rulesheet.

Data that satisfies a Filter expression is referred as surviving the Filter. Data that does not survive the filter is
filtered out, and then is ignored by other rules in the same Rulesheet.

209Progress Corticon: Rule Modeling: Version 6.3

A Filter expression, regardless of its full behavior, is unaffected by Filter expressions in other Rulesheets.

As an example, look at the Rulesheet sections shown in the following two figures:

Figure 151: Aliases declared

The Scope window in this figure defines aliases for a root-level Policy entity, a collection of Driver entities
related to that Policy, and a collection of Vehicle entities related to that Policy, named thePolicy,
drivers, and cars, in that order.

To start with, write a simple Filter and observe its default behavior. In the following simple scenario, the Filter
expression reduces the set of data acted upon by the nonconditional rule (column 0), which in this case posts
the rule statement as a message.

Figure 152: Rulesheet to illustrate basic filter behavior

Progress Corticon: Rule Modeling: Version 6.3210

Chapter 8: Filters and preconditions

The result is not unexpected: for every element in the collection (every Driver) whose age attribute is greater
than 16, you see a posted message in the Ruletest, as shown:

Figure 153: Ruletest to test filter behavior

The policy is issued because there are drivers over 16. But, because only Jacob and Lisa are older than 16,
Rule Messages are posted only for them.

Full filters
By default, each filter you write acts as a full filter. This means not only will the data not satisfying the Filter
expression be filtered out of subsequent evaluations, but in cases where this data is a collection where no
elements survive the filter, the parent entity will also be filtered out!

211Progress Corticon: Rule Modeling: Version 6.3

What is a filter

Here is the Testsheet with three juvenile drivers:

Figure 154: Ruletest for Full Filter

Notice two important things about this Ruletest's results: first, none of the Driver entities in the Input are older
than 16, which means none of them survives the filter. Second, because the parent Policy entity does not
contain at least one Driver that satisfies the filter, then the parent Policy itself also fails to survive the filter. If
no Policy entity survives the filter, then rule Column 0 has no data upon which to act, so no Policy is
assigned a startDate equal to today. The Testsheet's output, shown in the preceding figure, confirms the
behavior.

Why would you want a Filter to behave this way? Perhaps because, if these are the only drivers seeking a
policy, then there must be at least one driver of legal age to warrant issuing a policy. While you will probably
find that the full filter behavior is generally what you want when filtering your data, it might be too strict in other
situations. If other rules on the Rulesheet act or operate on Policy, then a maximum filter gives you an easy
way to specify and control which Policy entities are affected.

Disabling a Full Filter
When testing, you might want to remove one filter. Instead of deleting the filter, you can disable it by right-clicking
the rule and then choosing Disable, as shown:

Progress Corticon: Rule Modeling: Version 6.3212

Chapter 8: Filters and preconditions

After the filter is disabled, all applications of the filter are rendered in gray, as shown:

A disabled full filter is really no filter at all. You can perform the corresponding action to again Enable the filter.

Limiting filters
There are occasions, however, when the all-or-nothing behavior of a full filter is unwanted because it is too
strong. In these cases, you want to apply a filter to specified elements of a collection, but still keep the selected
entities even if none of the children survive the filter.

213Progress Corticon: Rule Modeling: Version 6.3

What is a filter

To turn a Filter expression into a limiting filter, right-click on a filter in the scope section and select Disable
from the menu, as shown:

Figure 155: Selecting to limit a filter

This causes that specific filter position to no longer apply, indicated in gray:
Figure 156: Limiting filter set

Notice that the filter is still enabled, and that it will still be applied at the Driver level. The filter was limited.

Use case for limiting filters

The preceding example was basic. Let's explore some more complex examples of limited filters.

Consider the case where there is a rule component designed to process customers and orders.

A customer has a 1 to many relationship with an order.

The rule component has two objectives: one to process customers, and the second to process orders.

If you define a filter that tests for a GOLD status on an order, there can be four logical iterations of how the
filter could be applied to the rules.

Case 1: filter is not applied at all.
Case 2: filter is applied to all customers and all orders.
Case 3: filter is only applied to customers.
Case 4: filter is only applied to orders.

Progress Corticon: Rule Modeling: Version 6.3214

Chapter 8: Filters and preconditions

A business statement for these cases could be as follows:

Case 1: Process all customers and all orders.
Case 2: Process only GOLD status orders and only customers that have a GOLD status

order.
Case 3: Process only customers that have a GOLD status order and all orders of a

processed customer.
Case 4: Process all customers and only GOLD status orders.

For filter modeling, the Filter expression could be written as Customer.order.status = ‘GOLD’. The
modeling consideration for the cases are:

Case 1: Filter is not entered (or filter disabled, or filter disabled at both Customer
and Customer.order levels in the scope).

Case 2: Filter is entered with no scope modifications (enabled at both Customer and
Customer.order levels in the scope).

Case 3: Filter is entered and then disabled at the Customer.order level in the scope.

Case 4: Filter is entered and then disabled at the Customer level in the scope.

You see how one filter can apply limits to the full filter to achieve the preferred profile of what survives the filter
and what gets filtered out.

Next, a more complex set of limiting filters is discussed.

Example of limiting filters

Consider the following Rulesheet Scope of a Vocabulary:
Figure 157: Scope in a Rulesheet that will be filtered

Consider the filter to be applied to data:

Customer.order.item.bid >= Category.product.price

This is shown in the Rulesheet's Filters section as:
Figure 158: Definition of a filter

215Progress Corticon: Rule Modeling: Version 6.3

What is a filter

The resulting filter application applies at several levels, as shown:
Figure 159: Application of the filter to the Scope's tree structure

A Ruletest Testsheet might be created as follows:

Progress Corticon: Rule Modeling: Version 6.3216

Chapter 8: Filters and preconditions

This data tree contains five entity types (Customer, Order, Item, Category, Product).

This filter is evaluated as follows:

Customer[1],Order[1],Item[1],Category[1],Product[1] false
Customer[1],Order[1],Item[1],Category[1],Product[2] true
Customer[1],Order[1],Item[1],Category[2],Product[2] true
Customer[1],Order[1],Item[1],Category[2],Product[3] true
Customer[1],Order[1],Item[1],Category[3],Product[1] false
Customer[1],Order[1],Item[2],Category[1],Product[1] false
Customer[1],Order[1],Item[2],Category[1],Product[2] false
Customer[1],Order[1],Item[2],Category[2],Product[2] false
Customer[1],Order[1],Item[2],Category[2],Product[3] false
Customer[1],Order[1],Item[2],Category[3],Product[1] false
Customer[1],Order[2],Item[3],Category[1],Product[1] false
Customer[1],Order[2],Item[3],Category[1],Product[2] false
Customer[1],Order[2],Item[3],Category[2],Product[2] false
Customer[1],Order[2],Item[3],Category[2],Product[3] true
Customer[1],Order[2],Item[3],Category[3],Product[1] false
Customer[2],Order[3],Item[5],Category[1],Product[1] false
Customer[2],Order[3],Item[5],Category[1],Product[2] false
Customer[2],Order[3],Item[5],Category[2],Product[2] false
Customer[2],Order[3],Item[5],Category[2],Product[3] false
Customer[2],Order[3],Item[5],Category[3],Product[1] false

The tuples that evaluate to true are:

Customer[1],Order[1],Item[1],Category[1],Product[2]
Customer[1],Order[1],Item[1],Category[2],Product[2]
Customer[1],Order[1],Item[1],Category[2],Product[3]
Customer[1],Order[2],Item[3],Category[2],Product[3]

The entities that survive the filter are:

Customer[1]
Customer[1],Order[1]
Customer[1],Order[2]
Customer[1],Order[1],Item[1]
Customer[1],Order[2],Item[3]
Category[1]
Category[2]
Category[1],Product[2]
Category[2],Product[2]
Category[2],Product[3]

The Scope section of the Rulesheet expands as follows:

Notice how the filter is applied towards each discrete entity referenced in the expression:

• If the filter is applied to Customer, then the survivor of the filter is Customer[1]. If not applied, then
{Customer[1], Customer[2]} survive the filter.

• If the filter is applied to Customer.order, then the surviving tuples are {Customer[1], Order[1]}
and {Customer[1],Order[2]}. If not applied, then there is no effect (because there was no Order
child of Customer[1] that did not survive the filter).

• If the filter is not applied at the Customer level as well as the Customer.order level, then all
Customer.order tuples survive the filter with the result: {Customer[1],Order[1]}, {
Customer[1],Order[2]}, {Customer[2],Order[3]}.

• If the filter is applied to Customer.order.item, then the surviving tuples are
{Customer[1],Order[1],Item[1]} and {Customer[1],Order[2],Item[3]}. When not applied

217Progress Corticon: Rule Modeling: Version 6.3

What is a filter

(at this level but at higher levels), then the surviving tuples are {Customer[1],Order[1],Item[1]},
{Customer[1],Order[1],Item[2]}, {Customer[1],Order[2],Item[3]}.

• If the filter is applied to Category, then the surviving entities are Category[1], Category[2]. If not
applied, then Category[1], Category[2], Category[3].

• If the filter is applied to the Category.product level, then the surviving tuples are be {Category[1],
Product[2]}, {Category[2], Product[2]}, {Category[2], Product[3]}

You see how a filter applied (at each level) determines which entities are processed when a rule references a
subset of the filter’s entities. With the limiting filters feature, the filter may or may not be applied to each entity
referenced by the filter.

Database filters
When a Vocabulary has elected to have an EDC Datasource, setting an entity'sDatastore Persistent property
to Yes declares that the entity will map to a table in the Datasource. A database cylinder decorates the icons
of the entity and its attributes, as shown:

After the property is set, right-clicking an Entity's alias in a Rulesheet's Scope section shows the menu command
to Extend to Database, as shown:

Progress Corticon: Rule Modeling: Version 6.3218

Chapter 8: Filters and preconditions

Then, you can define filters and set them each as a Database Filter, as shown:

When checked, the filter becomes a database query that retrieves data from the connected database, and then
adds the retrieved data to working memory.

When the option is cleared, the filter is applied only to data currently in working memory.

Note: See Precondition and filters as query filters on page 253 for qualifications and supported operators.

Database filters in an execution sequence diagram

When you choose Rulesheet > Logical Analysis > Execution Sequence Diagram, the graphic that is
generated distinguishes a database filter from local filter by its shape:

219Progress Corticon: Rule Modeling: Version 6.3

What is a filter

In this example, F.1, the database query, is displayed within a triangle, while F.2, the local filter, is displayed
within an inverted trapezoid (a quadrilateral with parallel horizontal bases and legs that converge downward).

Error Conditions

It is important to note that you could set a database filter on an entity that is not datastore persistent or extended
to database. If you do so, then the filter is marked in red, as shown. The error notes that the filter cannot be
processed by a database.

Progress Corticon: Rule Modeling: Version 6.3220

Chapter 8: Filters and preconditions

What is a precondition
If you are comfortable with the limiting and full behaviors of a Filter expression, then its precondition behavior
is even easier to understand. While reading this section, keep in mind that filters always act as either limiting
or full filters, but they can also act as preconditions if you enable that behavior as described in this section. If
you think of filtering as a mandatory behavior but a precondition as an optional behavior, then you will be in
good shape later. Also, it may be helpful to think of the precondition behavior, if enabled, as taking effect after
the filtering step is complete.

Precondition behavior of a filter ensures that execution of a Rulesheet stops unless at least one piece of data
survives the filter. If execution of a Rulesheet stops because no data survived the filter, then execution moves
on to the next Rulesheet (in the case where the Rulesheet is part of a Ruleflow). If no more Rulesheets exist
in the Ruleflow, then execution of the entire Ruleflow is complete.

In effect, a filter with precondition behavior enabled acts as a gatekeeper for the entire Rulesheet - if no data
survived the filter, then the Rulesheet's gate stays closed and no additional rules on that Rulesheet will be
evaluated or executed.

If, however, data survived the filter, then the gate opens, and the surviving data can be used in the evaluation
and execution of other rules on the same Rulesheet.

The precondition behavior of a filter is significant because it allows you to control Rulesheet execution regardless
of the scope used in the rules. Take, for example, the Rulesheet shown in the following figure. The filter in row
1 is acting in its standard default mode of full filter. This means that Driver entities in the collection named
drivers and the collection's parent entity Policy are both affected by this filter. Only those elements of
drivers older than 16 survive, and at least one must survive for the parent Policy also to survive.

Figure 160: Input Rulesheet for Precondition

221Progress Corticon: Rule Modeling: Version 6.3

What is a precondition

But, how does this affect the Claim in nonconditional row A (rule column 0)? Claim, as a root-level entity, is
safely outside of the scope of the filter, and therefore unaffected by it. Nothing the filter does (or does not do)
has any effect on what happens in Action row A—the two logical expressions are independent and unrelated.
As a result, Claim.validClaim will always be false, even when none of the elements in drivers are
older than 16. A quick Ruletest verifies this prediction:

Figure 161: Rulesheet for an action unaffected by a filter

But, what if the business intent of our rule is to update Claim based on the evaluation of Policy and its
collection of Drivers? What if the business intent requires that the Policy and Claim really be related in
some way? How do you model this?

Using the same example, right-click on Filters row 1 and select Precondition.

Figure 162: Selecting precondition behavior from the filter menu

Progress Corticon: Rule Modeling: Version 6.3222

Chapter 8: Filters and preconditions

Note that the two options, Precondition and Limiting Filter, are mutually exclusive: turning one on turns the
other off. A filter cannot be both a precondition and a limiting filter because at least one piece of data always
survives a limiting filter, so a precondition never stops execution.

Selecting Precondition causes the following:

• The yellow funnel icon in the Filter window receives a small red circle symbol

• The yellow funnel icons in the Scope window receive small red circle symbols

The following figure shows a filter in Precondition mode.

Figure 163: A Filter in Precondition Mode

As described before, the precondition behavior of the filter causes Rulesheet execution to stop whenever no
data survives the filter. So, in the original case where Policy and Claim were unassociated, a filter in
Precondition mode accomplishes the business intent without artificially changing the Vocabulary or underlying
data model, as shown:

Figure 164: Rulesheet with a filter in Precondition mode

223Progress Corticon: Rule Modeling: Version 6.3

What is a precondition

A final proof is provided in the following figure:

Figure 165: Testsheet for a filter in Precondition mode

Summary of filter and preconditions behaviors
• A filter reduces the available data for other rules in the Rulesheet to use. Filters show as gray text rather

than black. shades of gray - all data, some data, or no data may result from a filter.

• A filter in Precondition mode stops Rulesheet execution if no data survives the filter. Preconditions are
explicit: data either survives the filter, and allows Rulesheet execution to continue, or no data survives and
the Rulesheet execution stops.

• Filter expressions always acts as a filter. By default, they act as filters only. If you also need true precondition
behavior, then setting the filter to Precondition mode enables precondition behavior while keeping filter
behavior.

Performance implications of the precondition behavior
A rule fires whenever data sharing the rule's scope exists that satisfies the rule's conditions. In other words, to
fire any rule, the rule engine must first collect the data that shares the rule's scope, and then check if any of it
satisfies the rule's conditions. So, even in a Rulesheet where no rules fire, the rules engine may have still
needed to work hard to come to that conclusion. And, hard work requires time, even for a high-performance
rules engine like Corticon.

Progress Corticon: Rule Modeling: Version 6.3224

Chapter 8: Filters and preconditions

A Filter expression acting only as a filter never stops Rulesheet execution; it limits the amount of data used in
rule evaluations and firings. In other words, it reduces the set of data that is evaluated by the rule engine, but
it does not actually stop the rule engine's evaluation of remaining rules. Even if a filter successfully filters out
all data from a given data set, the rule engine still evaluates this empty set of data against the available remaining
rules. Of course, no rules fire, but the evaluation process occurs and takes time.

Filter expressions also acting as preconditions change this. Now, if no data survives the filter (remember, Filter
expressions always act as filters even when also acting as preconditions), then Rulesheet execution stops. No
additional evaluations are performed by the rules engine. That Rulesheet is done, and the rules engine begins
working on the next Rulesheet. This can save time and improve engine performance when the Rulesheet
contains many additional rules that would have been evaluated were the expression in filter-only mode (the
default mode).

225Progress Corticon: Rule Modeling: Version 6.3

What is a precondition

How to use collection operators in a filter
In the following examples, all filter expressions use their default filter-only behavior. As detailed in the Rule
Writing Techniques topics, the logic expressed by the following three Rulesheets provides the same result:
Figure 166: A Condition/Action rule column with 2 Conditional rows

Figure 167: Rulesheet with one condition row moved to filters row

Figure 168: Rulesheet with filter and condition rows swapped

Progress Corticon: Rule Modeling: Version 6.3226

Chapter 8: Filters and preconditions

Even though expressions in the Filters section of the Rulesheet are evaluated before conditions, the results
are the same. This is true for all rule expressions that do not involve collection operations and therefore do not
need to use aliases, used in this example brevity of expression. Conditional statements, whether they are
located in the Filters or Conditions sections, are AND'ed together. Order does not matter.

In other words, to use the logic from the preceding example:

If person.age > 40 AND person.skydiver = true, then person.riskRating = 'high'

Because it does not matter which conditional statement is executed first, we could have written the same logic
as:

If person.skydiver = true AND person.age > 40, then person.riskRating = 'high'

This independence of order is similar to the commutative property of multiplication: 4 x 5 = 20 and 5 x 4 =
20. Aliases work well in a declarative language (like Corticon's) because regardless of the order of processing,
the outcome is the same.

227Progress Corticon: Rule Modeling: Version 6.3

How to use collection operators in a filter

Location matters
Order independence does not apply to conditional expressions that include collection operations. In the following
Rulesheets, notice that one of the conditional expressions uses the collection operator ->size, and therefore
must use an alias to represent the collection Person.

Figure 169: Collection operator in Condition row

Figure 170: Collection operator in Filter row

The Rulesheets appear identical with the exception of the location of the two conditional statements. But, do
they produce identical results? Let's test the Rulesheets to see, testing Collection operator in Condition row
first:

Figure 171: Ruletest with three skydivers

Progress Corticon: Rule Modeling: Version 6.3228

Chapter 8: Filters and preconditions

What happened here? Because filters are always applied first, the Rulesheet initially filtered out the elements
of collection person whose skydiver value was false. Think of the filter as allowing only skydivers to pass
through to the rest of the Rulesheet. The Conditional rule then checks to see if the number of elements in
collection person is more than 3. If it is, then all person elements in the collection that pass through the filter
(in other words, all skydivers) receive a riskRating value of high. Because the first Ruletest included only
3 skydivers, the collection fails the conditional rule, and no value is assigned to riskRating for any of the
elements, skydiver or not.

Now modify the Ruletest and rerun the rules:

Figure 172: Ruletest with four skydivers

It is clear from this run that the rules fired correctly, and assigned a riskRating of high to all skydivers for
a collection containing more than three skydivers.

Now, test the Rulesheet inCollection Operator in Filter row, where the rule containing the collection operation
is in the Filters section.

Figure 173: Ruletest2 with three skydivers

229Progress Corticon: Rule Modeling: Version 6.3

How to use collection operators in a filter

What happened this time? Because filters apply first, the ->size operator counted the number of elements
in the person collection, regardless of who skydives and who does not. Here, the filter allows any collection
– and the whole collection – of more than three persons to pass through to the Conditions section of the
Rulesheet. Then, the conditional rule checks to see if any of the elements in collection person skydive. Each
person who skydives receives a riskRating value of high. Even though the Ruletest included only three
skydivers, the collection contains four persons, and, therefore, passes the Preconditional filter. Any skydiver
in the collection has its riskRating assigned a value of high.

It is important to point out that the Rulesheets in Collection Operator in Condition row and Collection
Operator in Filter row implement two different business rules. When the Rulesheets were built, the
plain-language business rule statements violated the methodology!). The rule statements for these two
Rulesheets would look like this:

The difference is subtle but important. In the first rule statement, the test is for skydivers within groups that
contain more than three skydivers. In the second, the test is for skydivers within groups of more than three
people.

Multiple filters on collections
A slightly more complicated example will be constructed by adding a third conditional expression to the rule.

Figure 174: Rulesheet with two conditions

Figure 175: Rulesheet with two filters

Progress Corticon: Rule Modeling: Version 6.3230

Chapter 8: Filters and preconditions

Once again, the Rulesheets differ only in the location of a conditional expression. In the first rulesheet, the
gender test is modeled in the second conditional row, whereas in the other rulesheet (Rulesheet with two filters),
it is implemented in the second filter row. Does this difference have an effect on rule execution? Build a Ruletest
and use it to test the Rulesheet in Rulesheet with two conditions first.

Figure 176: Ruletest for Rulesheet with two conditions

As you see in this figure, the combination of a condition that uses a collection operator (the size test) with
another condition that does not (the gender test) produces an interesting result. What appears to have happened
is that, for a collection of more than three skydivers, all females in that group were assigned a riskRating
of high. Step-by-step, here is what the rules engine did:

1. The filter screened the collection of persons (represented by the alias person) for skydivers.

2. If there are more than three surviving elements in person (that is, skydivers), then all females in the
filtered collection are assigned a riskRating value of high. It may be helpful to think of the rules engine
checking to make sure there are more than three surviving elements, then reviewing those whose gender
is female, and assigning riskRating one element at a time.

Expressed as a plain-language rule statement, the Rulesheet implements the following rule statement:

It is important to note that conditions do not have the same filtering effect on collections that Filter expressions
do, and the order of conditions in a rule has no effect on rule execution.

231Progress Corticon: Rule Modeling: Version 6.3

How to use collection operators in a filter

Now that you understand the results in theRuletest for Rulesheet with 2 Conditions, look at what our second
Rulesheet produces.

Figure 177: Ruletest for Rulesheet with two filters

This time, no riskRating assignments were made to any element of collection person. Why? Because
multiple filters are logically AND'ed together, forming a compound filter. In order to survive the compound filter,
elements of collection person must be both skydivers AND female. Elements that survive this compound filter
pass through to the size test in the Condition/Action rule, where they are counted. If there are more than three
remaining, then all surviving elements are assigned a riskRating value of high. Rephrased, the Rulesheet
implements the following rule statement:

Progress Corticon: Rule Modeling: Version 6.3232

Chapter 8: Filters and preconditions

To confirm that you understand how the rules engine executes this Rulesheet, modify the Ruletest and rerun:

Figure 178: Ruletest with risk ratings

That Ruletest includes four female skydivers, so, if you understand our rules correctly, you expect all four to
pass through the compound filter, and then satisfy the size test in the conditions. This test should result in all
four surviving elements receiving a riskRating of high. That test confirms that the expectation is correct.

Filters that use OR
Just as compound filters can be created by writing multiple preconditions, filters can also be constructed using
the special word or directly in the Rulesheet. See the or operator's details at "Or" in the Rule Language Guide
for an example.

TestYourself questions for Filters and preconditions
Note: Try this test, and then go to TestYourself answers for Filters and preconditions on page 357 to correct
yourself.

1. True or False. All expressions modeled in the Filters section of the Rulesheet behave as filters.

2. True or False. All expressions modeled in the Filters section of the Rulesheet behave as preconditions.

3. True or False. Some rules may be unaffected by Filters expressions on the same Rulesheet.

233Progress Corticon: Rule Modeling: Version 6.3

Filters that use OR

4. When 2 conditional expressions are expressed as two filter rows, they are logically ______ together.

duplicatedreplacedand'edor'ed

5. True or False. A Filter row is a stand-alone rule that can be assigned its own Rule Statement

6. A null collection is a collection that:

a. Has a parent but no children

b. Has children but no parent

c. Has no parent and no children

d. Has a parent and children

7. An empty collection is a collection that:

a. Has a parent but no children

b. Has children but no parent

c. Has no parent and no children

d. Has a parent and children

8. A Filter expression is equivalent to a Conditional expression as long as it includes ______ collection operators
in the expression.

at least onenoallsome

9. True or False. To join two filters with an or operator, you must use the word or in between expressions.

10. By default, all Filter expressions are ______________ filters

extremefullcoffeelimiting

11. The following Filter expression has which behaviors?

nonconditionpreconditionfull filterlimiting filter

12. The following Filter expression has which behaviors?

Progress Corticon: Rule Modeling: Version 6.3234

Chapter 8: Filters and preconditions

nonconditionpreconditionfull filterlimiting filter

13.What happens when a Filter expression, acting as a precondition, is not satisfied?

a. The expression is ignored and Rulesheet execution continues.

b. The Rulesheet is re-executed from the beginning.

c. The last Rulesheet is executed.

d. The next Rulesheet is executed.

e. All Rulesheet execution stops.

f. Execution of that Rulesheet stops.

14.Which filters behaviors can be active at the same time?

a. Full filter and precondition

b. Limiting filter and precondition

c. Limiting and full filter

d. Precondition can only act alone

15. For the sample data in the following figure, determine which data survives the filter for each question. Enter
the entity number (the number in brackets) for each survivor in the appropriate column. Assume the collection
Movie has the alias movies; Movie.dvd has the alias dvds; and Movie.oscar has alias oscars.
None behave as preconditions.

235Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Filters and preconditions

Progress Corticon: Rule Modeling: Version 6.3236

Chapter 8: Filters and preconditions

9
How to recognize and model parameterized
rules

Patterns emerge in rules that show that there are limits and constraints that you have to handle.

For details, see the following topics:

• Parameterized rule where a specific attribute is a variable or parameter within a general business rule

• Parameterized rule where a specific business rule is a parameter within a generic business rule

• How to populate an AccountRestriction table from a sample user interface

• TestYourself questions for Recognizing and modeling parameterized rules

Parameterized rule where a specific attribute is a
variable or parameter within a general business rule

During development, patterns can emerge in the way business rules define relationships between Vocabulary
terms. For example, in the sample FlightPlan application, a recurring pattern might be that all aircraft have
limits placed on their maximum takeoff weights. You might notice this pattern by examining specific business
rules captured during the business analysis phase:

237Progress Corticon: Rule Modeling: Version 6.3

These rules are almost identical; only a few key parts – parameters – are different. Although aircraft type (747
or DC-10) and max cargo weight (200000 or 150000 kilograms) are different in each rule, the basic form of
the rule is the same. In fact, you can generalize the rule as follows:

Where the parameters X and Y can be organized in table form, as shown:

Maximum cargo weight YAircraft type X

200000747

150000DC-10

It is important to recognize these patterns because they can drastically simplify rule writing and maintenance
in Corticon Studio. As shown in the following figure, you could build these two rules as a pair of Rulesheets,
each with a Filter expression that filters data by aircraftType.

Figure 179: Non-parameterized rule

But, there is a simpler and more efficient way of writing these two rules that leverages the concept of
parameterization. The following figure illustrates how this is accomplished:

Figure 180: Parameterized rules

Progress Corticon: Rule Modeling: Version 6.3238

Chapter 9: How to recognize and model parameterized rules

Notice how both rules are modeled on the same Rulesheet. This makes it easier to organize rules that share
a common pattern and maintain them over time. If the air cargo company decides to add new aircraft types to
its fleet in the future, then the new aircraft types can be added as additional columns.

Also notice the business rule statements in the Rule Statements section. By entering 1:2 in the Ref column
and inserting attribute names into the rule statement, the same statement can be reused for both rule columns.
The syntax for inserting Vocabulary terms into a rule statement requires the use of {..} braces brackets
enclosing the term. See the Rule Language Guide for more details about embedding dynamic values in Rule
Statements.

In addition to collecting parameterized rules on the same Rulesheet, other things can be done to improve rule
serviceability. In the Trade Allocation sample application that accompanies the Corticon Studio installation,
two parameterized rules are accessible directly from the application's user interface. The user can update these
parameters without entering the Corticon Studio because they are stored externally. When the application runs,
Corticon Studio accesses the parameter table to determine which rules should fire.

Parameterized rule where a specific business rule is
a parameter within a generic business rule

The previous topic illustrated the simplest examples of parameterized rules. Other subtler examples occur
frequently. For example, let's return to the Trade Allocation sample application included in the Corticon Studio
installation.

A recurring pattern in Trade Allocationmight be that specific accounts prohibit or restrict the holding of specific
securities for specific reasons. You might notice this pattern by examining specific business rules captured
during the business analysis phase:

The first specific rule might be motivated by another, general rule that states:

The general rule explains why Airbus places this specific restriction on its account holdings: Boeing is a
competitor. The second rule is very similar in that it also defines an account restriction for a security attribute
(the issuer's industry classification), even though the rule has a different motivation. (A client's investments
must not conflict with its ethical guidelines.)

There may be many other business rules that share a common structure, meaning similar entity context and
scope. This pattern allows you to define a generic business rule:

You can also write the rule as a constraint:

Because there is not a method for accommodating many similar rules as a single, generalized case, you need
to enter each specific rule separately into a Rulesheet. This makes the task of capturing, optimizing, testing,
and managing these rules more difficult and time-consuming than necessary.

239Progress Corticon: Rule Modeling: Version 6.3

Parameterized rule where a specific business rule is a parameter within a generic business rule

How to populate an AccountRestriction table from a
sample user interface

Parameterizing rules can improve reuse and simplify maintenance. In fact, maintenance of some well-defined
rule patterns can be further simplified by enabling users to modify them external to Corticon Studio. A user can
define and maintain specific rules that follow the generic rule pattern (analogous to an instance of a generic
rule class) using a graphical interface or database table built for this purpose.

The following is a sample user interface that could be constructed to manage parameterized rules that share
similar patterns. Note, this sample interface is discussed only as an example of a parameterized rule maintenance
application. It is not provided as part of the Corticon Studio installation.

Figure 181: Sample GUI window for populating a rule's parameter table

1. The user selects an account for which the account restriction will be created. Referring back to the example,
the user would select Airbus from the list box.

2. The user enters a specific business rule that provides the motivation for the account restriction. The prior
example used no competitor securities and no tobacco securities.

3. The user selects the type of restriction being created. The example used issuer.name and
industry.name.

4. After all components of the account restriction are entered and selected, clicking Add Restriction creates
the restriction by populating the AccountRestriction table in an external database.

Progress Corticon: Rule Modeling: Version 6.3240

Chapter 9: How to recognize and model parameterized rules

AccountRestriction table

Business RuleIndustry.nameIssuer.nameSecurity.typeAccount

No competitor
securities

---Boeing---Airbus

No tobacco
securities

Tobacco------Airbus

5. After adding a restriction, it appears in the lower scrolling text box. Selecting the Business Rule in the
scrolling text box and clicking Delete Restriction removes it from the box and from the table.

6. The checkbox indicates an active or inactive business rule. This allows the user to deactivate a rule without
deleting it. In practice, another attribute could be added to the AccountRestriction entity called active. A
precondition might filter out inactive rules to prevent them from firing during run time.

CAUTION!

Whenever you decide to maintain rule parameters outside of Corticon Studio, you risk introducing ambiguities
or conflicts into your Rulesheet. The Conflict Checker may not help you discover these problems because
some of the rule data is not shown in Corticon Studio. Always try to design your parameter maintenance
forms and interfaces to prevent ambiguities from being introduced.

TestYourself questions for Recognizing andmodeling
parameterized rules

Note: Try this test, and then go to TestYourself answers for Recognizing and modeling parameterized rules
on page 358 to correct yourself.

1. When several rules use the same set of conditions and actions, but different values for each, we say that
these rules share a common __________________.

2. Another name for the different values in these expressions is _______________ .

3. True or False. When several rules share a pattern, the best way to model them is as a series of Boolean
conditions.

4. What is a potential danger of maintaining rule parameters outside of a Corticon Studio Rulesheet?

5. Write a generalized rule that identifies the pattern in the following rule statements:

• Platinum customers buy $100,000 or more of product each year

• Gold customers buy $75,000 but less than $100,000 of product each year.

• Silver customers buy more than $50,000 but less than $75,000 of product each year.

• Bronze customers buy between $25,000 but $50,000 of product each year.

6. In the rules listed above, what are the parameters?

7. Describe the ways in which these parameters can bemaintained.What are the advantages and disadvantages
of each option?

241Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Recognizing and modeling parameterized rules

Progress Corticon: Rule Modeling: Version 6.3242

Chapter 9: How to recognize and model parameterized rules

10
How to write rules to access external data

Corticon provides three mechanisms that let you interface your rules with databases and other data sources:

• Enterprise Data Connector (EDC) — This technique provides access to a single database from a project
Vocabulary. You map your Vocabulary to the database and rely on Corticon to retrieve data when needed.
EDCmakes data access simple and is a great option when small amounts of data are needed or performance
is not paramount. EDC is tightly integrated with rule models, so the functions described in this chapter are
how you effectively create queries to the database.

• Advanced Data Connectors (ADC) — This technique provides control over the SQL queries used to
retrieve or update data in a database. Using ADC requires more database knowledge but provides benefits
such as optimized query performance when retrieving large amounts of data, and the ability to map a
Vocabulary to multiple data sources. ADC is recommended when performing batch rule processing.

• REST Datasource (REST service) — This read-only technique provides secure access to REST services
to retrieve data for use in your decision services. Queries—either preset or specified by data in your
payload—limit the results brought into the server's memory, which are then filtered to get the data needed
to enrich the rule in process.

For additional information, see the Data Integration topics.

Overview
Corticon lets you define mappings to a Datasource so that rules can access (query) a database directly, and
then retrieve what it needs during execution, thus enriching the information available to the rules, and then
writing data to the database when appropriate.

This capability is transparent to the rule modelers so that they are only concerned with getting the rules right,
and do not have to get into SQL syntax to interface with an EDC Datasource.

This section focuses on the aspects of rule modeling that are affected by a defined Corticon Enterprise Data
Connector.

243Progress Corticon: Rule Modeling: Version 6.3

While you could start learning how to use any of these Datasources, it is a good idea to start with "Getting
Started with EDC" in the Data Integration Guide.

For details, see the following topics:

• A scope refresher

• Quick steps for setting up the Cargo sample

• Enable database access for rules using root-level entities

• Precondition and filters as query filters

• Insert new records in a middle table

• Integrate EDC Datasource data into rule output

• TestYourself questions for how to write rules to access external data

A scope refresher
The concept of scope is key to rule design and execution. Scope in a Rulesheet helps define or constrain which
data is included in rule processing, and which data is excluded. If a rule uses the Vocabulary term
FlightPlan.cargo.weight, then we know that those FlightPlan entities without associated Cargo
entities will be ignored.

You also know that Vocabulary root-level entities – FlightPlan, for example – bring every instance of the
entity into scope. This means that a rule using root-level FlightPlan acts on every instance of FlightPlan,
including Cargo.flightPlan, and Aircraft.flightPlan, or any other role using FlightPlan that may
exist in our Vocabulary.

When you add the ability for the Corticon Server and Studio to dynamically retrieve data from a database, rule
scope determines which data to retrieve. This is exactly the same concept as Studio determining which data
in an Input Ruletest to process and which to ignore based upon a rule’s scope. So, if you write rules using
root-level FlightPlan, then the Studio processes all FlightPlans in the Input Ruletest during rule execution.

Quick steps for setting up the Cargo sample
For the examples that use Cargo, here are the steps to set up the sample data in Corticon Studio and your
preferred database:

1. In your database administrative tool, create a database named Cargo.

2. In Corticon Studio:

a. Import the Cargo sample.

b. Create the EDC Datasource, and then define and test its connection to the Cargo database.

c. On each of the three entities, setDatastore Persistent to Yes, and choose its appropriate Entity Identity:

• Aircraft: tailNumber

• Cargo: manifestNumber

Progress Corticon: Rule Modeling: Version 6.3244

Chapter 10: How to write rules to access external data

• FlightPlan: flightNumber

d. On the EDC Datasource tab, click Create/Update Schema

3. Copy the contents of the project’s Cargo_data.sql file to your database administrative tool’s editor, and
then click Execute.

Enable database access for rules using root-level
entities

Once interfaced with EDC, the amount of test data is no longer limited to that contained in a single Input
Ruletest. It is limited by the sizes in the connected database. Rules using root-level FlightPlan (or any other
root-level entity) forces the Server or Studio to retrieve all FlightPlan entities (records) from the database.
If the database is very large, then that will mean a large amount of data is retrieved. For this reason, database
access for root-level rules is turned off by default. This ensures that you do not accidentally force the Server
to perform extremely large and time-consuming data retrievals from the database unless you explicitly require
it.

Because database access for rules using root-level terms is disabled by default, you need to know how to
enable it for those circumstances when you do want it. This is called extending a root-level entity to the database.
To illustrate, a simple rule based on the Cargo project's Vocabulary is used, as follows:

1. In Corticon Studio, create a new Rulesheet in the Cargo project, and open its advanced view.

2. Drag from the Vocabulary into the Scope as shown, including adding Cargo.weight to the FlightPlan
association as shown.

3. Add the aliases in the Scope as shown.

4. Write the rule condition and its values in columns 1 and 2.

5. Add the rule statement as shown.

6. Save the Rulesheet as CargoLoad.ers.

Figure 182: CargoLoad Rulesheet

245Progress Corticon: Rule Modeling: Version 6.3

Enable database access for rules using root-level entities

The Rulesheet shown adds up (sums) the collection (see Collections on page 129) of Cargoweights associated
with a FlightPlan (load.weight) and compares this to the maxCargoWeight of the root-level Aircraft.
The intention is to perform this comparison for every available Aircraft, so the root-level Aircraft in our
Conditional expression was used. Any Aircraft whose maxCargoWeight is inadequate is identified with a
posted Violation message.

Test the Rulesheet with database access disabled
Testing this Rulesheet without database access is a simple matter of building an Input Ruletest with all necessary
data. An example of this is a Ruletest that was created against the Cargo.ecore named CargoLoad.ert.
Its input data is as shown:
Figure 183: Sample Input Ruletest

Looking at this Input Ruletest, there is a single FlightPlan with its collection of Cargo. This collection is
what is represented with the alias load in our Rulesheet’s Scope section. Each Cargo has a weight value
entered.

The four root-level Aircraft entities are also shown. Each one has a maxCargoWeight, which will be
compared to the sum of load.weight during rule execution.

Progress Corticon: Rule Modeling: Version 6.3246

Chapter 10: How to write rules to access external data

Given what is known about rule scope, you can confidently predict that the test data provided in this Input
Ruletest will be processed by the Rulesheet because it contains the same scope!

In the following figure, we’ve executed the Test and see that it functioned as expected. Because load.weight
sums to 170000 kilograms, and the Aircraft with tailNumber N1004 can only carry 150000 kilograms,
we receive a Violation message for that Aircraft and that Aircraft alone. All other Aircraft have
maxCargoWeight values of 200000 kilograms or more, so they fail to fire the rule.

Figure 184: Ruletest Violation Message

So far, this behavior is exactly what is expected from rules: they process data of the same scope.

Save the CargoLoad.ert Ruletest.

Test the Rulesheet with database access enabled
First, you need to update the database in the EDC tutorial to prepare for the features that will be demonstrated.
The Ruletest, CargoLoad.ert, has the aircraft data including the primary key. Copy the Ruletest, drop those
unwanted inputs, and then update the database column tailNumber. That edit actually extends the tutorial's
data with one added row that is cargo info we want in this topic.

Note: The procedure for connecting and mapping a Vocabulary to an external database, and setting an Input
Ruletest to access that database in Read OnlyRead/Update modes is discussed in the topic "How data from
an EDC Datasource integrates into rule output" section of the Data Integration Guide.

To load the aircraft data:

1. In the Project Explorer, copy and paste the CargoLoad.ert file. Name the copy AircraftLoader.ert.

2. Open AircraftLoader.ert.

3. In the Input area, click FlightPlan, and then press Delete.

4. Select the menu option Ruletest > Testsheet > Database Access > Read/Update.

5. Select the menu command Ruletest > Testsheet > Run Test.

Look at the Aircraft table in the database. You see the updated values and the new row:

To make the test effective, you need to add some heavy cargo to one of the flight plans. Here are four SQL
query lines to add four new Cargo manifests to one flight:

INSERT INTO Cargo.dbo.Cargo
(manifestNumber,RflightPlanAssoc_flightNumber,

needsRefrigeration,container,volume,weight)

247Progress Corticon: Rule Modeling: Version 6.3

Enable database access for rules using root-level entities

VALUES ('625E',102,null,null,80,50000);
INSERT INTO Cargo.dbo.Cargo

(manifestNumber,RflightPlanAssoc_flightNumber,
needsRefrigeration,container,volume,weight)

VALUES ('625F',102,0,null,100,40000);
INSERT INTO Cargo.dbo.Cargo

(manifestNumber,RflightPlanAssoc_flightNumber,
needsRefrigeration,container,volume,weight)

VALUES ('625G',102,0,null,90,20000);
INSERT INTO Cargo.dbo.Cargo

(manifestNumber,RflightPlanAssoc_flightNumber,
needsRefrigeration,container,volume,weight)

VALUES ('625H',102,1,null,50,50000);

Copy the text in the codeblock and paste it into a new SQL Query in your database, and then execute it.

Alternative approach: Using a Ruletest to load a database
You could instead create a Ruletest, CargoLoader, with these values and the associated flightPlan,
entering the values as shown, and then running the test in Read/Update mode:
Figure 185: Using a Ruletest to add Cargo rows to the connected external database

Progress Corticon: Rule Modeling: Version 6.3248

Chapter 10: How to write rules to access external data

Setting up the test
The Cargo table now shows that there are eight items, five of which are assigned to one flight:

Figure 186: Cargo Table from Database

Now, create a new Ruletest that uses the test subject we created earlier, the CargoLoad.ers Rulesheet:
CargoLoad Rulesheet . You will create a new Input Ruletest that just takes the FlightPlan entity from the
scope, and then enter the flightNumber value 102. When you run the test, the output is identical to the
input, and there are no messages. That test seemed to do nothing:
Figure 187: Ruletest of FlightPlan seed data

Notice that the only data necessary to provide in the Input Ruletest is a FlightPlan.flightNumber value.
Since this attribute serves as the primary key for the FlightPlan table, Studio has all the seed data it needs
to retrieve the associated Cargo records from the Cargo database table. In addition to retrieving the
load.weight collection, we also needed all Aircraft records from the Aircraft table. But no Aircraft
records were retrieved, therefore the rule’s comparison couldn’t be made, so the rule couldn’t fire. This behavior
was expected because that database access for root-level terms is disabled by default.

Now set the Ruletest to read data from the database and return everything that it finds. Toggle the menu options
in the Ruletest > Testsheet menu as shown:

When you run the test again, the output is the same as the input and there are no messages.

249Progress Corticon: Rule Modeling: Version 6.3

Enable database access for rules using root-level entities

Extend to Database
Now you will set the Rulesheet to Extend to Database, and then see how it affects the test. On the
CargoLoad.ers Rulesheet, right-click Aircraft in the Scope area, and then select Extend to Database,
as shown:

Save your Rulesheet to ensure that the changes take effect. Now, retest the same Input Ruletest shown in
Input Ruletest with Seed Data. The results are as follows:
Figure 188: Results Ruletest showing a successful Extend-to-Database retrieval

These results aremuch different!Corticon successfully retrieved all Aircraft records, performed the summation
of all the cargo in the given flight plan, and identified an Aircraft record that fails the test. Given this set of
sample data, it is the Aircraft with tailNumber N1004 that receives the Violation message.

Progress Corticon: Rule Modeling: Version 6.3250

Chapter 10: How to write rules to access external data

Returning all instances can be overwhelming
While this rich relational data retrieval is good to see, there are only four planes and five packages in the flight
plan. What if there are 1,000 planes and hundreds of thousands of packages every day? That amount of data
would be overwhelming. So what you can do is constrain the return data to just relevant new information by
toggling the Ruletest's return option to Return Incoming/New Entity Instances Only, as shown:

The data that returns is taken only from those entities that were:

• Directly used in the rules.

• Present in the request message.

• Generated by the rules (if any).

Note: This option can be set in a Deployment Descriptor file (.cdd), or as a parameter in the 9-parameter
version of addDecisionService method in the Server API scripts.

When you run the Ruletest now, the output is unchanged. You see a Violation message as to which plane
cannot be assigned that flight plan.

That result is concise, providing the information you wanted from this test.

251Progress Corticon: Rule Modeling: Version 6.3

Enable database access for rules using root-level entities

Optimize aggregations that extend to database
This Rulesheet used a condition statement that did a calculation and a difference, calling a statement when it
evaluated as true, as shown:

As written, load.weight ->sum > plane.maxCargoWeight, the condition copies all the relevant cargo
records into Corticon's memory to perform its sum, and then evaluates whether total weight is greater than the
plane's capacity. Because you chose to extend to database, the number of values could be large. Corticon lets
you optimize such calculations for non-conditional (column 0) actions.

You can recast the conditions by creating an attribute in the FlightPlan entity to store a calculation. Here,
the load attribute was created, and then its properties were set so that the data type is Integer(the same
as the weight data it will aggregate), and its mode is to Mode to Transient as this is data that will be just
used locally:

You could rewrite the conditions and actions to create a non-conditional rule followed by a conditional test of
the computed result, as follows:

Progress Corticon: Rule Modeling: Version 6.3252

Chapter 10: How to write rules to access external data

This nonconditional rule optimizes the performance by calculating load on the database side, and then
evaluating the load against maxCargoWeight in memory.

Note: This feature applies to all Collection operators that are aggregation operators: sum, avg, size, min,
and max. See Aggregations that optimize EDC database access on page 162 for more information about these
Collection operators.

Precondition and filters as query filters
When the Enterprise Data Connector is in use, scope rows in a Rulesheet can act as queries to an external
database. When an alias definition is designated as Extend to Database, the scope of the alias is assumed
to include all database records in the entity’s corresponding table. But you often want or need to qualify those
queries to further constrain the data returned to the Server or Studio. You can think of conditional clauses
written in the Preconditions/Filters section of the Rulesheet as placing constraints on these queries. If you
are familiar with structured query languages (SQL), then you may recognize these constraints as WHERE
clauses” in a SQL query.

If you are not familiar with SQL, review the Filters and Preconditions topics to learn more about how a
Precondition/Filter expression serves to reduce or filter the data in working memory so that only the data that
satisfies the expression survives to be evaluated and processed by other rules on the same Rulesheet. EDC
simply extends working memory to an external database; the function of the Precondition/Filter expression
remains the same.

For performance reasons, it is often desirable to perform a complete query -- including any WHERE clauses --
inside the database before returning the results set (the data) to Studio or Server. An unconstrained or unfiltered
results set from an external database may be very large, and takes time to transfer from the database to Studio
or Server. After the results set enters Studio’s or Server’s workingmemory, then Preconditions/Filters expressions
serve to reduce (or filter) the results set further before rules are applied. But if we believe the unfiltered results
set will take too much time to transfer, then you may decide to execute the Preconditions/Filters expressions
inside the database query, thereby reducing the results set prior to transmission to Studio or Server. This may
make the entire database access process faster.

Filter query qualification criteria
When any of the following are true, the Precondition/Filter expression does not qualify as a query filter:

1. If it does not contain at least one alias that was extended to the database.

2. If it contains any attributes of Boolean data type. Boolean data types are implemented inconsistently in
commercial RDBMS, and cannot be included in query filters.

3. If it has relational operators with Boolean operands.

4. If it uses an operator not supported by databases (see the next topic)

5. If it references more than one alias not extended to the database.

253Progress Corticon: Rule Modeling: Version 6.3

Precondition and filters as query filters

Operators supported in query filters
Query filters are Corticon Rule Language expressions that are performed in the database. As such, the operators
used in these expressions must be compatible with the database’s native query language, which is based on
some form of SQL. Not all Corticon Rule Language operators have comparable functions in SQL. Those
operators supported by standard SQL and therefore also permitted in query filters are shown in the following
table:

Table 8: Operators supported by query filters

Data types SupportedOperator SyntaxOperator Name

Decimal, Integer+Add

Decimal, Integer-Subtract

Decimal, Integer*Multiply

Decimal, Integer/Divide

DateTime, Decimal, Integer, String=Equal To (comparison)

DateTime, Decimal, Integer, String<>Not Equal To

DateTime, Decimal, Integer, String<Less Than

DateTime, Decimal, Integer, String>Greater Than

DateTime, Decimal, Integer, String<=Less Than or Equal To

DateTime, Decimal, Integer, String>=Greater Than or Equal To

Decimal, Integer.absvalAbsolute Value

String.sizeCharacter Count

String.toUpperConvert to Upper Case

String.toLowerConvert to Lower Case

String.substringSubstring

String.equalsEqual To (comparison)

Collection->isEmptyCollection is Empty

Collection->notEmptyCollection is not Empty

Collection->sizeSize of Collection

Collection->sumSum

Progress Corticon: Rule Modeling: Version 6.3254

Chapter 10: How to write rules to access external data

Data types SupportedOperator SyntaxOperator Name

Collection->avgAverage

Collection->minMinimum

Collection->maxMaximum

-->existsExists

Note: The Collection operators listed must be used directly on the extended-to-database alias in order to
qualify as a query filter. If the collection operator is used on an associated child alias of the extended-to-database
alias, then the expression is processed in memory.

How to use multiple filters in filter queries
One or more filters can be set as a database filter. When multiple filters are set as database filters, Corticon
logically combines them with the AND operator to form one database query.

Note: If the database filters have different entity/alias references they will not be logically combined into one
query. Each filter will execute in processing order. To determine which expression gets processed first, generate
an execution sequence diagram by choosing Rulesheet > Rulesheet > Execution Sequence Diagram from
Studio’s menubar.

Consider the filters:

• Customer.age > 18

• Customer.status = ‘GOLD’

The result is one database query:

Select * from Customer where age > 18 and status = “GOLD”

However, when the two filters are:

• Customer.age > 18

• Order.total > 1000

The result is two database queries (because Customer and Order are not logically related):

Select * from Customer where age > 18

Select * form Order where total > 1000

When the database filter contains more than one database entity/alias (a compound filter), it still acts as a
single query; for example:

• Order.bid >= Item.price

The compound filter results in the query:

Select * from Order o,Item i where o.bid > i.price

When there are multiple filters related to one or more of the entities in a compound filter, they are combined
with the AND operator For example, consider the filters:

255Progress Corticon: Rule Modeling: Version 6.3

Precondition and filters as query filters

• Order.bid >= Item.price

• Order.status = ‘VALID’

• Item.qty > 0

Using a compound filter results in the query:

Select * from Order o,Item I where o.bid > i.price and o.status = “VALID” and
i.qty > 0

Insert new records in a middle table
In relational databases, many-to-many relationships are modeled using a “middle” table (also known as an
intersection table). Assume two tables named A and B, and they have a many-to-many relationship. A third or
middle table named AB has a many-to-1 relationship with both A and B.

A many-to-many association between two entities in the Vocabulary can be mapped to such a middle table.
Therefore, table AB does not need to correspond to a specific entity in the Vocabulary. However, should the
middle table contain additional business fields, then it must have a corresponding entity in the Vocabulary. In
such a situation, attempting to create a new record/row in tableAB using rules can cause limitations depending
on:

• The cardinalities of the associations between AB and A, and AB and B

• The identity strategy used for A, B, and AB

The following table highlights known limitations for combinations of entity identity (Application or Datastore)
and association directionality (bidirectional or unidirectional):

The one uni / one bi configuration should be avoided when Application Identity is used.

Integrate EDC Datasource data into rule output
EDC introduces a new dimension to rule execution. When EDC is not used, data management during Decision
Service execution is relatively straightforward: incoming data contained in the request payload is modified by
rules, and the resulting updated state for all objects is returned in the response.

However, when EDC is used, data management becomes more complicated. Data in the database needs to
synchronize with the data in the request payload and the data produced by Decision Service execution.

This functionality is discussed in detail in the topic "How data from an EDC Datasource integrates into rule
output" in the Data Integration Guide.

Using several scenarios, that section describes the algorithms used by Corticon Server to perform this
synchronization in a variety of read-only and read-write cases. All scenarios use the familiar Cargo.ecore,
as set up and verified in Quick steps for setting up the Cargo sample on page 244.

Progress Corticon: Rule Modeling: Version 6.3256

Chapter 10: How to write rules to access external data

TestYourself questions for how to write rules to
access external data

Note: Try this test, and then go to TestYourself answers for Logical analysis and optimization on page 359 to
correct yourself.

1. Rule scope determines which _____________ is processed during rule execution.

2. Why is root-level database access disabled by default?

3. When a Scope row is shown in bold text, what do you know about that entity’s database access setting?

4. True or False. Only root-level entities can be extended to a database.

5. Where can I learn more about accessing external data?

6. In general, does a rule author need to care about where actual data is stored, how it is retrieved, or how it
is sent to the rules when creating Rulesheets?

7. Are there any exceptions to the general rule you defined in the preceding question?

257Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for how to write rules to access external data

Progress Corticon: Rule Modeling: Version 6.3258

Chapter 10: How to write rules to access external data

11
Logical analysis and optimization

A strength of Corticon's toolset is the ability to perform extensive tests and analysis of your rules using traditional
methods as well as within Studio. You can evaluate the completeness of rule coverage, conflicts between rules,
and looping in rules. You can even test the subtleties of rule executions with expected results. You are offered
techniques to compress and optimize your rules.

For details, see the following topics:

• Test, validate, and optimize your rules

• Traditional methods of analyzing logic

• Validate and test Rulesheets in Corticon Studio

• Test rule scenarios in the Ruletest Expected panel

• How to optimize Rulesheets

• Precise location of problem markers in editors

• TestYourself questions for Logical analysis and optimization

Test, validate, and optimize your rules
Corticon Studio provides the rule modeler with tools to test, validate, and optimize rules and Rulesheets prior
to deployment. Before proceeding, let's define these terms.

259Progress Corticon: Rule Modeling: Version 6.3

Scenario testing
Scenario testing is the process of comparing an actual decision operation to an expected operation using data
scenarios or test cases. The Ruletest provides the capability to build test cases using real data, which can then
be submitted as input to a set of rules for evaluation. The actual output produced by the rules is then compared
to the expected output from those rules. If the actual output matches the expected output, then you may have
some degree of confidence that the decision is performing properly. Why only some confidence and not complete
confidence is addressed in this set of topics.

For complete details about settings and analysis for scenario testing, see Test rule scenarios in the Ruletest
Expected panel on page 280

Rulesheet analysis and optimization
Analysis and optimization is the process of examining and correcting or improving the logical construction of
Rulesheets, without using test data. As with testing, the analysis process verifies that the rules are functioning
correctly. Testing, however, does nothing to inform the rule builder about the execution efficiency of the
Rulesheets. Optimization of the rules ensures they execute most efficiently, and provide the best performance
when deployed in production.

The following example illustrates the point:

Two rules are implemented to profile life insurance policy applicants into two categories: high risk and low risk.
These categories might be used later in a business process to determine policy premiums.

Figure 189: Simple rules for profiling insurance policy applicants

To test these rules, create a new scenario in a Ruletest, as shown:

Progress Corticon: Rule Modeling: Version 6.3260

Chapter 11: Logical analysis and optimization

In this scenario, a single example of Person, a non-smoker aged 45 is created. Based on the rules just created,
the expectation is that the Condition in Rule 1 will be satisfied (People aged 55 or younger…) and that the
person's riskRating will be assigned the value of low. To confirm the expectations, run the Ruletest:

Figure 190: Ruletest

As you can see in the figure, the expectations are confirmed: Rule 1 fires and riskRating is assigned the
value of low. Furthermore, the .post command displays the appropriate rule statement. Based on this single
scenario, can we say conclusively that these rules will operate properly for other possible scenarios; that is,
for all instances of Person? How do we answer this critical question?

Traditional methods of analyzing logic
The question of proper decision operation for all possible instances of data is fundamentally about analyzing
the logic in each set of rules. Analyzing each individual rule is relatively easy, but business decisions are rarely
a single rule. More commonly, a decision has dozens or even hundreds of rules, and the ways in which the
rules interact can be very complex. Despite this complexity, there are several traditional methods for analyzing
sets of rules to discover logical problems.

261Progress Corticon: Rule Modeling: Version 6.3

Traditional methods of analyzing logic

Flowcharts
A flowchart that captures these two rules might look like the following:

Figure 191: Flowchart with two rules

Upon closer examination, the flowchart reveals two problems with our rules: what happens if Person.age>55
or if Person.smoker=false? The rules built in Simple rules for profiling insurance policy applicants do not
handle these two cases. But, there is also a third, subtler problem here: what happens if both conditions are
satisfied, specifically when Person.age<=55 and Person.smoker=true? When Person.age<=55,
Person.riskRating should be given the value of low. But, when Person.smoker=true,
Person.riskRating should be given the value of high.

Progress Corticon: Rule Modeling: Version 6.3262

Chapter 11: Logical analysis and optimization

There is a dependency between our rules: They are not truly separate and independent evaluations because
they both assign a value to the same attribute. So, the flowchart turns out to be an incorrect graphical
representation of the rules, because the decision flow does not truly follow two parallel and independent paths.
Let's try a different flowchart:

Figure 192: Flowchart with two dependent rules

In this flowchart, an interdependence between the two rules was acknowledged, and they were arranged
accordingly. However, a few questions still exist. For example, why is the smoker rule before the age rule? By
doing so the smoker rule has an implicit priority over the age rule because any smoker is immediately given a
riskRating value of High regardless of what their age is. Is this what the business intends, or are we, as
modelers, making unjustified assumptions?

This is a problem of logical conflict, or ambiguity, because it is not clear from the two rules, as they were
written, what the correct outcome should be. Does one rule take priority over the other? Should one rule take
priority over the other? This is, of course, a business question, but the rule writer must be aware of the
dependency problem and resulting conflict in order to ask the question in the first place. Also, notice that there
is still no outcome for a non-smoker older than 55. This is a problem of logical completeness and it must be
taken into consideration, no matter which flowchart is used.

The point is that discovery of logical problems in sets of rules using the flowcharting method is very difficult
and tedious, especially as the number and complexity of rules in a decision (and the resulting flowcharts) grows.

263Progress Corticon: Rule Modeling: Version 6.3

Traditional methods of analyzing logic

Test suites
The use of a test suite is another common method for testing rules (or any kind of business logic). The idea is
to build a large number of test cases, with carefully chosen data, and determine what the correct system
response should be for each case.

Then, the test cases are processed by the logical system, and output is generated. Finally, the expected output
is compared to the actual output, and any differences are investigated as possible logical bugs.

Let's construct a very small test table with only a few test cases, determine the expected outcomes, and then
run the tests and compare the results. To ensure that the rules execute properly for all cases that might be
encountered in a “real-life” production system, create a set of cases that includes all such possibilities.

In a simple example of two rules, this is a relatively straightforward task:

Table 9: All combinations of conditions in table form

Non-Smoker (smoker = false)Smoker (smoker = true)Condition

Age <= 55

Age > 55

In this table, there is a matrix that uses the Values sets from each of the Conditions in our rules. By arranging
one set of values in rows, and the other set in columns, the Cross Product (also known as the direct product
or cross product) of the two Values sets is created, which means that every member of one set is paired with
every member of the other set. Because each Values set has only two members, the Cross Product yields 4
distinct possible combinations of members (2 multiplied by 2). These combinations are represented by the
intersection of each row and column in the table. Now, let's fill in the table using the expected outcomes from
our rules.

Rule 1, the age rule, is represented by row 1 in the table. Recall that rule 1 deals exclusively with the age of
the applicant and is not affected by the applicant's smoker value. To put it another way, the rule produces the
same outcome regardless of whether the applicant's smoker value is true or false. Therefore, the action
taken when rule 1 fires (riskRating is assigned the value of low) should be entered into both cells of row 1
in the table, as shown:

Figure 193: Rule 1 expected outcome

Progress Corticon: Rule Modeling: Version 6.3264

Chapter 11: Logical analysis and optimization

Likewise, rule 2, the smoker rule, is represented by column 1 in the table, All Combinations of Conditions
in Table Form. The action taken if rule 2 fires (riskRating is assigned the value of high) should be entered
into both cells of column 1 as shown:

Figure 194: Rule 2 expected outcome

The table format illustrates that a complete set of test data should contain four distinct cases (each cell
corresponds to a case). Rearranging, the test cases and expected results can be summarized as follows:

Figure 195: Test cases extracted from cross product

The table format also highlights two problems that were encountered earlier with flowcharts. In the figure Rule
2 Expected Outcome, row 1 and column 1 intersect in the upper left cell. This cell corresponds to test case
#1 in the figure above. As a result, each rule tries to assert its own action – one rule assigns a low value, and
the other rule assigns a high value. Which rule is correct?

Logically speaking, they both are. But, if the rule analyst had a business preference, it was lost in the
implementation. As before, you cannot tell by the way the two rules are expressed. Logical conflict reveals
itself again.

Also notice the lower right cell (corresponding to test case #4) – it is empty. The combination of age>55 AND
non-smoker (smoker=false) produces no outcome because neither rule deals with this case – the logical
incompleteness in our business rules reveals itself again.

265Progress Corticon: Rule Modeling: Version 6.3

Traditional methods of analyzing logic

Before you can deal with the logical problems discovered here, let's build a Ruletest in Studio that includes all
four test cases in the preceding figure.

Figure 196: Inputs and outputs of the four test cases

Let's look at the test case results in the figure above. Are they consistent with your expectations? With a minor
exception in case #1, the answer is yes. In case #1, riskRating was assigned the value of high. But, also
notice the rule statements posted: case #1 produced two messages which indicate that both the age rule and
the smoker rule fired as expected. But, because riskRating can hold only one value, the system
non-deterministically assigned it the value of high.

So, if using test cases works, what is wrong with using it as part of your Analysis methodology? Let's look at
the assumptions and simplifications made in the previous example:

1. There are just two rules with two Conditions. Imagine a rule pattern comprising three Conditions – our simple
2-dimensional table expands into three dimensions. This may still not be too difficult to work with because
some people are comfortable visualizing in three dimensions. But, what about four or more? It is true that
large, multi-dimensional tables can be “flattened” and represented in a 2-D table, but these become very
large and awkward very quickly.

2. Each of the rules contains only a single Conditional parameter limited to only two values. Each also assigns,
as its Action, a single parameter which is also limited to just two values.

Progress Corticon: Rule Modeling: Version 6.3266

Chapter 11: Logical analysis and optimization

When the number of rules and values becomes very large, as is typical with real-world business decisions, the
size of the Cross Product rapidly becomes unmanageable. For example, a set of only six Conditions, each
choosing from only ten values produces a Cross Product of 106, or onemillion combinations. Manually analyzing
a million combinations for conflict and incompleteness is tedious and time-consuming, and still prone to human
error.

In many cases, the potential set of cases is so large that few project teams take the time to rigorously define
all possibilities for testing. Instead, they often pull test cases from an actual database populated with real data. If
this occurs, conflict and incompleteness may never be discovered during testing because it is unlikely that
every possible combination will be covered by the test data.

Validate and test Rulesheets in Corticon Studio
Now, having demonstrated how to test rules with real cases (as performed in Inputs and outputs of the four
test cases) as well as having discussed two manual methods for developing these test cases, it is time to
demonstrate how Corticon Studio performs conflict and completeness checking automatically.

How to expand rules
Look at this table:

Figure 197: Rule 1 expected outcome

Then look at this Rulesheet:

Figure 198: Simple Rules for Profiling Insurance Policy Applicants

267Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

Rule 1 (the age rule) is a combination of two subrules; an age value was specified for the first Condition but
did not specify a smoker value for the second Condition. Because the smoker Condition has two possible
values (true and false), the two subrules can be stated as follows:

Corticon Studio makes it easy to view subrules for any or all columns in a Rulesheet. By clicking the Expand

Rules button on the toolbar, or double-clicking the column header, Corticon Studio displays subrules for
any selected column. If no columns are selected, then all subrules for all columns are shown. Subrules are
labeled using decimal numbers: rule 1 below has two subrules labeled 1.1 and 1.2. Subrules 1.1 and 1.2 are
equivalent to the upper left and upper right cells in Rule 1 Expected Outcome.

Figure 199: Expanding rules to reveal components

As pointed out before, the outcome is the same for each subrule. Because of this, the subrules can be
summarized as the general rules shown in column 1 of Simple Rules for Profiling Insurance Policy Applicants.
The two subrules collapse into the rules shown in column 1. The dash character in the smoker value of column
1 indicates that the actual value of smoker does not matter to the execution of the rule. It will assign riskRating
the value of low no matter what the smoker value is (as long as age <= 55, satisfying the first Condition).
Looking at it a different way, only those rules with dashes in their columns have subrules, one for each value
in the complete value set determined for that Condition row.

Progress Corticon: Rule Modeling: Version 6.3268

Chapter 11: Logical analysis and optimization

The conflict checker
With the two rules expanded into four subrules, most of the Cross Product is displayed. Click the Check for

Conflicts button in the toolbar.

Figure 200: Conflict revealed by the Conflict Checker

Note: The mechanics of confict checks are described in the Tutorial: Basic Rule Modeling topic "Analyze rules.

Note: Refresher about conflict discovery and resolution: On a Rulesheet, click Check for Conflicts ,

and then expand the rules by clicking Expand Rules . Expansion shows all of the logical possibilities for
each rule. To resolve conflict, either change the rules, or decide that one rule should override another. To do
that, in the Overrides row, at each column intersection where an override is intended, select the one or more
column numbers that will be overridden when that rule fires. Click Check for Conflicts again to confirm that
the conflicts are resolved.

In this topic, the intent is to correlate the results of the automatic conflict check with the problems we identified
first with the flowchart method, and then later with test cases. Subrules 1.1 and 2.1, the subrules highlighted
in pink and yellow in Figure 200: Conflict revealed by the Conflict Checker on page 269, correspond to the
intersection of column 1 and row 1 of Rule 2 Expected Outcome or test case #1 in Test Cases Extracted from
Cross Product. But note that Corticon Studio does not instruct the rule writer how to resolve the conflict; it alerts
the rule writer to its presence. The rule writer, ideally someone who knows the business, must decide how to
resolve the problem. The rule writer has two basic choices:

269Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

1. Change the Actions for one or both rules. You could change the Action in subrule 1.1 to match 2.1 or vice
versa. Or, you could introduce a new Action, say riskRating = medium, as the Action for both 1.1 and
2.1. If either method is used, then the result will be that the Conditions and Actions of subrule 1.1 and 2.1
are identical. This removes the conflict, but introduces redundancy, which, while not a logical problem, can
reduce processing performance in deployment. Removing redundancies in Rulesheets is discussed in the
How to optimize Rulesheets on page 290 topics.

2. Use an Override. Think of an override as an exception. To override one rule with another means to instruct
the rules engine to fire only one rule even when the Conditions of both rules are satisfied. Another way to
think about overrides is to refer back to the discussion surrounding the flowchart in Flowchart with two
dependent Rules. At the time, it was unclear which decision should execute first. No priority was declared
in the rules. But, it made a big difference how our flowchart was constructed and what results it generated. To
use an override here, select the number of the subrule to be overridden from the drop-down box at the
bottom of the column of the overriding subrule, as shown circled in the following figure. This is expressed
as “subrule 2.1 overrides 1.1”. It is incorrect to think of overrides as defining execution sequence. An override
does not mean “fire rule 2.1 and then fire rule 1.1.” It means “fire rule 2.1 and do not fire rule 1.1”.

Figure 201: Override entered to resolve conflict

An override is essentially another business rule, which should to be expressed somewhere in theRule Statements
section of the Rulesheet. To express this override in plain English, the rule writer might choose to modify the
rule statement for the overridden rule:

This modification successfully expresses the effect of the override.

Progress Corticon: Rule Modeling: Version 6.3270

Chapter 11: Logical analysis and optimization

If you are ever in doubt as to whether you have successfully resolved a conflict, click the Check for Conflicts
button again. The affected subrules should not highlight as you step through any remaining ambiguities. If all
ambiguities were resolved, then you see the following window:

Figure 202: Conflict Resolution Complete

Note: How does one rule override another rule? To understand overrides, the first concept to learn is
condition context. The condition context of a rule is the set of all entities, aliases, and associations that are
needed to evaluate all the conditional expressions of a rule. The second concept is the override context. The
override context is defined using set algebra. The override context of two rules is the intersection of the two
rule’s condition contexts. To evaluate the override, the set of entities that fulfill the overriding rule’s conditions
are trimmed to the override context and recorded. Before the conditions of the overridden rule are evaluated,
the entities that are part of the override context are tested to determine if they recorded; if so, then the rule is
overridden, and processing of the rule with those entities stopped. If the override context is empty, then any
execution of the overriding rule will stop all executions of the overridden rule.

Use overrides to handle conflicts that are logical dependencies
Overrides can be used for more than just conflicting rules. While the basic use of overrides is in cases where
rules are in conflict to allow the modeler to control execution, it is not the only use. The more advanced usage
applies cases where there is a logical dependency—cases where a rule might modify the data so that another
rule can also execute. This type of conflict is not detected by the conflict checker.

271Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

Consider a simple Cargo Rulesheet:

When tested, the first rule is triggered, and its action sets a value that triggers rule 2:

The Ruletest result shows that the value set in the first rule's action modified the data so that the change in the
condition's value triggered the second rule. If this effect is not what is intended, an override can be used. The
use of an override here ensures that the modification of data will not trigger execution of the second rule; they
are mutually exclusive (mutex). When an override is set on rule 1 that specifies that, if it fired, it should skip
rule 2...

... the rules produce the preferred output:

If these rules were re-ordered, then the override would be unnecessary.

Progress Corticon: Rule Modeling: Version 6.3272

Chapter 11: Logical analysis and optimization

The completeness checker
When rules are expanded, check for completeness by correlating results with the previous manual methods
of logical analysis.

Note: Themechanics of completeness checks are described in the Tutorial: Basic Rule Modeling topic "Analyze
rules.

Clicking the Check for Completeness button, the message window is displayed:

Figure 203: Completeness Check message window

After clickingOK to dismiss the message window, notice that the Completeness Check produced a new column
(3), shaded in green:

Figure 204: New rule added by completeness check

273Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

This new rule, the combination of age>55 AND smoker=false corresponds to the intersection of column 2
and row 2 in Rule 2 expected outcome and test case #4 in Test cases extracted from Cross Product. The
Completeness Checker has discovered the missing rule! To do this, the Completeness Checker employs an
algorithm that calculates all mathematical combinations of the Conditions' values (the Cross Product), and
compares them to the combinations defined by the rule writer as other columns (other rules in the Rulesheet).
If the comparison determines that some combinations are missing from the Rulesheet, then these combinations
are automatically added to the Rulesheet. As with the Conflict Check, the Action definitions of the new rules
are left to the rule writer. The rule writer should also remember to enter new plain-language Rule Statements
for the new columns so it is clear what logic is being modeled. The corresponding rule statement might look
like this:

Automatically determine the complete values set
As values are manually entered into column cells in a Condition row, Corticon Studio automatically creates
and updates a set of values, which for the given datatype of the Condition expression, is complete. This means
that as you populate column cells, the list of values in the drop-down lists you select from will grow and change.

In the drop-down list, you will see the list of values you entered, plus null if the attribute or expression can have
that value. But this list displayed in the drop-down is not the complete list. Corticon Studio maintains the complete
list but only shows you the elements that you manually inserted.

This automatically generated complete value list feeds the Completeness Checker with the information it needs
to calculate the Cross Product and generate additional “green” columns. Without complete lists of possible
values, the calculated Cross Product itself will be incomplete.

Automatically compress the new columns
An important aspect of the Completeness Checker's operation is the automatic compression it performs on the
resulting set of missing Conditions. As you can see from the message displayed in Completeness Check
Message Window, the algorithm not only identifies the missing rules, but it also compresses them into
non-overlapping columns. Two important points about this statement:

1. The compression performed by the Completeness Checker is a different kind of compression from that
performed by the Compress Tool introduced in "How to optimize Rulesheets" in the Corticon.js Rule Modeling
Guide. The optimized columns produced by the Completeness Check contain no redundant subrules (that
is what non-overlapping means), whereas the Compression Tool intentionally injects redundant subrules
in order to create dashes wherever possible. This creates the optimal visual representation of the rules.

2. The compression performed here is designed to reduce the results set (which could be extremely large)
into a manageable number while simultaneously introducing no ambiguities into the Rulesheet (which might
arise due to redundant subrules being assigned different Actions).

Progress Corticon: Rule Modeling: Version 6.3274

Chapter 11: Logical analysis and optimization

Handle limitations of the completeness checker
The Completeness Checker is powerful in its ability to discover missing combinations of Conditions from your
Rulesheet. However, it is not smart enough to determine if these combinations make business sense or not.
The example in the following figure shows two rules used in a health care scenario to screen for high-risk
pregnancies:

Figure 205: Example prior to completeness check

Now, click on the Completeness Checker:

Figure 206: Example after completeness check

275Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

Notice that columns 3-4 were automatically added to the Rulesheet. But also notice that column 3 contains
an unusual Condition: gender <> female. Because the other two Conditions in column 3 have dash values,
it contains component or subrules. By double-clicking column 3's header, its subrules are revealed:

Figure 207: Non-female subrules revealed

Because our Rulesheet is intended to identify high-risk pregnancies, it would not seem necessary to evaluate
non-female (that is, male) patients. And if male patients are evaluated, then the scenarios described by subrules
3.1 and 3.3—those scenarios containing pregnant males—are unnecessary. While these combinations may
be members of the Cross Product, they are not combinations that can occur in real life. If other rules in an
application prevent combinations like this from occurring, then subrules 3.1 and 3.3 may also be unnecessary.
On the other hand, if no other rules catch this faulty combination earlier, then youmay want to use this opportunity
to raise an error message or take some other action that prompts a re-examination of the input data.

Renumber rules
Assume that subrules 3.1 and 3.3 are impossible, and so they can be ignored. However, if you decide to keep
subrules 3.2 and 3.4 and assign Actions to them. For this example, violation messages will be posted.

However, when you try to enter Rule Statements for subrules 3.2 and 3.4, you will discover that Rule Statements
can only be entered for general rules (whole-numbered columns), not subrules. To convert column 3, with its
four subrules, into four whole-numbered general rules, select Rulesheet >Rule Column(s)>Renumber Rules
from the Studio menubar.

Figure 208: Sub-rules renumbered and converted to general rules

Now that the columns are renumbered, Rule Statements can be assigned to columns 4 and 6, and columns 3
and 5 can be deleted or disabled (if you want to do so).

Progress Corticon: Rule Modeling: Version 6.3276

Chapter 11: Logical analysis and optimization

When impossible or useless rules are created by the Completeness Checker, we recommend disabling the
rule columns rather than deleting them. When disabled, the columns remain visible to all modelers, eliminating
any surprise (and shock) when future modelers apply the Completeness Check and discover missing rules
that you had already found and deleted. And, if you disable the columns, be sure to include a Rule Statement
that explains why. See the following figure for an example of a fully complete and well-documented Rulesheet.

Figure 209: Final Rulesheet with impossible rules disabled

Let the expansion tool work for you with tabular rules
Business rules, especially those found in operational manuals or procedures, often take the form of tables.
Take for example the following table that generates shipping charges between two geographic zones:

Matrix to Calculate Shipping Charges per Kilogram

Zone 5Zone 4Zone 3Zone 2Zone 1From/To

$5.65$4.55$3.45$2.35$1.25Zone 1

$4.55$3.45$2.35$1.25$2.35Zone 2

$3.45$2.35$1.25$2.35$3.45Zone 3

$2.35$1.25$2.35$3.45$4.55Zone 4

$1.25$2.35$3.45$4.55$5.65Zone 5

277Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

In the following figure, a simple Vocabulary with which to implement these rules was built. Because each cell
in the table represents a single rule, the Rulesheet contains 25 columns (the Cross Product equals 5x5 or 25).

Figure 210: Vocabulary and Rulesheet to implement matrix

Rather than manually create all 25 combinations (and risk making a mistake), you can use the Expansion Tool
to help you do it. This is a three-step process. Step 1 consists of entering the full range of values found in the
table in the Conditions cells, as shown:

Figure 211: Rulesheet with Conditions automatically populated

Now, use the Expansion Tool to expand column 1 into 25 non-overlapping columns. You now see the 25
subrules of column 1 (only the first ten sub-rules are shown in the following figure due to page width limitations
in this document):

Figure 212: Rule 1 expanded to show sub-rules

Progress Corticon: Rule Modeling: Version 6.3278

Chapter 11: Logical analysis and optimization

Each subrule represents a single cell in the original table. Now, select the appropriate value of shipCharge
in the Actions section of each subrule as shown:

Figure 213: Rulesheet with Actions populated

In step 3, shown in the following figure, select Rulesheet >Rule Column(s)>Renumber Rules to renumber
the subrules to arrive at the final Rulesheet with 25 general rules, each of which can now be assigned a Rule
Statement.

Figure 214: Rulesheet with renumbered rules

For more about this example, see the section "How to optimize Rulesheets".

Memory management
As you might suspect, the Completeness Checker and Expansion algorithms are memory intensive, especially
as Rulesheets become very large. If Corticon Studio runs low on memory, get details on increasing Corticon
Studio's memory allotment in “Increase Corticon Studio memory allocation" in the Corticon Installation Guide.

Logical loop detection
Corticon Studio has the ability to both detect and control rule looping. This is important because loops are
sometimes inadvertently created during rule implementation. Other times, looping is intentionally introduced
to accomplish specific purposes.

279Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

Test rule scenarios in the Ruletest Expected panel
Using Ruletests, you can submit request data as input to Rulesheets or Ruleflows to see how the rules are
evaluated and the resulting output. You can make Ruletests even more powerful by specifying the results you
expected, and then seeing how they reconcile with the output. Running the test against a specified Rulesheet
or Ruleflow automatically compares the actual Output data to your Expected data, and color codes the
differences for easy review and analysis.

You can establish the expected data in either of two ways:

1. Create expected data from test output:

a. Create or import a request into a Ruletest.

b. Run the test against an appropriate Rulesheet or Ruleflow.

c. Choose the menu command Ruletest > Testsheet > Data > Output > Copy to Expected, or click
in the Corticon Studio toolbar.

2. Create expected data directly from the Vocabulary:

a. Drag and drop nodes from theRule Vocabularywindow to create a tree structure in the Expected panel
that is identical to the input tree.

b. Enter expected values for the Input attributes as well as the attributes that will be added in the Output
panel.

Note: See the topics in Techniques that refine rule testing on page 284.

How to navigate in Ruletest Expected comparison results
When reviewing the results of a test run, two navigation features help you focus your attention :

• Synchronized scrolling: When you slide the scroll tab in the Ruletest panels, the three columns do not
move together, making alignment of data points difficult. You can set (or unset) synchronized scrolling of
the columns by either right-clicking any of the Ruletest panels and then choosing Scroll Lock, or clicking

in the Corticon Studio toolbar. After you set the panels to synchronize, all panels will synchronize their
scrolling, even advancing across collapsed entities and associations to stay synchronized on the first
displayed line.

• Navigation to differences: The Ruletest window provides a set of controls that report the number of
discovered differences and controls to navigate across the items. In the upper right of the Ruletest window,
the following image shows that the test results identified six differences:

The four buttons take you to the first, previous, next, and last discovered difference.

Review test results when using the Expected panel
The following topics present a variety of test results.

Progress Corticon: Rule Modeling: Version 6.3280

Chapter 11: Logical analysis and optimization

Output results match expected exactly
In the following example, both packaging values are shown in bold text, indicating that these values were
changed by the rules. Because all colors are black and the differences count is 0, theOutput data is consistent
with the Expected data.

Different values output than expected
In the following example, one difference was identified. The expected value of Cargo[2] packaging value is
standard, but the Ruletest produced an actual value of oversize. Because the Output does not match the
Expected data, the text is colored red.

281Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

In this example, notice that it is the value determined by the rule that changed, not the input values. Research
indicates that the designer changed the rule for volume from >30 to >=30 thereby triggering the different
container requirement.

Fewer values output than expected
In the following example, Cargo[2] has no input attribute values in the Input panel. The rule test failed because
of inadequate input data, and the two missing attributes (and their expected values) are colored green.

Progress Corticon: Rule Modeling: Version 6.3282

Chapter 11: Logical analysis and optimization

More values output than expected
In the following example, Cargo[3] was added in the Intput, and shown correctly in the Output panel. But,
because it was not anticipated by the Expected panel, it is colored blue as one difference at the entity level.

283Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

All Expected panel problems
In this example, there are three differences. The designer changed the trigger point for volume so Cargo[1]
chose a container that is different from what was previously expected. Cargo[3] is on the input and likewise
in the output, but Cargo[2] was expected and is missing from the output.

Techniques that refine rule testing
The following settings help you tune the results of comparing the output data and expected data so that irrelevant
errors are minimized:

Set selected attributes to ignore validation
When different values are output than what was expected, it could mean that the Expected panel data created
fromOutput data were reflecting dynamic values such as dates and time. If your Rulesheets use now or today,
then the Expected values will evaluate as errors very soon. To handle that situation, you can choose to ignore
validation for selected values in the Expected panel.

Consider the following example:

Progress Corticon: Rule Modeling: Version 6.3284

Chapter 11: Logical analysis and optimization

The selected attribute in this test has no input value and no expected value:

When the test runs, it is valid.

But, when the input gets a value and the output still has no value (or a different value), the test fails.

Clicking the expected attribute, you can choose Ignore Validation.

285Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

An attribute that will be ignored is greyed out.

Running the same test, the test passes.

Progress Corticon: Rule Modeling: Version 6.3286

Chapter 11: Logical analysis and optimization

The setting can revert by selecting the attribute and then choosing Enable Validation.

Use key attributes to improve difference detection in Ruletests
The execution of Ruletests can, in some cases, erroneously detect differences between the Output and Expected
results. This typically occurs in Rulesheets that add new entities to collections. The unsorted nature of collections
makes it impossible to match the collections in the Output and Expected results with complete accuracy. An
optional feature is available when you encounter problems with test failures due to the randomness of entity
ordering. To avoid this problem, you can specify certain attributes as key attributes that will assist the comparison
algorithm, that the validation linking entities in both panels are chosen based on the key values.

To set a key attribute, right-click the attribute in the Expected panel, and then choose Key Attribute, as shown:

287Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

Key attributes are shown in italic in the current entity as well as all other corresponding entities in the Expected
panel, as shown:

Progress Corticon: Rule Modeling: Version 6.3288

Chapter 11: Logical analysis and optimization

To remove a key attribute, right-click on the attribute again in the Expected panel, and then choose Key
Attribute to clear the setting.

Setting multiple key attributes attempts to match the full set.

Set how whitespace is handled
Leading or trailing blanks on String values (often called whitespace) might cause imprecise matching to the
output from rules. While the default behavior of trimming whitespaces is often preferred, you can add
com.corticon.tester.trimstringvalues=false to your brms.properties file to tell Corticon Studio
to not perform trimming, and thus reduce validation mismatches. The default behavior is apparent when copying
the output to the Expected column, because that action strips whitespaces, and often reveals apparent
mismatches immediately.

Numerical equivalence
When comparing expected results with output results during the validation stage of testing, two values that
have a different number of trailing zeros to the right of the decimal place will validate correctly. However, you
should avoid introducing rounding errors and inconsistent use of big decimal data types because they can
produce unintended differences during comparisons.

289Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

How to optimize Rulesheets
The tools that evaluate completeness and that perform compression can be reviewed to ensure that the decision
service executes them efficiently .

The compress tool
Corticon Studio helps improve performance by removing redundancies within Rulesheets. There are two types

of redundancies the Compress Tool detects and removes:

1. Rule or subrule duplication. The Compress Tool searches a Rulesheet for duplicate columns (including
subrules that may not be visible unless the rule columns are expanded), and deletes extra copies. Picking
up where we left off in New Rule Added by Completeness Check, let's add another rule (column #4), as
shown in the following figure:

Figure 215: New Rule (#4) added

Progress Corticon: Rule Modeling: Version 6.3290

Chapter 11: Logical analysis and optimization

While these four rules use only two Conditions and take just two Actions (an assignment to riskRating

and a posted message), they already contain a redundancy problem. Using the Expand Tool , this
redundancy is visible in the following figure:

Figure 216: Redundancy problem exposed

Clicking the Compress Tool has the effect shown in the following figure:

Figure 217: Rulesheet after compression

Looking at the compressed Rulesheet in this figure, notice that column #4 disappeared. More accurately,
the Compress Tool determined that column 4 was a duplicate of one of the subrules in column 1 (1.2) and
removed it.

Compression does not, however, alter the text of the rule statement; that task is left to the rule writer.

291Progress Corticon: Rule Modeling: Version 6.3

How to optimize Rulesheets

It is important to note that the compression does not alter the Rulesheet's logic; it simply affects the way
the rules appear in the Rulesheet: the number of columns, Values sets in the columns, and
such. Compression also streamlines rule execution by ensuring that no rules are processed more than
necessary.

2. Combining Values sets to simplify and shorten Rulesheets. In the Shipping charge example, the
Compress Tool combined Rulesheet columns wherever possible by creating Values sets in Condition
cells. For example, rule 6 in the figure Compressed Shipping Charge Rulesheetis the combination of rule
6 and 8 from Rulesheet with Renumbered Rules.

Figure 218: Compressed shipping charge Rulesheet

Value sets in Condition cells are equivalent to the logical operator OR. Rule 6 therefore reads:

In deployment, the decision service will execute this new rule 6 faster than the previous rule 6 and 8 together.

How to produce characteristic Rulesheet patterns
Because Corticon Studio is a visual environment, patterns often appear in the Rulesheet that provide insight
into the decision logic. After rule writers recognize and understand what these patterns mean, they can often
accelerate rule modeling in the Rulesheet. The Compression Tool is designed to reproduce Rulesheet patterns
in some common cases.

For example, take the following rule statement:

Progress Corticon: Rule Modeling: Version 6.3292

Chapter 11: Logical analysis and optimization

Applying modeling techniques, you might implement rule 1 as:

Figure 219: Implementing the 747 rule

Now let's have the Completeness Checker populate any missing columns:

Figure 220: Remaining columns produced by the Completeness Checker

Click Expand to fill out the Rulesheet so you can examine the 17 cross-product subrules:

Figure 221: Underlying subrules produced by the Completeness Checker

The 17 new columns (counting both rules and subrules) include an optimization that combined <> 'N312UA'
and null into not 'N312UA'. So, the number of combinations is 3*3*2 = 18. Subtracting the rule in column
1, 17 new columns were added.

Now, click Compress .

293Progress Corticon: Rule Modeling: Version 6.3

How to optimize Rulesheets

There are now just 4 rules. Fill in the Actions for the new columns, DC-10, as shown:

Figure 222: Missing Rules with Actions assigned

Because the added rules are non-overlapping, you can be sure they won't introduce any ambiguities into the
Rulesheet.

To be sure, click the Conflict Checker .

Figure 223: Proof that no new conflicts were introduced by the Completeness Check

This pattern tells you that the only case where the aircraft type is a 747 is when max cargo volume is greater
than 300 AND max cargo weight is greater than 200,000 AND tail number is N123UA. This rule is expressed
in column 1. In all other cases, specifically where max cargo volume is 300 or less OR max cargo weight is
200,000 or less OR tail number is something other than N123UA will the aircraft type be a DC-10.

The characteristic diagonal line of Condition values in columns 2-4, surrounded by dashes indicates a classic
OR relationship between the 3 Conditions in these columns. The Compression algorithm was designed to
produce this characteristic pattern whenever the underlying rule logic is present. It helps the rule writer to better
see how the rules relate to each other.

Progress Corticon: Rule Modeling: Version 6.3294

Chapter 11: Logical analysis and optimization

Compression creates subrule redundancy
Compressing the example in the preceding topic into a recognizable pattern, however, has an interesting side

effect: it introduced more subrules than were initially present. To see this, click Expand to compress the
Rulesheet as shown:

Figure 224: Expanding Rules following compression

You may be surprised to see a total of 54 subrules (columns) displayed (in the preceding figure) instead of the
26 prior to compression. Look closely at the 54 columns, and you will see several instances of subrule
redundancy. Of the 18 sub-rules within the original columns 2, 3 and 4, almost half are redundant (for example,
subrules 2.1, 3.1 and 4.1, shown in the preceding figure, are identical). What happened?

Effect of compression on Corticon Server performance
Why does Corticon Studio have what amounts to two different kinds of compression: one performed by the
Completeness Checker and another performed by the Compression Tool? It is because each has a different
role during the rule modeling process. The type of compression performed during a Completeness Check is
designed to reduce a (potentially) very large set of missing rules into the smallest possible set of non-overlapping
columns. This allows the rule writer to assign Actions to the missing rules without worrying about accidentally
introducing ambiguities.

The compression performed by the Compression Tool is designed to reduce the number of rules into the
smallest set of general rules (columns with dashes), even if the total number of subrules is larger than that
produced by the Completeness Checker. This is important for three reasons:

1. The Compression Tool preserves or reproduces key patterns familiar and meaningful to the rule modeler.

2. The Compression Tool, by reducing a Rulesheet to the smallest number of columns, optimizes the Corticon
rules engine. Smaller Rulesheets (lower column count) result in faster performance.

3. The Compression Tool, by reducing columns to their most general state (the most dashes), improves
Corticon Server performance by allowing it to ignore all Conditions with dash values. This means that when
the rule in column 3 of Missing Rules with Actions Assigned is evaluated by the rules engine, only the max
cargo weight Condition is considered. The other two Conditions are ignored because they contain dash
values. When rule 3 of Missing Rules with Actions Assigned is evaluated after the Completeness Check
is applied but before the Compression Tool, however, both max cargo weight and volume Conditions are
considered, which takes slightly more time. So, even though both Rulesheets have the same number of
columns (four), the Rulesheet with more generalized rules (more dashes - Missing Rules with Actions
Assigned) executes faster because the engine is doing less work.

295Progress Corticon: Rule Modeling: Version 6.3

How to optimize Rulesheets

Precise location of problem markers in editors
Problems experienced in Corticon editors are easily located when you click each annotated error line in the
Problems view to open the corresponding file in its editor, and then bring the specific location into view and
give it focus.

In the following illustration, the problem location is Rulesheet cell [b3598] of the 2DIM Rulesheet.
Double-clicking the problem line opened the file to that precise location, as shown:

This functionality applies to Vocabularies, Rulesheets, Ruleflows, and Ruletests.

Note: When migrating projects from earlier releases, the marker metadata has not been captured. When you
clear the existing problem list, and then perform a full build of the project, the location metadata that enables
this feature will be established.

TestYourself questions for Logical analysis and
optimization

Note: Try this test, and then go to TestYourself answers for Logical analysis and optimization on page 359 to
correct yourself.

1. What does it mean for two rules to be ambiguous?

2. What does it mean for a Rulesheet to be complete?

3. Are all ambiguous rules wrong, and must all ambiguities be resolved before deployment? Why or why not?

4. Are all incomplete Rulesheets wrong, and must all incompletenesses be resolved before deployment? Why
or why not?

5. Match the Corticon Studio tool name with its toolbar icon

Progress Corticon: Rule Modeling: Version 6.3296

Chapter 11: Logical analysis and optimization

Conflict Checker

Compression Tool

Expansion Tool

Collapse Tool

Conflict Filter

Completeness Checker

6. Explain the different ways in which an Ambiguity/Conflict between two rules can be resolved.

7. True or False. Defining an override enforces a specific execution sequence of the two ambiguous rules

8. True or False. A Conditions row with an incomplete values set will always result in an incomplete Rulesheet.

9. If a Rulesheet is incomplete due to an incomplete values set, will the Completeness Checker detect the
problem? Why or why not?

10. Can a rule column define more than one override?

11. If rule 1 overrides rule 2, and rule 2 overrides rule 3, does rule 1 automatically override rule 3?

12. Are rules created by the Completeness Checker always legitimate?

13. In a rule column, what does a dash (-) character mean?

14. True or False. The Expansion Tool permanently changes the rule models in a Rulesheet. If false, how can
it be reversed?

15. True or False. The Compression Tool permanently changes the rule models in a Rulesheet. If false, how
can it be reversed?

16. If a rule has 3 condition rows, and each condition row has a Values set with 4 elements, what is the size of
the Cross Product?

17. In above question, is it necessary to assign actions for every set of conditions (that is, for every column)?

18. If you do not want to assign actions for every column, what can be done to or with these columns?

19.Which Corticon Studio tool helps to improve Rulesheet performance?

Squeeze ToolCollapse ToolCompleteness
Checker

Compression ToolExpansion Tool

297Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Logical analysis and optimization

20. How is the compression performed by the Completeness Checker different from that performed by the
Compression Tool?

21.What is wrong with using databases of test data to discover Rulesheet incompleteness?

22. If you expand a rule column and change the Actions for one of the subrules, what will Corticon Studio force
you to do before saving the changes?

23.What does it mean for one rule to subsume another?

Progress Corticon: Rule Modeling: Version 6.3298

Chapter 11: Logical analysis and optimization

12
Advanced Ruleflow techniques and tools

Ruleflows provide techniques for combining, branching, and graphing. You can also use versioning and effective
dating to precisely manage your Ruleflows when they are compiled into Decision Services.

For details, see the following topics:

• How to use a Ruleflow in another Ruleflow

• Conditional branching in Ruleflows

• How to generate Ruleflow dependency graphs

• Ruleflow versions and effective dates

• TestYourself questions for Ruleflow versions and effective dates

How to use a Ruleflow in another Ruleflow
You can reduce the complexity and testing of large Ruleflows by breaking a Ruleflow into smaller Ruleflows,
and then constructing the larger Ruleflow from them. The resulting modularity simplifies unit testing and
collaboration.

Consider the following Ruleflow from the Life Insurance sample project:

299Progress Corticon: Rule Modeling: Version 6.3

The Ruleflow editor shows the iSample_policy_pricing.erf canvas with four objects in sequence. The
first three apply the risk assessment rules and the other object is altogether separate Ruleflow file, as you can
see in the object's properties:

Figure 225: A Ruleflow overrides settings on an embedded Ruleflow

A Ruleflow file's Properties provide settings for versioning and effective date stamping of the Decision Service
that will be created. (See the topic Ruleflow versions and effective dates on page 323 for details.) However,
when a Ruleflow is added to another Ruleflow's canvas, it ignores its Ruleflow Properties and takes on
Ruleflow Activity Properties that are local to its role as a component of another Ruleflow, as illustrated.
You can change the name of the Ruleflow on the canvas in this context so that it provides meaning, and you
can add comments. None of these actions change the Ruleflow properties of the original Ruleflow.

The referenced Ruleflow, iSample_generate_policy.erf, contains four Rulesheets, as shown:

With these two Ruleflows, each can be updated and tested independently, and -- as long as you ensure that
the Vocabulary stays consistent -- separate teams can collaborate on developing risk rules and policy rules.
That makes it easy to reuse either of these Ruleflows. For example, if policy pricing varies in different markets,
then you can create a new Ruleflow that brings in the same risk assessment rules to provide the data to process
against a modified policy pricing Ruleflow for the other market.

The parent Ruleflow provides its own settings for versioning and effective date stamping of the Decision Service
that will be created, as illustrated:

Note: Deploying Ruleflows within a Ruleflow: When this Ruleflow is deployed, the generated Decision
Service includes the content of both Ruleflows. However, when either of the included Ruleflows changes,
Ruleflows that include one of them are not automatically updated: each must be redeployed to include the
changes.

For more information, see the "Ruleflows" section of the Quick Reference Guide

Progress Corticon: Rule Modeling: Version 6.3300

Chapter 12: Advanced Ruleflow techniques and tools

Conditional branching in Ruleflows
In a Ruleflow, you often have steps that should only process an entity with a specific attribute value. You can
accomplish this by using preconditions on a Rulesheet, but the resulting logic, or flow, is difficult to perceive
when looking at the Ruleflow. The following Ruleflow shows a progression of processing from the upper left to
the lower right. But, the rules to decide whether a loan is approved or declined are one-or-the-other, and the
Rulesheets for the US states do not represent a progression because the applicant's state is going to trigger
only one of these Rulesheets to fire its rules:

Looking at this Ruleflow, the real flow is somewhat hidden. If the Rulesheets for Texas, California, Vermont,
and Idaho each had a precondition such that only matching states were processed, then they represent a set
of mutually exclusive options, not the linear flow depicted in the Ruleflow. You will see how to create a branch
in a Ruleflow like this:

301Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

And then bring that Ruleflow into another Ruleflow where you will also create a branch for the Declined and
Approved Rulesheets that also might have needed to use preconditions. The completed Ruleflow looks like
this:

A branch node can be Rulesheet, Ruleflow, Service Call Out, Subflow, or another Branch container.

Note: Multiple branches can be assigned to the same target activity. These values are shown as a set in the
Ruleflow canvas.

Refresher on enumerations and Booleans

Progress Corticon: Rule Modeling: Version 6.3302

Chapter 12: Advanced Ruleflow techniques and tools

Branching can occur on either enumerated or Boolean attribute types. Only these are allowed because they
have a set of known possible values. These possible values can be used to identify a branch. Using branches
in a Ruleflow lets you clearly identify the set of options, or branches, for processing an entity based on an
attribute value. In the example, using branching for the set of state options and whether the loan is approved
or declined makes the flow more apparent. It will also be easier to create and maintain.

This topic covers the general concepts of branching. First, let's review enumerations and Booleans because
they are essential to branching definitions.

When defining elements of a Vocabulary, each attribute is specified as one of seven data types in the Corticon
Vocabulary.

These data types can be extended by Constraints or Enumerations. In this illustration, States are extending
their String type to be qualified as a list of labels and corresponding values that delimit the expected values
yet offer the listed items in drop-down lists when you are defining Ruletests. Notice that the Boolean data type
is not listed as it is implicitly an enumeration.

The Vocabulary definition then chooses the States data type, a subset of String, as its data type.

303Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

Every attribute that is an enumerated data type or a Boolean is available for branching. For more information,
see Enumerations on page 49.

Example of branching based on a Boolean
In the example, loan status does not pass through being declined on its way to being approved; it is one or the
other. This true/false decision point in a Ruleflow that contains several Rulesheets provides an easy introduction
to branching.

To create a branch on a Ruleflow canvas for a Boolean attribute:

1. On the Ruleflow canvas where you want to create a branch, click Branch on the Palette, and then click on
the canvas where you want to place the branch. A Branch container is created with your cursor in the name
label area.

2. Enter a name such as Loan Status, and press Enter. You can change the name later.

3. Drag the Rulesheets Approved.erf and Declined.erf from the Project Explorer to the branch
compartment.

4. On the Branch's Properties tab for Branch Activity, click . The Select Branch Attributes for
the Ruleflow's Vocabulary identifies three attributes that are candidates for branching (state, agency, and
approved), and the associations that apply to these attributes. For this branch, approved is the Boolean
attribute appropriate for loan status. More specific, the attribute preferred is
Applicant.mortgage.approved. Click on that attribute as shown:

Progress Corticon: Rule Modeling: Version 6.3304

Chapter 12: Advanced Ruleflow techniques and tools

5. Click OK.

6. You can define the Boolean branches in a few ways:

• Click the Value drop-down list, as shown:

Notice that there four choices for a Boolean. The null value is offered because the attribute is not set as
Mandatory so null is allowable. The other value is demonstrated below.

• Choose true on the first line, and then choose other on the second line.

• Click Check for completeness, as shown, to populate the Value list from the attribute:

305Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

Notice that it does not add other to the list. If you set true and other as shown above, clicking Check
for completeness would have nothing to add because other implies completeness. You can clear
green highlights by clicking the Clear analysis results button.

The values listed are in red until we each one is bound to a node. You can delete any or all but a minimal
number of these lines if you do not have nodes that will handle specific cases. For this example, keep only
true and false. Then, click Cleanup to remove lines that no assigned node.

7. In the Branch Activity section, the Node column lets you click a Value line and then use the drop-down
list to choose the appropriate target node for the value. When the request in process matches this value, it
will be passed to this branch in the branch container:

When both true and false have nodes specified, the required branches for this rule flow are defined.

8. Connect the incoming and outgoing connections to the branch to complete the flow on the canvas.

Progress Corticon: Rule Modeling: Version 6.3306

Chapter 12: Advanced Ruleflow techniques and tools

Multiple values can direct to the same target node, as shown in these colorized examples, where all the 'not
true' possibilities are assigned to the Declined node:

307Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

That completes the creation of this Boolean-based branch.

Progress Corticon: Rule Modeling: Version 6.3308

Chapter 12: Advanced Ruleflow techniques and tools

Example of branching based on an enumeration
In the example, four US states each have specific rules defined. Processing policy might require graceful
rejection of requests that do not specify one of these four states. And, over time, the included states might
expand or contract. This branch for State Specific Rules will be created as a separate Ruleflow, State Rules,
so that it can be reused in other Ruleflows.

To create a branch on a Ruleflow canvas for an attribute that is an enumerated list:

1. On the Ruleflow canvas, click Branch on the Palette, and then click on the canvas where you want to place
the branch. A Branch compartment is created with your cursor in the name label area.

2. Enter a name such as State Specific Rules, and press Enter.

3. On the Branch's Properties tab for Branch Activity, click . The Select Branch Attributes for
the Ruleflow's Vocabulary identifies three attributes that are candidates for branching (state, agency, and
approved), and the associations that apply to these attributes.

4. Choose Applicant.state. The list of all US state abbreviations that is used by this attribute defines the
enumeration in the Vocabulary, as shown:

Note: See Enumerations on page 49 for information about entering or pasting enumeration labels and
values as well importing them from a connected database.

5. Drag theRulesheetsCalifornia.ers,Idaho.ers,Texas.ers,Vermont.ers, andOther States.ers
into the branch compartment on the canvas. You can use Ctrl+click to select multiples and then drag them
as a group. Each Rulesheet is marked with a error flag at this point, as shown:

309Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

6. On the canvas, click the branch to open its Properties tab. You can define the enumeration branches in a
few ways:

• Click the Value drop-down list. On separate value lines, choose each of the defined states and then
other.

• Click Check for completeness, as shown, to populate the Value list from the attribute:

Notice that it does not add other to the list. If you set true and other as shown above, clicking Check
for completeness would have nothing to add because other implies completeness. You can clear
green highlights by clicking the Clear analysis results button.

The values listed are in red until each one is bound to a node.

7. Click a state value, then use the drop-down list to select the appropriate node. In the following image, notice
that the California node was assigned to the CA value, so that value turned black. The node on the canvas
cleared the error, and the branching value is indicated in parentheses.

Progress Corticon: Rule Modeling: Version 6.3310

Chapter 12: Advanced Ruleflow techniques and tools

Note: An additional node was added to the canvas, but because it is connected to a node, it is not offered
in the drop-down list as a branch.

8. After matching the states with appropriate nodes, the Other States Rulesheet is unassigned. To handle
this, a special purpose value is added. At the bottom of the value list, click the down arrow and choose
other.

Assign the Other States Rulesheet to that value.

9. After all the nodes are assigned to values, click Cleanup to clear all the unassigned values, as shown:

311Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

The unassigned values that were removed will all be handled by the other value's node. If you click Check
for Completeness now, you get that the branch is complete.

That completes the creation of this enumeration-based branch.

Note: Other features of the user interface for defining branch activity are:

• Clicking a trashcan button on the right side of a branch line deletes that line.

• Clicking the Clear button removes all lines. The branch and components on the canvas are not removed.

• The Extend to Database option is offered when the branching attribute is defined to connect to a database
table and columns. The option is enabled in the Vocabulary editor by setting the attribute's Entity property
Datastore Persistent to Yes. Choosing the option when it is available pulls the entities out of the defined
and connected database and then processes the branch; when cleared, it tests against only the payload.

Progress Corticon: Rule Modeling: Version 6.3312

Chapter 12: Advanced Ruleflow techniques and tools

Logical analysis of a branch container
A Ruleflow branch container is subject to two significant types of logical errors: completeness and conflicts.

Completeness in a branch
A branch is complete when all of its possible values are accounted for in branch nodes. When first defining
branch activity, instead of selecting each possible value on each line, you can click Check branch for
completeness, as shown:

This adds all missing values as branch targets.

When branching by a Boolean attribute, three values are added, as shown:

313Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

When branching by an enumerated Custom Data Type attribute, each label in the enumeration is added, as
illustrated:

If the completeness check adds additional branch values, these will be highlighted in green. Clicking Clear
analysis results removes color highlighting:

Assign nodes in the branch to appropriate listed value values. When you are done, click Cleanup to remove
any branch values which do not have corresponding branch nodes. Unless you specify the keyword other as
a branch value and assign it a branch node, your branch would be incomplete; you have not accounted for
some of the possible branch values.

Conflicts in a branch
When branch nodes include logic that creates conflicts or ambiguities, those conflicts are difficult to identify.
You can evaluate whether there are logical conflicts in a branch by clicking Check branch for conflicts, as
shown:

Progress Corticon: Rule Modeling: Version 6.3314

Chapter 12: Advanced Ruleflow techniques and tools

Conflict or ambiguity in a Ruleflow branch container might be:

• Different branches modify a shared entity: You are informed of the attribute/association being modified.

• A branch accesses the branch entity through an association that is not being filtered by the branch:
For example, the branch is on Policy.type while some rules act on Customer.policy.type. That
creates a conflicting branch node, each of which is highlighted in red, as shown:

Note: For more about this type of conflict, see the topic, "How branches in a Ruleflow are processed".

Click the Clear analysis results button to remove the highlights.

How branches in a Ruleflow are processed
Branch activities are executed in the enumeration order as defined in the Vocabulary. Branch activities are not
processed concurrently, they are executed sequentially.

315Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

Branch selection
Data is assigned to each branch before any branch execution occurs, so if an attribute in the branch condition
changes value during a branch activity execution, it will not change the branch assignment. Further downstream,
the new value is presented for subsequent branch activity execution.

Consider the following example. When branching by Customer.smoker, the value of smoker determines
which branch is executed. Changing the value of smokerwithin a branch does not alter which branch processes
the customer.

Suppose you had the payload:

Customer 1 (smoker = "Yes")
Customer 2 (smoker = "No")

Changing the smoker for Customer 1 from "Yes" to "No" would not, within the current branch condition, cause
it to be passed to the "No" smoker branch. Subsequent branching by smoker would use its current value.

Branching by associated attributes
When associations are involved, the data passed into the branch activity is the full association traversal of the
branch condition. The entity (with possible associated parents) that satisfies the branch condition is passed
into the branch activity. Child associations are available during activity execution. Unrelated entities are part
of the branch payload.

Consider the following example of branching by Customer.policy.type. All the policies for an order of
some type will be passed into the matching branch.

Suppose you had the payload:

- Customer 1
- policy 1 (type="standard")
- policy 2 (type="preferred")

- Customer 2
- policy 3 (type="standard")
- policy 4 (type="preferred")

The branch for "standard" would be passed:

- Customer 1
- policy 1 (type="standard")

- Customer 2
- policy 3 (type="standard")

The branch for "preferred" would be passed:

- Customer 1
- policy 2 (type="preferred")

- Customer 2
- policy 4 (type="preferred")

Branch consistency
When a root entity is used for the branch and the branch activities use associations, care must be taken to
ensure consistent results in a Ruleflow branch. It is important to use the same association traversals in the
branch Rulesheets as used in the branch attribute. Thus, if the branch Rulesheets reference entities like
Customer.policy.type and the branch attribute is on entity policy.type, the branch attribute in the
branch container properties should be defined as Customer.policy.type, not Policy.type. If the branch
container is the root entity Policy.type, then the branch Rulesheets will still allow for references through
the association Customer.policy.type to Policy entities that did not survive the branch.

Consider the following example of branching on Policy.type.

Progress Corticon: Rule Modeling: Version 6.3316

Chapter 12: Advanced Ruleflow techniques and tools

Suppose the payload had Policy.type:

- Customer 1
- policy 1 (type="standard")
- policy 2 (type="preferred")

- Customer 2
- policy 3 (type="standard")
- policy 4 (type="preferred")

The branch for "standard" would be passed:

- Policy 1 (type="standard")
- Policy 3 (type="standard")

The branch for "preferred" would be passed:

- Policy 2 (type="preferred")
- Policy 4 (type="preferred")

However, in both branches, Customer 1 and Customer 2 (with associations) will also be available. So, if
rules in those branches reference Customer.policy, then the rules will execute on every Customer.policy,
not just the branched ones. Because the branch was on Policy, rules that reference Policy only execute
on the branched ones.

How to generate Ruleflow dependency graphs
When working on large Ruleflows, you often want to know the dependencies between the nodes in the Ruleflow.
This can help you determine how best to order the nodes or detect unanticipated dependencies. Dependencies
are identified by the attributes that are set or referenced in the nodes of a Ruleflow. You also often want to
know how one or more attributes are used in a Ruleflow. Ruleflow graphing lets you see the dependencies
and where attributes are used. This is useful for understanding a Ruleflow, debugging problems, and performing
impact analysis when changing a vocabulary.

317Progress Corticon: Rule Modeling: Version 6.3

How to generate Ruleflow dependency graphs

With the Ruleflow you want to graph open in its Studio editor, select theRuleflowmenu commandDependency
Graph, as shown:

The Generate Dependency Graph dialog box opens:

Choose the type of graph you want and the output folder. You can focus the analysis on just nodes that you
selected before opening the dialog, or all nodes on the Ruleflow canvas.

Note: When no objects on the Ruleflow canvas are preselected, the option to graph only selected nodes has
no effect.

Attribute Dependency Graph

An attribute dependency graph shows the attributes that establish dependencies: that is, when a Rulesheet
uses an attribute set by another Rulesheet, the former has a dependency on the latter.

Progress Corticon: Rule Modeling: Version 6.3318

Chapter 12: Advanced Ruleflow techniques and tools

When you just generate a graph right away, all the attributes are included, as in this graph of the advanced
tutorial's Ruleflow:

319Progress Corticon: Rule Modeling: Version 6.3

How to generate Ruleflow dependency graphs

For large projects, graphs with all the attributes and dependencies can be difficult to work with. You can specify
that only selected attributes are to be analyzed. Click Attributes to open the Attribute Selector dialog box,
as shown:

In this illustration, five attributes were selected. Clicking OK returns to the graph options. Clicking Finish
generates the graph.

Progress Corticon: Rule Modeling: Version 6.3320

Chapter 12: Advanced Ruleflow techniques and tools

The graph opens in your default browser, as shown:

The graph image and its supporting files are saved in the output folder.

Note: When you next generate an attribute graph from the same Ruleflow, it overwrites the existing file unless
you relocate generated files or specify unique output folders.

Logical Dependency Graph

321Progress Corticon: Rule Modeling: Version 6.3

How to generate Ruleflow dependency graphs

A logical dependency graph shows the dependency between the Rulesheets in a Ruleflow. Change the graph
type to Logical Dependency Graph, as shown:

You can set the output folder to your preference and if Ruleflow nodes were selected before opening the dialog
box, the analysis is limited to those nodes. The option to specify attributes is not relevant and not available.

Clicking Finish generates the graph. The following figure is the logical dependency graph for Rulesheets in
the advanced tutorial's Ruleflow:

The graph image and its supporting files are saved in the output folder.

Note: When you again generate a dependency graph from the same Ruleflow, it overwrites the existing file
unless you relocate generated files or specify unique output folders.

Progress Corticon: Rule Modeling: Version 6.3322

Chapter 12: Advanced Ruleflow techniques and tools

Ruleflow versions and effective dates
You can apply versioning and effective dates so that you can focus requests, and delimit availability of a
Decision Service

Ruleflow version
Major and minor version numbers for Ruleflows are optional. With the Ruleflow open in its editor, select the
menu command Ruleflow > Properties, and then enter the Major Version and Minor Version as integer
values, as shown:

Figure 226: Assigning a version number to a Ruleflow

When you use different version numbers to describe identically named Ruleflows, the Corticon Server keeps
each Decision Service distinguished in its memory, so it can respond correctly to requests for a specified
version. In other words, an application or process can use (or call) different versions of the same Decision
Service depending on certain criteria. The details of how this works at the Server level are discussed in the
topics at "Decision Service versioning and effective dating" in the Deployment Guide.

Version label
You can add a text descriptor to the Ruleflow by typing in the Version Label field. The description stays with
the Ruleflow file, and is packaged in any Decision Services created from the Ruleflow. In the Web Console,
every deployed instance of the Decision Service lists the Version Label on its details page.

Major and minor versions
Major and Minor version designations are arbitrary and can be adapted to fit the version naming conventions
used in different environments. As an example, Ruleflow minor versions can be incremented whenever a
component Rulesheet is modified. Major Ruleflow versions can be incremented whenmore substantial changes
are made to it, such as adding, replacing, or removing a Rulesheet from the Ruleflow.

Version numbers can be incremented, but not decremented.

For details about how to invoke a Ruleflow by version number, see the topic "Decision Service versioning and
effective dating" in the Deployment Guide.

323Progress Corticon: Rule Modeling: Version 6.3

Ruleflow versions and effective dates

Effective and expiration dates
Effective and expiration dateTimes are optional for Ruleflows and can be assigned singly or in pairs. When
you use different effective and expiration dateTimes to describe identically named Ruleflows, the Corticon
Server keeps them straight in memory, and responds correctly to requests for the different dates. In other
words, an application or process can use different versions of the same Ruleflow depending on dateTime
criteria. The details of how this works at the Corticon Server level is described in the Deployment Guide.

Effective and expiration dates can be assigned using the same window as for the version numbers. Clicking
on the Effective Date or Expiration Date drop-down displays a calendar and clock interface, as shown:

Figure 227: Setting Effective and Expiration Dates

Setting a specific target date for a Ruletest
When you execute a Ruletest against a corresponding Decision Service that is deployed and running on a
Corticon Server that was deployed with effective and expiration dates, the day you are testing the Decision
Service could be impacted by the data constraints. The ability to set a target date lets you execute the test as
though it were sent at a specific date and time. Using this feature enables setting the clock back to see how
past date ranges would have handled a request, as well as setting the clock forward to test deployed Decision
Services in pre-production staging.

To set a version and effective target date for a Ruletest:

1. With the Ruletest in its editor, choose the menu command Ruletest > Testsheet > Select Test Subject.

2. Select the Run against Server tab, select a Server URL, and then click Refresh.

3. Click on a Decision Service in the list.

4. In the Optional Overrides section, specify the Decision Service's version identity and effective target date
to use for the Ruletest, as shown:

5. ClickOK. The dialog box closes. The details of the deployed Decision Service and its overrides are displayed
at the top of the Testsheet:

Progress Corticon: Rule Modeling: Version 6.3324

Chapter 12: Advanced Ruleflow techniques and tools

6. Run the Ruletest.

The test executes against the specified Decision Service on the selected server using the overrides you entered.

TestYourself questions for Ruleflow versions and
effective dates

Note: Try this test, and then go to TestYourself answers for Ruleflow versioning and effective dating on page
360 to correct yourself.

1. True or False. If a Ruleflow has an Effective date, then it must also have an Expiration date.

2. True or False. If a Ruleflow has an Expiration date, then it must also have an Effective date.

3. True or False. Ruleflow Version numbers are mandatory.

4. Which Corticon Studio menu contains the Ruleflow Properties settings?

5. True or False. A Ruleflow Minor or Major Version number can be raised or lowered.

6. True or False. Ruleflow Effective and Expiration dates are mandatory.

325Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Ruleflow versions and effective dates

Progress Corticon: Rule Modeling: Version 6.3326

Chapter 12: Advanced Ruleflow techniques and tools

13
Troubleshooting Corticon Studio problems

In addition to being a convenient way to test your Rulesheets with real business scenarios, the Corticon Studio
Ruletest facility is also the best way to troubleshoot rule, Rulesheet, and Ruleflow operations. Corticon Ruletest
are designed to replicate exactly the data handling, translation, and rule execution by Corticon Server when
deployed as a Java component or web service in a production environment.

This means that if your rules function correctly when executed in a Corticon Ruletest, you can be confident
they will also function correctly when executed by Corticon Server. If they do not, then the trouble is most likely
in the way data is sent to Corticon Server – in other words, in the technical integration. This is such a fundamental
tenet of rule modeling with Corticon, we'll repeat it again:

If your rules function correctly when executed in a Corticon Studio, they will also function correctly when
executed by Corticon Server. If they do not, then the trouble is most likely your client application's integration
with or invocation of Corticon Server.

The following methodology will guide your rule troubleshooting and debugging efforts. The basic technique is
known generically as half-splitting or binary chopping. In other words, dividing a decision into smaller logical
pieces, and then setting aside the known, good pieces systematically until the problem is isolated.

This guide is not intended to be an in-depth cookbook for correcting specific problems because, as an expression
language, the Corticon Rule Language offers too many syntactical combinations to address each in any detail.

For details, see the following topics:

• Where did the problem occur

• Use Corticon Studio to reproduce the behavior

• Studio license expiration

• How to compare and report on Rulesheet differences

• TestYourself questions for Troubleshooting rulesheets and ruleflows

327Progress Corticon: Rule Modeling: Version 6.3

Where did the problem occur
Regardless of the environment the error or problem occurred in, always attempt to reproduce the behavior in
Studio. If the error occurred while you were building and testing rules in Corticon Studio, then you're already
in the right place. If the error occurred while the rules were running on a test or production deployment
environment, then obtain a copy of the Ruleflow (.erf file) and open it, its constituent Rulesheets (.ers files),
and its Vocabulary (.ecore file) in Studio.

Use Corticon Studio to reproduce the behavior
It is always helpful to build and save known-good Ruletests (.ert files) for the Corticon Rulesheets and
Ruleflows you intend to deploy. A Ruletest known to be good not only verifies that Rulesheet or Ruleflow is
producing the expected results for a given scenario, it also enables you to re-test and re-verify these results
at any time in future.

If you do not have a known-good Ruletest, build one now to verify that the Ruleflow, as it exists right now, is
producing the expected results. If you have access to the actual data set or scenario that produced the error
in the first place, it is especially helpful to use it here now. Run the Ruletest.

Observe constraint violations or severe errors
When you run a Ruletest in Studio, it might produce error messages. Error messages are distinct from Post
messages you specified in Rulesheet Rule Statements to generate info, warning, and violation statements
that are posted by normal operation of the rules.

Constraint violation
A constraint violation indicates that values in the test's attributes are not within numeric constraint ranges or
not included in enumerated lists that were set in the Vocabulary's Custom Data Types. A constraint violation
might look like this:

Figure 228: A Constraint violation in a Ruletest

In the example, the constraint is shown, and its violation is marked on the attribute and its entity in the Input
column:

Running the test halts at the first constraint violation. The log lists the first constraint exception and its detailed
trace. No response is generated.

You can revise the input to have valid values, or choose to relax the enforcement of such violations through a
setting in the brms.properties file, com.corticon.vocabulary.cdt.relaxEnforcement=true.

Progress Corticon: Rule Modeling: Version 6.3328

Chapter 13: Troubleshooting Corticon Studio problems

When the option is enabled, a response is generated that includes each of constraint violation warnings. For
example:

<CorticonResponse xmlns="urn:Corticon"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
decisionServiceName="Cargo.ers_null_ALL">

<WorkDocuments>
<Cargo id="Cargo_id_1">

<weight>0</weight>
<volume>-1</volume>
<container>standard</container>

</Cargo>
</WorkDocuments>
<Messages version="0.0">

<Message postOrder="cc00000001">
<severity>Warning</severity>
<text>constraint violation setting Cargo.weight to value [0]</text>
<entityReference href="Cargo_id_1" />

</Message>
...
</Messages>

</CorticonResponse>

See How to relax enforcement of Custom Data Types on page 60 for details about constraints and the option
to relax enforcement.

Note: The output example shown reflects the execution properties in a Ruletest output file. If you extract the
same response for a Ruletest from your Studio log when the RULETRACE logging filter is enabled, then you
reveal several additional execution properties that can be helpful in support efforts, but they are otherwise not
meaningful to users.

Severe errors
Some errors indicate problems with how the rules engine is handling the Decision Service: Null Pointer Exception,
Reactor Exception, Fatal Exception. These error conditions are important to resolve as soon as possible.

Immediately capture and save any advanced information in the alert, and then copy and save the logs. You
might want to try closing Corticon Studio and running the Ruletest again. If it reliably fails with a severe error,
package the current project and logs, and then contact support. If you followed the best practice of retaining
offline backups of the project as well as saving your work, you might be able to resume with most-recent backup
in a different project workspace.

Note: Next step in troubleshooting—If you did not encounter constraint violations or severe errors, any other
problems are within your rules. Proceed to Analyzing Test Results. To work around a problem in rules, you
can identify the expression syntax that produces it, and then try to express the logic in a different way. The
Corticon Rule Language is very flexible and usually allows the same logic to be expressed in many different
ways.

Analyze Ruletest results
This section assumes:

• Your Ruletest produced none of the previously mentioned errors, or

• You or Corticon Technical Support identified workarounds that overcame these errors

Does the Rulesheet produce the expected test results? In other words, does the actual output match the
expected output?

329Progress Corticon: Rule Modeling: Version 6.3

Use Corticon Studio to reproduce the behavior

• If so, and you were using the same scenario that caused the original problem, then the problem is not with
the rules or with Studio, but instead with the data integration or Corticon Server deployment.

The Corticon Server log captures errors and exceptions caused by certain rule and request errors. These
log messages are detailed in the Using Corticon Server logs section of the Server Guide.

• If not, the problem is with the rules themselves. Continue in this section.

Trace rule execution
A first step in analyzing results of executing Decision Services is to gain visibility to the rules that fired. With
rule tracing, you can see which rules and Rulesheets fired in processing a work document. There are two
techniques for tracing rule execution:

• Rule trace viewer—See all the actions that took place in a Ruletest with the click of a button. Drill into the
changes and make changes to the source files immediately.

• Rule message metadata—Set up rule messages to expose metadata about selected rules in Studio Tester
as well as with deployed Decision Services.

Note: The following examples use the Advanced Tutorial's Ruleflow as the test subject. The Ruleflow has
three Rulesheets, each with conditional and non-conditional rules. Here is the output of the coupons.ert
Ruletest:

Progress Corticon: Rule Modeling: Version 6.3330

Chapter 13: Troubleshooting Corticon Studio problems

RULE TRACE VIEWER
You can reduce the time it takes diagnose rule execution problems by efficiently analyzing the Ruletest as it
executes to trace all the rules that fired. Run a Ruletest with the additional functionality of the Rule Trace Viewer
by just clicking a button:

The Ruletest runs the test as well a rule trace across all Rulesheets, and then presents the results in the Rule
Trace tab, as shown:

The results of a rule trace are dynamic:

• Highlight—Click anywhere on a line to highlight that element in the Testsheet output. Click on any item in
the Ruletest to see all the rules related to that element highlighted in the Rule Trace Viewer.

• Sort—Click on any column header in the Rule Trace tab to sort the tab content in ascending order. Click
again to sort into descending order.

• Locate—Double-click on any line to open the related Rulesheet positioned at the Action line and rule. The
Rulesheet is in editable form so you can make adjustments quickly, and run again to see the effects of
changes.

Note: The Rule Trace Viewer is based on JSON. If you have the Studio property
com.corticon.tester.ccserver.execute.format set to XML (instead of the default, JSON), the Rule
Trace Viewer function is inoperative.

331Progress Corticon: Rule Modeling: Version 6.3

Use Corticon Studio to reproduce the behavior

RULE MESSAGE METADATA
You can expose the Rulesheet and rule for items that you have specified in rule statements, including selected
values as illustrated:

Figure 229: Rule messages when metadata is enabled in Studio

To enable this function, add a line to the brms.properties as:

com.corticon.reactor.rulestatement.metadata=true

After deployment, testing execution of the Decision Service in the Studio and in the Web Console shows that
the metadata is exposed in the response, as shown for the Web Console:

While this can be useful in tracing deployment problems, the metadata will remain in production until you shut
off the feature and generate a new decision service.

Identify the breakpoint
To understand why your rules are producing incorrect results, it is important to know where in the Rulesheet
or Ruleflow the rules stop behaving as expected. At some point, the rules stop acting normally and start acting
abnormally; they break. After you identify where the rule breaks, the next step is to determine why it breaks.

An important tool to help identify the breakpoint is the Ruletest’s message box. By choosing values for Post
and Alias columns in the Rule Messages window, you can generate a trace or log of the rules that fire during
execution. The message box in a Ruletest displays those messages in the order that they were generated by
Corticon Server. In other words, the order of the messages in the box (top to bottom) corresponds to the order
in which the rules were fired by Corticon Server. While messages in the message box can also be sorted by
severity or entity by clicking the header of those columns, clicking the Message column header will always
sequence according to the order in which the rules fired. Inserting attribute values into rule statements can
also provide good insight into rule operation. But beware; a non-existent entity inserted into a rule statement
prevents the rule from firing, becoming the cause of another failure!

Progress Corticon: Rule Modeling: Version 6.3332

Chapter 13: Troubleshooting Corticon Studio problems

Disable/Enable

Disabling and then re-enabling individual Condition/Action rows, entire rule columns, Filter rows, and even
whole Rulesheets is a powerful way to isolate problems:

• Rulesheet elements - Right-click active Condition or Action row headers, column headers, or Filter row
headers to display a pop-up menu containing enable/disable options. Disabled rows and columns will be
shaded in gray on the Rulesheet.
Figure 230: Rulesheet with Rule Column 2 disabled.

• Ruleflow objects - Select objects on a Ruleflow canvas, and then click the Disable/Enable toolbar button

to toggle the disabled objects to dark gray. Redo the action to re-enable the object.
Figure 231: Ruleflow with coupons object disabled

Be sure to save these changes before running a Ruletest to ensure the changes take effect.

Disable and re-enable Rulesheet elements and Ruleflow objects until the strange or unexpected behavior
stops.

At the breakpoint
At the point at which abnormal behavior begins, what results is the breakpoint rule producing?

333Progress Corticon: Rule Modeling: Version 6.3

Use Corticon Studio to reproduce the behavior

• No results at all: The breakpoint rule should fire (given the data in the Ruletest) but does not. Proceed to
the No Results section.

• Incorrect results: The breakpoint rule does fire, but without the expected result. Proceed to the Incorrect
Results section.

No results
Failure of a rule to produce any results indicates that the rule is telling the rule engine to do something it cannot
do. (This assumes, of course, that the rule should fire under normal circumstances.) Frequently, this means
the engine tries to perform an operation on a term that does not exist or is not defined at the time of rule
execution. For example, trying to:

• Increment or decrement an attribute (using the += or -= operators, respectively) whose value does not exist
(in other words, has a null value).

• Post a message to an entity that does not exist, either because it was not part of the Ruletest to begin with,
or because it was deleted or re-associated by prior rules.

• Post a message with an embedded term from the Vocabulary whose value does not exist in the Ruletest,
or was deleted by prior rules.

• Create (using the .new operator) a collection child element where no parent exists, either because it was
not part of the Ruletest to begin with, or because it was deleted or re-associated by prior rules.

• Trying to forward-chain: using the results of one expression as the input to another within the same rule.
For example, if Action row B in a given rule derives a value that is required in Action row C, then the rule
may not fire. Both Actions must be executable independently in order for the rule to fire. If forward-chaining
is required in the decision logic, then the chaining steps should be expressed as separate rules.

Incorrect results in Studio
After the breakpoint rule is isolated, it is often helpful to copy the relevant logic into another Rulesheet for more
focused testing. See the Rule Language Guide to ensure you have expressed your rules correctly. Be sure to
review the usage restrictions for the operators in question.

If, after isolating and verifying the suspicious expression syntax, you are unable to fix the problem, please call
Progress Corticon Technical Support. As always, be prepared to send the product version used, and the set
of Corticon files (.ecore, .ers, .erf, and .ert) that will enable us to reproduce the problem.

Partial rule firing
A Condition/Action rule column might partially fire, meaning Action A is executed but Action B is not. If Action
A cannot execute, then Action B will not execute either, even if there is nothing wrong with Action B by itself.
An Action containing any one of the problems listed above is sufficient to prevent a rule from firing, even if all
other Actions in the rule are valid.

There are two exceptions to this rule:

Nonconditional actions

In the special Nonconditional rule column, column 0, each Action row in column 0 acts as its own separate,
independent rule, so Action row A may fire even if Action row B does not.

Partial execution of rules with relationships and null attributes

Progress Corticon: Rule Modeling: Version 6.3334

Chapter 13: Troubleshooting Corticon Studio problems

When a relationship is null, the rule does not fire. When an attribute is null, and the relationship aspects of the
rule can be evaluated, the rule fires partially: The actions related to the association do fire but the action related
to a null attribute does not. Consider a Rulesheet and test on the Cargo sample where the Aircraft information
is set from its ID, and the total cargo weight computed. If there is no associated Aircraft.flightPlan or
Aircraft.flightPlan.cargo in the test, then the rule does not execute (even though those associations
are not referenced in the Rulesheet's Conditions section). However, if the associations exist but the attribute
Aircraft.flightPlan.cargo.volume is null, then the rule does fire partially. All the Aircraft values are
computed, but the weight is not computed from the null value of the attribute.

How to initialize null attributes
Attributes that are used in calculations must have a non-null value to prevent test rule failure. More specifically,
attributes used on the right-hand-side of equations (that is, an attribute on the right side of an assignment
operator, such as = or +=) are initialized prior to performing calculations. It is not necessary for attributes on
the left-hand-side of an equation to be initialized – they are assigned the result of the calculation. For example,
when you calculate Force=Mass*Acceleration, you must provide values for Mass and Acceleration. Force is
the result of a valid calculation.

Initialization of attributes is often performed in Nonconditional rules, or in rules expressed in Rulesheets that
execute beforehand. That was often because an attribute that was set to Transient mode could not be added
as input to Ruletests. The limitation was removed: You can add Transients to the Input column of a Ruletest.
Then, as stated, you must provide a value to such attributes in their input locations in Ruletests to enable valid
firing of the rule.

How to handle nulls in compare operations
Unless the application that formed the request ensured that a value was provided before submission, one (or
both) of the attributes used in a comparison test might have a null value. You might need to define rules to
handle such cases. An example that describes the workaround for these cases uses the following Vocabulary:

Here are two scenarios:

1. Two dates are passed from the application and one of them is null. When given the rule ‘[If
FilingUnit.theDate is null] or [[FilingUnit.theDate = Null] and
[FilingUnit.theDate >= Person.theDate]]’, then the appropriate action triggers.

2. In Actions, one date value is set to another date's value that happens to be null. If the date is null, then it is
used in the subsequent Rulesheets in their Conditions section. However, because the value is null, a warning
is generated in the Corticon logs.

335Progress Corticon: Rule Modeling: Version 6.3

Use Corticon Studio to reproduce the behavior

For the first scenario, the logic in subsequent Rulesheets needs to determine whether a value is null, so it can
apply appropriate actions. The following Rulesheet shows that you can avoid the error message by only setting
the preferred date when you have a non-null filing date or person date.

Note: If null values would prevent subsequent rules from continuing reasonable further processing, then
perhaps validation sheets should be used before rule processing to check the data, and then terminate execution
of the decision if the data is bad. That could be accomplished by setting an attribute that can be tested in the
filter section of subsequent Rulesheets. Then, every subsequent Rulesheet is assured of dealing only with
clean data.

For the scenario where both values being compared are null, you could set the resulting value to a default
value or to null, as shown:

Progress Corticon: Rule Modeling: Version 6.3336

Chapter 13: Troubleshooting Corticon Studio problems

As highlighted, Rule 3 explicitly sets the preferred date to null when both incoming dates are null.

Studio license expiration
If your license indicates that it has expired, contact your Progress Corticon representative to obtain an updated
license file. Corticon Studio alerts the user at startup, and then limits functionality:
Figure 232: License expiration alert at Studio startup

How to compare and report on Rulesheet differences
When the execution of your rules is not producing the expected results and your not sure what changed,
Corticon Studio provides difference reports to help identify changes. Two versions of a Rulesheet can have
modest changes, yet it can be difficult to see all the differences during a visual inspection of the two Rulesheets.
Reporting about differences between Rulesheets provides help in debugging mistaken rule changes, and
inconsistent rule definitions, for example:

• Diagnosing a Ruletest failure: When a Ruletest fails because of changes in newer Rulesheets, you can
use Rulesheet difference reports to determine what changed, and then make changes to a Rulesheet to fix
bad rules, or to indicate changes to make to your Ruletest expected results.

• Resolvingmerge conflicts: When using a source control system such as git, you may encounter situations
where you want to commit a Rulesheet that someone else has changed, and discover a merge conflict.
Using Rulesheet difference analysis and reports, you can see what changed and decide how to manually
merge the differences so you can commit your changes.

To compare two versions of a Rulesheet:

1. Right-click within a Rulesheet, and then choose the menu command Compare Rulesheets.

2. The Compare Rulesheets dialog box opens, as shown:

337Progress Corticon: Rule Modeling: Version 6.3

Studio license expiration

Rulesheet 1 is the Rulesheet currently in the editor.

3. Locate Rulesheet 2, a variation of Rulesheet 1, typically produced earlier in development or by another
developer.

4. Choose a preferred Report Type.

5. Choose a preferred Report Style: The CSS stylesheet to use for the report. The basic stylesheets are
Corticon Blue and Corticon Green.

6. Choose a preferredOutput Folder: The location where the report will be stored on disk. The default location
is [CORTICON_WORK_DIR]/Studio/Reports. You can create a root location such as
C:\CorticonStudioReports and then append subfolder names to sort out your projects, tasks, clients,
or versions.

7. Click Finish.

Customized difference reports
Advanced users might want to create alternative report types and styles:

• The type files are located at [CORTICON_WORK_DIR]\Studio\Reports\XSLT\ in folders according to
the asset types. You can copy the files to use as templates or change them to create report types that are
then offered in the Report Type drop-down list for the asset type.

• The style files are located at [CORTICON_WORK_DIR]\Studio\Reports\CSS\. You can copy a stylesheet
file to use as a template to create custom report styles that are then offered in the Report Style drop-down
list.

Reading a differences report
The Rulesheet difference report evaluates what's changed -- additions, deletions, and modifications as well as
items set as disabled. Presentation differences—colors, fonts, natural language, and widths—between the
Rulesheets are ignored.

A report lists all the data in both Rulesheets. Items that are the same in both Rulesheets are not highlighted
while those that are different are highlighted. The reason could be because the item changed. These need to
be researched to see if they pair with an item on the other Rulesheet that has a variation of the item in that
location.

Progress Corticon: Rule Modeling: Version 6.3338

Chapter 13: Troubleshooting Corticon Studio problems

Examples of how differences are reported
The following examples use the basic tutorial's Cargo Rulesheet as the Rulesheet to which variations are
compared:

Example: Extra condition

Conditions a and b are matched; however, Rulesheet 2 has an extra Condition, c.

339Progress Corticon: Rule Modeling: Version 6.3

How to compare and report on Rulesheet differences

Example:One match that is in sequence and one that is out of sequence

There are a few differences illustrated in this example:

• In-sequence match: Condition c in Rulesheet 1 matches condition b in Rulesheet 2.

• Out-of-sequence match: Condition d in Rulesheet 1 is marked as different because Condition a in Rulesheet
2 is out of sequence, and is marked as different.

• Extra: Condition: c in Rulesheet 2 is extra, and therefore different.

• Empty Condition Rows: Rulesheet1 has two empty Condition rows a and b are highlighted.

Progress Corticon: Rule Modeling: Version 6.3340

Chapter 13: Troubleshooting Corticon Studio problems

Example: A Condition is disabled

When the state of the condition is different, the conditions are matched, but marked as different, as shown.
Condition c is disabled in Rulesheet 1; it is highlighted but matched.

TestYourself questions for Troubleshooting rulesheets
and ruleflows

Note: Try this test, and then go to TestYourself answers for Troubleshooting rulesheets on page 360 to correct
yourself.

1. reproduce the behavior in a Corticon Studio as when executed on ___________.Troubleshooting is based
on the principle that Rulesheets behave the same way when tested in

2. Troubleshooting is based on the principle that Rulesheets behave theThe first step in troubleshooting a
suspected rule problem is to reproduce the behavior in a Corticon Studio _________ (test).

3. If the Rulesheet executes correctly in Corticon Studio, then where does the problem most likely occur?

4. Which of the following problems requires you to contact Progress Corticon Support for help?

Expired LicenseReactor ErrorNull Pointer ExceptionFatal Error

341Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Troubleshooting rulesheets and ruleflows

5. The specific rule where execution behavior begins acting abnormally is called the _____________.

6. True or False. When a rule fires, some of its Actions may execute and some may not.

7. What Corticon Studio tools help you to identify the Rulesheet's breakpoint?

8. Rulesheet is __________.

9. A disabled rule:

a. Executes in a Corticon Studio Test but not on the Corticon Server

b. Executes on the Corticon Studio but not in a Corticon Studio Test

c. Executes in both Corticon Studio Tests and on the Corticon Server

d. Executes neither in a Corticon Studio Test nor on the Corticon Server

10.Where are the Corticon Studio logging features set?

11.Where are the Corticon Studio override properties set?

12. True or False. The Corticon Server license file needs to be located everywhere the Corticon Server is
installed.

13. If you are reporting a possible Corticon Studio bug to Corticon Support, what minimum information is needed
to troubleshoot?

14.Which of the following cannot be disabled?

a. a Condition row

b. an Action row

c. a Filter row

d. a leaf of the Scope tree

e. a Nonconditional row (that is, an Action row in Column 0)

f. a rule column

g. a Rulesheet

h. a Ruleflow

Progress Corticon: Rule Modeling: Version 6.3342

Chapter 13: Troubleshooting Corticon Studio problems

A
Studio properties and settings

Corticon Studio provides properties that specify property names and default values of user-configurable
behaviors.

The settings file brms.properties is installed at the root of [CORTICON_WORK_DIR] for each Corticon
Studio installation. If you install Corticon Studio and Corticon Server on one machine and accept the default
colocating paths, one brms.properties file is installed to be shared by Studio and Server:

343Progress Corticon: Rule Modeling: Version 6.3

About the brms.properties file
• It is good practice to back up the file before you start to make changes.

• When installed separately, the Studio and Server brms.properties files are identical.

• If you delete the file, it does not get re-created if you restart. However, because these are overrides to
default properties, there is no loss of features or functionality when the file is not present.

• In the absence of a brms.properties file, you can simply list the property settings in a text file, and then
save it to its proper location as brms.properties.

• An update of the installation preserves a modified brms.properties file, and adds the default file if none
is present.

Enabling settings listed in the default brms.properties file
The file lists properties that users commonly want to change. Each group of properties provides descriptive
comments and the commented default name=value pair.

To specify a preferred value for a listed property, edit the file, remove the# tag from the beginning of a property's
line, and then add your preferred value after the equals sign (=). For example, to express a preference for
decimal values displayed and rounded to two places instead of the six places preset for this property, locate
the line:

#decimalscale=6

Change the line to:

decimalscale=2

Add unlisted settings to brms.properties file
Some locations in the documentation tell you about other property settings that you might want to add to the
settings file. Or, you might be directed by technical support or your Progress representative to add or change
settings to provide certain behaviors or functions.

For example, to change the interval of diagnostic readings from five minutes to two minutes, add the following
line to the brms.properties file—it does not matter where in the file as long as it is on a separate line:

com.corticon.server.DiagnosticWaitTime=120000

If you add the same property more than once in the settings file, the last instance takes precedence.

Save and apply the revised Studio property settings
When your changes are complete, you can choose to save the settings file with its default name and location,
but you could save a copy with a useful name, such as debuggingLogSettingsbrms.properties.

Progress Corticon: Rule Modeling: Version 6.3344

Appendix A: Studio properties and settings

In Studio, you can save multiple settings files, and then use Studio's Preferences to specify the Override
Properties File for the brms.properties file to use, as shown:

Note: The overrides and license specified are stored in the Studio Workspace. If you change the Workspace,
then those overrides or defaults take effect.

For the revised settings to take effect, save the edited file, and then restart the Corticon Studio.

Note: Property settings you list in your brms.properties file replace the corresponding properties that have
default settings. They do not append to an existing list. For example, if you want to add a new DateTime mask
to the built-in list, be sure to include all the masks you intend to use, not just the new one. If your
brms.properties file contains only the new mask, then it is the only mask that Corticon uses.

The following properties are settings you can apply to your Corticon Studio installation by adding the properties
and appropriate values as lines in its brms.properties file, and then restarting Studio.

GENERAL
Decimal scale sets the default precision for Decimal values. All Decimal values are rounded to the specified
number of decimal places. The default value is 6. For example, 4.6059556 is rounded, displayed, and returned
as 4.605957. In the brms.properties file, set the Studio Test's decimal scale:

decimalscale=2

When the Decimal scale is set to 2, the rounded value is 4.61.

--

To property sets the default character encoding for objects, such as Vocabulary, Rulesheet, and Ruletest XML
files. Examples: UTF-8, UTF-16, ISO-8859-1, US-ASCII. Default value is UTF-8.

com.corticon.encoding.standard=UTF-8

345Progress Corticon: Rule Modeling: Version 6.3

Control of cross-asset validation behavior. The default setting, false, causes cross-asset validation to occur
immediately whenever any change is made. Consider an example where a Vocabulary Editor and three
associated Rulesheet Editors are open simultaneously. If this setting is false, a Vocabulary update will cause
the Rulesheets to revalidate themselves in real time. This dynamic validation provides instant feedback but
carries a performance cost. The alternative setting, true, causes cross-asset validation to be deferred until the
associated editor is activated. In the prior example, a Vocabulary update will trigger only Vocabulary validation
rules. Rulesheet Editors will not automatically revalidate themselves until they are activated. This setting can
improve performance at the expense of immediate feedback. Default value is false.

com.corticon.resource.validate.on.activation=false

RULESHEETS
Specifies the number of rows that are added to the end of a Rulesheet section when Rulesheet > Add Rows
to End is selected from the Corticon Studio menubar or popup menu. Default is 10.

com.corticon.designer.corticon.insertrowstoend=10

--

Specifies the number of columns that are added to the end of a Rulesheet section when Rulesheet > Add
Columns to End is selected from the Corticon Studio menubar or popup menu. Default is 10.

com.corticon.designer.corticon.insertcolumnstoend=10

--

When there are any null attributes on the right hand side of a clone assignment expression, the assignment
does not occur because it will not override the cloned value. If the null result is preferred, add this property set
to true so that the null checks are removed. Be aware that using this setting on a Studio machine should be
applied on any other machine that will work on a related project, and that Decision Services created when the
property is true have the setting embedded in the Decision Service. Default is false.

com.corticon.reactor.rulebuilder.DisableNullCheckingOnClone=false

--

RULETESTS
Specifies how the Rule Messages are displayed in the Tester after execution based on the data in the columns.
The options are ExecutionOrder, Severity, and Entity. Default value is ExecutionOrder.

com.corticon.tester.result.messages.sorting=ExecutionOrder

Option to specify howmany variable substitutions could be applied to an ADCPreparedStatement. The restriction
on how many PreparedStatement variables is controlled by the Database Driver. Different Databases have
different maximums.

Default value is 1000

com.corticon.server.adc.preparedstatements.maxvariables=1000

Specifies whether String attribute values should be trimmed in the Tester Expected tree. When set to false,
suppresses trimming of leading and trailing whitespaces.

Progress Corticon: Rule Modeling: Version 6.3346

Appendix A: Studio properties and settings

Default value is true.

com.corticon.tester.trimstringvalues=true

By default, Corticon Studio uses the Corticon Server’s REST API to run ruletests against a remote server. You
can change this property to use the SOAP API by setting the following property to XML. Note that setting this
property to XML will disable the Rule Trace Viewer. Default value is JSON:

com.corticon.tester.ccserver.execute.format=JSON

When using the SOAP API and testing against an IIS server you also need to set this property for Corticon
Studio (Default value is JAVA):

com.corticon.studio.client.soap.clienttype=IIS

Sets the Studio Test's XML messaging style:Hier (hierarchical), Flat, or AutodetectDefault value is Hier.

com.corticon.designer.tester.xmlmessagingstyle=Hier

RULEFLOWS: Packaging
Corticon Studio uses the following properties when compiling assets into a Decision Service through the
“Package and Deploy” wizard. (Corticon Server utilities also use these properties when compiling a Decision
Service.)

Compile option: This property lets you configure memory settings for compiling the Rule Assets into an EDS
file.

Default value is -Xms256m -Xmx1g

com.corticon.ccserver.compile.memorysettings=-Xms256m -Xmx1g

Compile option: Add the Rule Asset's Report to the compiled EDS file. By having the Report inside the EDS
file, any user can get the report for a deployed Decision Service through an in-process or a SOAP call to the
Corticon Server. Including the Report in the EDS file will increase the EDS file significantly.

Default value is false

com.corticon.server.compile.add.report=true

Compile option: Add the Rule Asset's WSDL to the compiled EDS file. By having the WSDL inside the EDS
file, any user can get the WSDL for a deployed Decision Service through an in-process or a SOAP call to the
Corticon Server. Including the WSDL in the EDS file will increase the EDS file significantly.

Default value is false

com.corticon.server.compile.add.wsdl=true

347Progress Corticon: Rule Modeling: Version 6.3

Note: In prior releases, the default action was to automatically produce the WSDL and reports to add to the
EDS. Given the techniques to produce WSDL and reports without having them in the EDS, the option to
suppress the WSDL and reports in packaging unless explicitly requested, results in smaller packages and
better compilation performance.

GRAPHIC VISUALIZER
Sets the font type and size used by the Graphic Visualizer. Default values are Helvetica-Narrow.ttc and
9, respectively.

com.corticon.crml.CrmlGraphVisualizer.fontname=Helvetica-Narrow.ttc
com.corticon.crml.CrmlGraphVisualizer.fontname.ja=msgothic.ttc
com.corticon.crml.CrmlGraphVisualizer.fontsize=9

Progress Corticon: Rule Modeling: Version 6.3348

Appendix A: Studio properties and settings

B
Answers to TestYourself questions

Check out your results from the tests at the end of each section.

For details, see the following topics:

• TestYourself answers for Building the vocabulary

• TestYourself answers for Rule scope and context

• TestYourself answers for Rule writing techniques and logical equivalents

• TestYourself answers for Collections

• TestYourself answers for Rules containing calculations and equations

• TestYourself answers for Rule dependency and inferencing

• TestYourself answers for Filters and preconditions

• TestYourself answers for Recognizing and modeling parameterized rules

• TestYourself answers for Writing rules to access external data

• TestYourself answers for Logical analysis and optimization

• TestYourself answers for Ruleflow versioning and effective dating

• TestYourself answers for Troubleshooting rulesheets

349Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Building the vocabulary
Show me this set of test questions.

1. Any three of the following:

a. Provides terms that represent business “things”

b. Provides terms that are used to hold transient (temporary) values within Corticon Studio

c. Provides a federated data model that consolidates entities and attributes from various enterprise data
resources

d. Provides a built-in library of literal terms and operators that can be applied to entities and attributes

e. Defines a schema that supplies the contract for sending data to and from a Corticon Decision Service

2. False. The Vocabulary may include transient terms that are used only in rules and that don’t exist in the
data model.

3. False. Terms in the data model that are not used by rules do not need to be included in the Vocabulary.

4. False. A Vocabulary may be created before its corresponding object or data model exists.

5. The Vocabulary is an abstract model, meaning many of the real complexities of an underlying data model
are hidden so that the rule author can focus on only those terms relevant to the rules.

6. The UML model that contains the same types of information as a Vocabulary is called a Class Diagram

7. Entities, Attributes, Associations

8. hairColor

9. yellow

10. Attributes

11. Boolean, DateTime, Decimal, Integer, String

12. blue and yellow

13. orange and yellow

14. A Transient Vocabulary term is used when the term is needed to hold a temporary value that is not required
to be stored in external data.

15. Associations are bidirectional by default

16. cardinality

17.

18.

19. Target.source.attribute

20. target

21.

Progress Corticon: Rule Modeling: Version 6.3350

Appendix B: Answers to TestYourself questions

22.

23. Design vocabulary, identify terms, separate terms, assemble and relate terms, diagram vocabulary model
in Studio

24. a

25. operators

26. Rule Language Guide

27. False. Custom Data Types must be based on the 7 base data types. They extend the 7 base data types.

28. b. May match other Custom Data Type Names

29. True

30. value < 10

31. True

32. No

33. 'Airbus'

34. Attribute values are pre-populated in drop-down lists based on the enumerated values.

35. Allow you to re-use entities by bundling or creating a subset within the Vocabulary. (Technically equivalent
to packages in Java or namespaces in XML.)

36. True

37. True

38. All entities have native attributes, but Bicyle = 100% native. The others have 1 native attribute each and
3 inherited. Entities with inherited attributes are MountainBike, RoadBike, TandemBike

39. cadence, gear, or speed

40. True

TestYourself answers for Rule scope and context
Show me this set of test questions.

1. 7 root-level entities are present

2. All terms are allowed except DVD.actor

351Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Rule scope and context

3. Movie.supplier

4. Movie.oscara.

b. Movie.roles

c. Actor.roles

d. DVD.supplier

e. Movie.dVD.extras

f. Actor.roles.movie.oscar

5. Actor.roles.movie

6. Since the association between Actor and Role is bidirectional, you can use both Actor.roles and
Roles.actor in our rules.

7. Movie and Award

8. From Movie to Award: goldenGlobe and oscar. From Award to Movie: two unique role names exist
for this perspective too, but are not visible in the Vocabulary diagram.

9. The Award entity could be split into two separate entities, or an attribute could be added to Award to identify
the type of award.

10. Using roles helps to clarify rule context.

11. unique

12. True

13. All examples shown are Boolean expressions

14. You can use Movie if it is the root term, or DVD.movie if DVD is the root term The root term can either be
Movie or DVD. No conditions in the rule prevent either one from being the root term

15. You can use Movie.dVD if Movie is the root term, or DVD if it is the root term. The root term can either be
Movie or DVD. No conditions in the rule prevent either one from being the root term

16. False. Both Movie and DVD terms in this example are root terms with no relationship to each other.

17. Once for the Movie satisfying the rule conditions and its associated DVD

18. Twice: once for each DVD (that is, the cross product of the DVDs and the Movies satisfying the rule conditions)

19. Higha.

b. Low

c. Low for each DVD

d. Twice: once for each DVD

e. Four: each of the 2 rules fired 2 times

f. cross product

g. no, each rule should only fire once for the DVD associated with the Movie

h. change the Movie and DVD terms to share the same scope, starting either with Movie as the root term
(Movie and Movie.dVD) or DVD as the root term (DVD and DVD.movie)

20. False. Aliases are only required to be used in certain circumstances, but they can be used at any time and
provide a good way of simplifying rule expressions.

21. Scope is another way of defining a specific context or perspective in the Vocabulary

Progress Corticon: Rule Modeling: Version 6.3352

Appendix B: Answers to TestYourself questions

22. Be updated

23. False. Each alias must be unique and cannot have the same spelling as any term in the Vocabulary.

TestYourself answers for Rule writing techniques and
logical equivalents

Show me this set of test questions.

1. Preconditions act as master rules for all other rules in the same Rulesheet that share the same scope

2. An expression that evaluates to a True or False value is called a Boolean expression.

3. True

4. False. The requirement for complete Values sets only applies to Condition rows.

5. The special term other can be used to complete any Condition row values set.

6. not

7. {T, F}

8. All except Entity.boolean=F are equivalent; however, some expressions are more clear than others!

9. Entity.boolean is probably the best choice because it is the simplest and most straightforward. The
other two choices use double negatives which are harder for most people to understand.

10. OK as isa.

b. If the value range is supposed to contain Integer values, then a does not belong. If the range is supposed
to contain String values then 1 and a need to be surrounded by single quotes as in {‘1’..’a’, other}

c. The special word other can’t be used as a range endpoint.

d. The range contains overlaps between 5 and 10, but this is acceptable in v5.

e. The range contains an overlap at 10, but this is acceptable in v5.

f. This is an incomplete set and should be {‘red’, ‘green’, ‘blue’, other}

g. The range contains overlaps between 3 and 15, but this is acceptable in v5.

11. False. The term other may not be used in Action row Values sets since Actions can only assign specific
values.

12. The Rulesheet would be modeled as shown:

353Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Rule writing techniques and logical equivalents

13. True

14. False. Nonconditional rules are governed by preconditions on the same Rulesheet only if they share the
same scope as the preconditions.

TestYourself answers for Collections
Show me this set of test questions.

1. Children of a Parent entity are also known as elements of a collection.

2. False. A collection can contain root-level entities.

3. True

4. True

5. Refer to the Rule Language Guide for a full list and description of all collection operators.

6. Rule Language Guide

7. Order total is equal to the sum of the line item prices on the order.

8. Items

9. one-to-many (1->*)

10. It is not an acceptable replacement because the use of any collection operator requires that the collection
be represented by an alias.

11. Set the navigability of the association between Order and LineItem to Order->lineItem. In other words,
make the association one-directional from Order to LineItem.

12. Optional, convenient

13. A collection alias is not required in this case because no collection operator is being applied to the collection.

14. ->forAll

15. ->exists

Progress Corticon: Rule Modeling: Version 6.3354

Appendix B: Answers to TestYourself questions

16. aroles ->size > 3 where aroles is an alias for Actor.rolesa.

b. mdvd ->isEmpty where mdvd is an alias for Movie.dVD

c. mdextras ->exists(deletedScenes=T) where mdextras is an alias for Movie.dVD.extras

d. mgglobes ->exists(win=T) where mgglobes is an alias for Movie.goldenGlobe

e. mroles ->size > 15 where mroles is an alias for Movie.roles

f. mdvd.quantityAvailable ->sum >= 100 where mdvd is an alias for Movie.dVD

g. mdvd.quantityAvailable ->sum < 2 where mdvd is an alias for Movie.dVD

h. mdsuppliers ->size > 1 where mdsuppliers is an alias for Movie.dVD.supplier

17. Actor, Distributor, DVDExtras

18. Actor, Movie

19. The ->forAll operator tests whether all elements of a collection satisfy a condition. The ->exists
operator tests whether at least one element of a collection satisfies a condition.

20. The ->notEmpty operator tests whether a collection is not empty, meaning there is at least one element
in the collection. The ->isEmpty operator tests whether a collection is empty, meaning there are no
elements in the collection.

21. To ensure that the system knows precisely which collection (or copy) you are referring to in your rules,use
a unique alias to refer to each collection.

TestYourself answers for Rules containing
calculations and equations

Show me this set of test questions.

1. comparison in Preconditions and Conditions, assignment in Nonconditionals and Actions

2. The results of the equations are:

a. 10

b. 13

c. 22

d. 24

e. 0

3. This assignment is not valid because an Integer attribute cannot contain the digits to the right of the decimal
point in a Decimal attribute value.

4. The data types are:

a. Integer

b. String

c. Boolean

d. Decimal

e. Boolean

355Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Rules containing calculations and equations

f. Boolean

g. Boolean

5. The validity of the assignments are:

a. valid

b. invalid

c. valid

d. valid

e. valid

f. invalid

g. valid

6. The part of Corticon Studio that checks for syntactical problems is called the Parser.

7. False. Although the Parser in Corticon Studio is very effective at finding syntactical errors, it is not perfect
and cannot anticipate all possible combinations of the rule language.

8. This Filter tests if the difference between the current year and the year a movie was released is more than
10 years.

9. This Condition tests if the total quantity of DVDs available divided by the number of DVD versions of a movie
is less than or equal to 50,000 or greater than 50,000. This same calculation could be performed by using
the ->avg operator.

10. If the average quantity available of a DVD is greater than 50,000 for a movie that is more than 10 years old,
then flag the movie with a warning.

11. The sections of a Rulesheet that accept equations and calculations are:

a. Scope: False

b. Rule statements: False

c. Condition rows: True

d. Action rows: True

e. Column 0: True

f. Condition cells: False

g. Action cells: False

h. Filters: True

TestYourself answers for Rule dependency and
inferencing

Show me this set of test questions.

1. Inferencing involves only a single pass through rules while looping involves multiple passes.

2. A loop that does not end by itself is known as an infinite loop.

3. A loop that depends logically on itself is known as a single-rule or trivial loop.

Progress Corticon: Rule Modeling: Version 6.3356

Appendix B: Answers to TestYourself questions

4. False. The Rulesheet must have looping enabled in order for the loop detector to notice mutual dependencies.

5. False. The Check for Logical Loops tool can only detect and highlight loops, not fix them.

6. No, looping is neither required nor wanted for these rules. Normal inferencing will ensure the correct sequence
of execution of these rules.

7. Yes, having this Rulesheet configured to Process All Logical Loops enables an infinite loop between rule
1 and rule 2 for DVDs meeting the conditions for that rule.

8. Rule 1 would change the DVD’s price tier value to Medium, and then rule 2 and rule 1 would execute in an
infinite loop, incrementing the DVD’s quantity available by 25,000 repeatedly until terminating after the
maxloop property setting number of iterations.

9. Process all logical loops

10. Process multi-rule loops only

11. A dependency network determines the sequence of rule execution and is generated when a Rulesheet is
saved.

TestYourself answers for Filters and preconditions
Show me this set of test questions.

1. True

2. False - precondition behavior is optional

3. True - a filter will only “apply” to other rules that share the same scope. This means that other rules acting
on data outside the filter's scope will be unaffected.

4. AND'ed

5. False. Preconditions/Filters are not stand-alone rules.

6. c

7. a

8. No

9. True

10. full

11. full filter only

12. precondition AND full filter

13. f and d

14. a

15. Oscars:

a. Movie 1; DVD 1; Oscars 1, 2, 3, 4, 5

b. Movie 1; DVD 1; Oscars 1, 2, 3, 4, 5

c. Movie 1; DVD 1; Oscar 2

d. Movie 1; DVD 1; Oscars 1, 2, 3, 4, 5

e. Movie 1; DVD 1; Oscars 1, 2

f. none

357Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Filters and preconditions

g. none

h. Movie 1; DVD 1; Oscars 1, 2, 3, 4, 5

i. Movie 1; DVD 1; Oscars 1, 2, 3, 4, 5

j. Movie 1; DVD 1; Oscars 1, 2, 3, 4, 5

k. none

l. Movie 1; DVD 1; Oscars 1, 2, 3, 4, 5

m. none

n. none

o. Movie 1; DVD 1; Oscars 1, 2, 3, 4, 5

TestYourself answers for Recognizing and modeling
parameterized rules

Show me this set of test questions.

1. When several rules use the same set of Conditions and Actions, but different values for each, we say that
these rules share a common pattern.

2. Another name for the different values in these expressions is parameter.

3. False. It is usually easier to model them as Conditions and Actions that use values sets.

4. You may accidentally introduce ambiguities into your rules.

5. X customers buy more than $Y of product each year

6. Type of customer: {‘Platinum’, ‘Gold’, ‘Silver’, ‘Bronze’} and spend amount:
{25000..50000, (50000..75000], (75000..10000], >100000}. Depending on how the rules
are modeled, one of these values sets will be part of a Condition and should be completed with the special
word other.

7. These parameters can bemaintained in the values sets of an individual Rulesheet, which is easy to perform,
but makes reuse more difficult. They can be maintained as Custom Data Types (Enumerated) in the
Vocabulary, which makes reuse easier.

TestYourself answers for Writing rules to access
external data

Show me this set of test questions.

1. Rule scope determines which data is processed during rule execution.

2. So a database-enabled Rulesheet does not inadvertently retrieve all the corresponding data in a database,
which could be a lot of data!

3. It is extended to the database.

4. True. Only root-level entities need to be extended. All other entities are extended automatically because
their scope is reduced enough to not be as concerned about massive amounts of retrieved data.

Progress Corticon: Rule Modeling: Version 6.3358

Appendix B: Answers to TestYourself questions

5. See the Data Integration Guide.

6. No. In general, the rule modeler does not need to worry about where data is stored.

7. Yes. The exception is when rules are written using root-level terms. If the Rulesheet is database-enabled,
then these root-level terms may need to be extended to the database.

TestYourself answers for Logical analysis and
optimization

Show me this set of test questions.

1. They have the same Conditions but different Actions.

2. All combinations of possible values from the Conditions' values sets are covered in rules on the Rulesheet.

3. No, not all ambiguous rules are wrong or need to be resolved before deployment. Ambiguities can exist in
Rulesheets when there are rules that are completely unrelated to each other. In those cases, it may be
appropriate for both rules to fire if the Conditions for both are met.

4. No, not all incompletenesses are wrong or need to be resolved before deployment. Incomplete Rulesheets
may be missing combinations of Conditions that cannot or should not occur in real data. In those cases,
rules for such combinations may not make sense at all.

5. Conflict Checker: second icon; Compression Tool: fifth icon; Expansion Tool: first icon; Collapse Tool: third
icon; Conflict Filter: sixth icon.

6. An ambiguity can be resolved by making the Actions match for both rules, or by setting an override for one
of the rules.

7. False. Defining an override does not specify an execution sequence, but rather specifies that the rule with
the override always fires instead of the rule being overridden when the Conditions they share are satisfied.

8. False. The Completeness Checker auto-completes the Condition's value set prior to inserting missing
rules. This ensures that the Rulesheet, post-application of the Completeness Check, is truly complete.

9. The Completeness Checker detects Rulesheet incompleteness caused by an incomplete values set because
it automatically completes the value set before inserting missing columns.

10. Yes. One rule can override multiple other rules by holding the Ctrl key to multi-select overrides from the
drop-down.

11. No, overrides are not transitive and must be specified directly between all applicable rules.

12. No, rules created by the Completeness Checker may be made up of combinations of Conditions that cannot
or should not occur in real data. In those cases, rules for such combinations may not make sense at all.

13. A dash specifies that the Condition should be ignored for this rule.

14. False. The Expansion Tool merely expands a Rulesheet so that all subrules are visible. The results can be
reversed by using the Collapse Tool.

15. True. It may be reversible using Undo, or by manually removing redundant subrules after expansion.

16. 64 (4 x 4 x 4)

17. It is not necessary to assign actions for a rule column if that combination of conditions cannot or should not
exist in real data. It is a good practice to disable columns added by the Completeness Check that you
determine need no Actions.

18. They can be disabled, deleted, or left as-is with no Actions (but being left as-is is not recommended because
it will cause activity that can impact performance).

359Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Logical analysis and optimization

19. Compression Tool

20. The compression performed by the Completeness Checker is designed to reduce a large set of missing
rules into the smallest set of non-overlapping columns, while the compression performed by the Compression
Tool is designed to reduce the number of rules into the smallest set of general rules (i.e. create columns
with the most dashes).

21. Even very large databases may not contain all possible combinations of data necessary to verify Rulesheet
completeness. In short, the databases may be incomplete themselves.

22. Renumber the rules and potentially ask you to consolidate Rule Statements if duplicate row numbers result
from the renumbering.

23. Subsumation occurs when the Compression Tool detects that a more general rule expression includes the
logic of a more specific rule expression. In this case, the more specific rule can be removed.

TestYourself answers for Ruleflow versioning and
effective dating

Show me this set of test questions.

1. False. Ruleflow Effective and Expiration dates may be assigned singly.

2. False. Ruleflow Effective and Expiration dates may be assigned singly.

3. False. Ruleflow Version numbers are optional.

4. Ruleflow > Properties, or click on the Properties window in Corticon Studio.

5. False. A Ruleflow Version number can only be raised, not lowered.

6. False. Ruleflow Effective and Expiration dates are optional.

TestYourself answers for Troubleshooting rulesheets
Show me this set of test questions.

1. Troubleshooting is based on the principle that Rulesheets behave the same way when tested in Corticon
Studio as when executed on Corticon Server.

2. The first step in troubleshooting a suspected rule problem is to reproduce the behavior in a Corticon Studio
Ruletest.

3. In the integration with Corticon Server.

4. All of them!

5. The specific rule where execution behavior begins acting abnormally is called the breakpoint.

6. True. Partial rule firing is allowed.

7. Disabling Rulesheets; Filters, Nonconditions, Conditions, Action rows; or rule columns

8. A dark gray-colored Rulesheet tab indicates that Rulesheet has been disabled.

9. d

10. In the brms.properties file at [CORTICON_WORK_DIR] root.

11. In the brms.properties file at [CORTICON_WORK_DIR] root.

Progress Corticon: Rule Modeling: Version 6.3360

Appendix B: Answers to TestYourself questions

12. True.

13. Vocabulary (.ecore), Rulesheet (.ers), and a Ruletest (.ert) and the Ruleflow (.erf) if any. We also
need to know the Corticon Studio version you are using.

14. d and h

361Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Troubleshooting rulesheets

Progress Corticon: Rule Modeling: Version 6.3362

Appendix B: Answers to TestYourself questions

	Copyright
	Table of Contents
	Introduction to Corticon rule modeling
	Build the Vocabulary
	Generate a Vocabulary
	Use JSON Schema to generate a vocabulary
	Use JSON to generate a vocabulary

	Build a Vocabulary by hand
	Step 1: Design the Vocabulary
	Step 2: Identify the terms
	Step 3: Separate the generic terms from the specific
	Step 4: Assemble and relate the terms
	Step 5: Diagram the Vocabulary
	Step 6: Model the Vocabulary in Corticon Studio

	Populate a Vocabulary from a Datasource
	Step 1: How Datasources are transformed into a Corticon Vocabulary
	Step 2: The Vocabulary generation process for RDBMS sources
	Step 3: The Vocabulary generation process from REST sources
	Step 4: Verify and update the generated Vocabulary

	Extend a Vocabulary
	Custom Data Types
	Constraint Expressions
	How to use non-enumerated Custom Data Types in Rulesheets and Ruletests

	Enumerations
	How enumeration labels and values behave
	Enumerations defined in the Vocabulary
	Enumerations retrieved from a database

	How to use Custom Data Types
	Use Custom Data Types in a Vocabulary
	Use enumerated Custom Data Types in Rulesheets
	Use enumerated Custom Data Types in Ruletests
	Use IN operator with an enumerated list

	How to relax enforcement of Custom Data Types

	Domains
	Domains in a Rulesheet
	Domains in a Ruletest

	Support for inheritance

	TestYourself questions for Build the vocabulary

	Rule scope and context
	Rule scope
	Aliases
	Scope and perspectives in the vocabulary tree
	How to use roles
	Technical aside

	TestYourself questions for Rule scope and context

	Rule writing techniques
	How to work with rules and filters in natural language
	Filters versus conditions
	Qualify rules with ranges and lists
	Ranges and lists in conditions and filters
	Value ranges in condition and filter expressions
	Value lists in condition and filter expressions

	Ranges and value sets in condition cells
	Boolean condition versus values set
	Exclusionary syntax
	How to use other in condition cells

	Numeric value ranges in conditions
	String value ranges in condition cells
	Value sets in condition cells
	Variables as condition cell values
	DateTime, date, and time value ranges in condition cells
	Inclusive and exclusive ranges
	Value ranges that overlap
	Alternatives to value ranges

	How to use standard Boolean constructions
	How to embed attributes in posted rule statements
	How to include apostrophes in strings
	TestYourself questions for Rule writing techniques and logical equivalents

	Collections
	How Corticon Studio handles collections
	How to visualize collections
	A basic collection operator
	How to filter collections
	How to use aliases to represent collections
	Sorted aliases
	Advanced collection sorting syntax
	Statement blocks
	Using sorts to find the first or last in grandchild collections
	Singletons
	Special collection operators
	Universal quantifier
	Existential quantifier
	Another example using the existential quantifier

	Aggregations that optimize EDC database access
	TestYourself questions for Collections

	Rules containing calculations and equations
	Operator precedence and order of evaluation
	Data type compatibility and casting
	Data type of an expression
	Defeating the parser
	Manipulating data types with casting operators

	Supported uses of calculation expressions
	Calculation as a comparison in a precondition
	Calculation as an assignment in a noncondition
	Calculation as a comparison in a condition
	Calculation as an assignment in an action

	Unsupported uses of calculation expressions
	TestYourself questions for Rules containing calculations and equations

	Rule dependency in chaining and looping
	Forward chaining
	Rulesheet processing modes of looping
	Types of loops

	Looping controls in Corticon Studio
	How to identify loops
	The loop detection tool
	How to remove loops
	How to terminate infinite loops

	Looping examples
	Determine the next working day when given a date
	Remove duplicated children in an association

	How to use conditions as a processing threshold
	TestYourself questions for Rule dependency chaining and looping

	Filters and preconditions
	What is a filter
	Full filters
	Limiting filters
	Database filters

	What is a precondition
	Summary of filter and preconditions behaviors
	Performance implications of the precondition behavior

	How to use collection operators in a filter
	Location matters
	Multiple filters on collections

	Filters that use OR
	TestYourself questions for Filters and preconditions

	How to recognize and model parameterized rules
	Parameterized rule where a specific attribute is a variable or parameter within a general business rule
	Parameterized rule where a specific business rule is a parameter within a generic business rule
	How to populate an AccountRestriction table from a sample user interface
	TestYourself questions for Recognizing and modeling parameterized rules

	How to write rules to access external data
	A scope refresher
	Quick steps for setting up the Cargo sample
	Enable database access for rules using root-level entities
	Test the Rulesheet with database access disabled
	Test the Rulesheet with database access enabled
	Optimize aggregations that extend to database

	Precondition and filters as query filters
	Filter query qualification criteria
	Operators supported in query filters
	How to use multiple filters in filter queries

	Insert new records in a middle table
	Integrate EDC Datasource data into rule output
	TestYourself questions for how to write rules to access external data

	Logical analysis and optimization
	Test, validate, and optimize your rules
	Scenario testing
	Rulesheet analysis and optimization

	Traditional methods of analyzing logic
	Flowcharts
	Test suites

	Validate and test Rulesheets in Corticon Studio
	How to expand rules
	The conflict checker
	The completeness checker
	Automatically determine the complete values set
	Automatically compress the new columns
	Handle limitations of the completeness checker
	Let the expansion tool work for you with tabular rules
	Memory management

	Logical loop detection

	Test rule scenarios in the Ruletest Expected panel
	How to navigate in Ruletest Expected comparison results
	Review test results when using the Expected panel
	Output results match expected exactly
	Different values output than expected
	Fewer values output than expected
	More values output than expected
	All Expected panel problems

	Techniques that refine rule testing
	Set selected attributes to ignore validation
	Use key attributes to improve difference detection in Ruletests
	Set how whitespace is handled
	Numerical equivalence

	How to optimize Rulesheets
	The compress tool
	How to produce characteristic Rulesheet patterns
	Compression creates subrule redundancy
	Effect of compression on Corticon Server performance

	Precise location of problem markers in editors
	TestYourself questions for Logical analysis and optimization

	Advanced Ruleflow techniques and tools
	How to use a Ruleflow in another Ruleflow
	Conditional branching in Ruleflows
	Example of branching based on a Boolean
	Example of branching based on an enumeration
	Logical analysis of a branch container
	How branches in a Ruleflow are processed

	How to generate Ruleflow dependency graphs
	Ruleflow versions and effective dates
	TestYourself questions for Ruleflow versions and effective dates

	Troubleshooting Corticon Studio problems
	Where did the problem occur
	Use Corticon Studio to reproduce the behavior
	Observe constraint violations or severe errors
	Analyze Ruletest results
	Trace rule execution
	Identify the breakpoint
	At the breakpoint
	No results
	Incorrect results in Studio

	Partial rule firing
	How to initialize null attributes
	How to handle nulls in compare operations

	Studio license expiration
	How to compare and report on Rulesheet differences
	TestYourself questions for Troubleshooting rulesheets and ruleflows

	Studio properties and settings
	Answers to TestYourself questions
	TestYourself answers for Building the vocabulary
	TestYourself answers for Rule scope and context
	TestYourself answers for Rule writing techniques and logical equivalents
	TestYourself answers for Collections
	TestYourself answers for Rules containing calculations and equations
	TestYourself answers for Rule dependency and inferencing
	TestYourself answers for Filters and preconditions
	TestYourself answers for Recognizing and modeling parameterized rules
	TestYourself answers for Writing rules to access external data
	TestYourself answers for Logical analysis and optimization
	TestYourself answers for Ruleflow versioning and effective dating
	TestYourself answers for Troubleshooting rulesheets

