» Progress’

<

Corticon
Rule Modeling

3 Progress Corticon

Copyright

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo Ul, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, Sequelink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Apache and Kafka are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. Any other marks contained herein may be trademarks of their
respective owners.

Please refer to the NOTICE.txt or Release Notes — Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Last updated with new content: Corticon 6.3.1

Updated: 2022/09/23

Progress Corticon: Rule Modeling: Version 6.3

Copyright

4 Progress Corticon: Rule Modeling: Version 6.3

Contents

Table of Contents

Introduction to Corticon rule modelingcccooiiiiiiii, 11
Build the Vocabulary...........iiircciirrrrccr s 13
Generate @ VOCADUIAIY...... ... ettt e e e e e e et e e et e e e e e e e e e e nnneeeeeeeeaaeaens 15

Use JSON Schema to generate a vocabulary............ccciiiiiiiiiiiii e 15

Use JSON to generate @ VOCADUIAIY..........ooi it e e 21

Build @ Vocabulary BY hand ... 29

Step 1: Design the VOCaDUIAIY............ e 30

Step 2: 1dentify the TEIMS ... 30

Step 3: Separate the generic terms from the specific ... 30

Step 4: Assemble and relate the terms ... 30

Step 5: Diagram the VOCabulary.......... ..o 31

Step 6: Model the Vocabulary in Corticon Studio.............eoiiiiiiiiiiiiiiie e 32

Populate a Vocabulary from @ DataSOUICE.ccuuuuiiiiiiiiee e 34

Step 1: How Datasources are transformed into a Corticon Vocabulary............cccccceviiieiennnne. 34

Step 2: The Vocabulary generation process for RDBMS sources..........ccccovieeiiiiieiieiiiiiicieee 35

Step 3: The Vocabulary generation process from REST SOUICeS...........ccccvvieiiieieeeeeeeieccene 41

Step 4: Verify and update the generated Vocabulary.............cccuiiiiiiiii e 45

EXIENA @ VOCADUIAIY.......eeeeeeeeeeeee ettt e e e e e e e e e e e e e e 46
LO10 L (o] o T I = ¢= T 1Y/ o1 SO SURRRRR 46

Lo 0 = 11 1 PSPPSR 63

SUPPOIt fOr INNEMHTANCE.ceeeeeeeee e e e e e e e e e e e e e e e eeeeeeeend 65

TestYourself questions for Build the vocabulary ... 72
Rule scope and context..........ccciiiimiiiiiiiimiic s 77
RUIE SCOPE... ...ttt ettt et e e e ettt e e a e s e seeeeaeaaaaaaaaaaaeeeeeeeeeesssssssssnnnnnnnnnd 84

= TS OSSR 87
Scope and perspectives in the vOCabulary free............oooo i 88

HOW 10 USE TOIES......eiieieiee ettt ettt e e e ettt e e e e b e e e e e enbeeeeeennes 90

TECHNICAI @SIAE......coeiiiiieie ettt e e et e e e e e e e e e e e e eeeeeas 97

TestYourself questions for Rule scope and Context...........ooouiiiiiiiiiiii e 98
Rule writing techniques.........cceuiiiiiccr e 103
How to work with rules and filters in natural language............ccceeevieei i, 103
Filters vVersus CONAItIONS.ooiiiiiiiiiiie et e e et e e s aanb e e e e e nnneeee s 107
Qualify rules with ranges and lISTS.........oouuiiiiiiii e e 108
Ranges and lists in conditions and filters............c.cooo i 109

Progress Corticon: Rule Modeling: Version 6.3 5

Contents

Ranges and value sets in condition CelIS...........cueiiiiiiiiii e 111

How to use standard Boolean CONSITUCHIONS.eiiiiiiiiiiiii e 124
How to embed attributes in posted rule statements............cccimiiiiiiii e 124
How to include apostrophes in StHNGS. ..o 126
TestYourself questions for Rule writing techniques and logical equivalents...............ccccooiinnnenn. 126
L0 o | 1= o 4 o Y o 1 129
How Corticon Studio handles COIIECLIONS............ocuiiiiiiiiiiee e e e 130
[[NV (o IRV YU =1 [S oo 1= Yo 1o o - SRR 130
PNl o=] Tolote] | [=Tox 1 o] g o) 0= -1 (o (R 131
[(o LTV (o 30 {11 (=Y g oo | T=Y o1 4o o 1SS 132
How to use aliases to represent COIECHONS.uuureeiiiiiie e 132
8T 0 (Yo = 1= T USSR 140
Advanced collection SOMING SYNTAX.........oii i e e e e e e e e 143
S £= 1= 0 0T o1 A][0T <7 RS 144
Using sorts to find the first or last in grandchild collections............ccccceeeiiiiiiiiiiiee e, 146
ST g | 1= (o - T PSPPSRI 147
Special COllECHON OPEIALOIS.......eiiiiiiie i e e e e e e e e e e e e e e e s s s e s b rreereaaaaeeaaaan 149
Universal qUAaNTIfIEN....... .o e e e e e 150
EXistential QUANTTIET...........ooi oo aa e 152
Another example using the existential quantifier..............cccov i 156
Aggregations that optimize EDC database acCess...........ccueveiiieiiiiiiiiieee e 162
TestYourself questions for CollECHIONS.eeiiiiiie e e e e 163
Rules containing calculations and equations..........ccccoovreiiiiieciiiicnennes 167
Operator precedence and order Of evaluation..............ooiiiiiiiiiiiiiee e 168
Data type compatibility @and Casting...........oooiiiiiiiiiii e 170
Data type Of @n @XPreSSION........uiiiiiiiiiiie et e et e e e et e e e s sbb e e e e e enreeeeeeaa 173
Defeating the ParSEr...... oo et e e e e e e e e e e e e e e e 174
Manipulating data types with casting operators............ccccuiiiiiii i 175
Supported uses of calculation EXPreESSIONS............ooiiiiiiiiee e e e e ————— 176
Calculation as a comparison in @ precoNdition.............occueiiiiiiiiiee e 177
Calculation as an assignment in @ NONCONAItION..........ooiiiiiiiiiiii e 178
Calculation as a comparison in @ CONAItION..........c.uiiiiiiiiiiie e 178
Calculation as an assignment in @n actioNn...............ooiiiiiiii i 180
Unsupported uses of calculation @XPreSSiONS.eiii i 180
TestYourself questions for Rules containing calculations and equations................ccccoiiees 181
Rule dependency in chaining and looping.......c.cccccceeiimimciiimeecssnnesnennens 185
o] NV o I o o F= 1 o1 o T T RSP 185
Rulesheet processing modes Of [00PING..........uviiiiiiiiiiie et e e e s e e snneeee s 187
TYPES OF I0OPS. ..ttt e ettt e e e et e e e e et e e e e nre e e e e nres 188
Looping controls in CortiCoN STUIO.ciiiiiiiiiieiiiiie e e e s e e e snneeee s 192

6 Progress Corticon: Rule Modeling: Version 6.3

Contents

HOW 10 ideNtify I0OPS. ... et e e b e e 193
[IoTo] o] T aTo ISy ee=TaaT o] L= TP PUERRRP 196
Determine the next working day when given a dateccccooiiiiiiii e, 196
Remove duplicated children in an associationuuviiiiiiiiiiiiiii e 200
How to use conditions as a processing threshold..............oooiiiii e 204
TestYourself questions for Rule dependency chaining and [00ping..........ccccoecveeieiiiiiiii e, 206
Filters and preconditionscccccoimiiiiiimninirsc e 209
LAY = L == T 1 = SR 209
UL 1 Y RS ERSPIR 211
LIMItiNG fiHEIS. ..ot 213
Database filHErS........uuiiiiiiiiiie et e e nnaaeae s 218
LAY = L S T= T o (=) Lo 11T o IS 221
Summary of filter and preconditions behaviors..............ccccooiiiiiiiiiii e 224
Performance implications of the precondition behavior..............cccoo oo 224
How to use collection operators in @ filter..............uuviiiiiiii e 226
(oY= o) o 4 F= 11 (== OSSP RE 228
Multiple filters 0N COIECHONS.........uuiiiiiiiie e e e e e e e e e 230
FIlters that USE OR..... .. ittt e e e e e e e et e e e e e e e e e e e e e e nnennteeeeeaaaeeeeeaaannes 233
TestYourself questions for Filters and preconditions..............coooveiiiiiiiiiiiiieeeee e 233
How to recognize and model parameterized rules............ccceeeeciiiirnecenn. 237
Parameterized rule where a specific attribute is a variable or parameter within a general business
U ettt e e e et e et e e e e e e e e e e e e et et e ettt ettt tete—tntnnan e aeeeeeeeeeeeeeeeeeeeetee ettt e et aenntennnnnnnn s 237
Parameterized rule where a specific business rule is a parameter within a generic business rule....239
How to populate an AccountRestriction table from a sample user interfaceccccccccveveeeieiiinins 240
TestYourself questions for Recognizing and modeling parameterized rules.............cccccccceiiiieninnees 241
How to write rules to access external data...........ccccccoviveeciiiriecciieencecnnes 243
F N ToT0) o 1IN (== 1T PRSP 244
Quick steps for setting up the Cargo SAMPIE.........ccoiiiiiii i 244
Enable database access for rules using root-level entities............ccocceiiiiiii 245
Test the Rulesheet with database access disabled ..., 246
Test the Rulesheet with database access enabled..............ccooiiii e, 247
Optimize aggregations that extend to database............ccccceeiviiiiiiiiciiii e 252
Precondition and filters as qUery filters........oo s 253
Filter query qualification Criteria.............ocouiiiie i 253
Operators supported in qUErY fIIEIS........cooiiiiiiii e 254
How to use multiple filters in filter QUENES.cooiiiiiee e 255
Insert new records in @ MIAAIE tabIE..........ccoi i 256
Integrate EDC Datasource data into rule OUtPUL...........c.ooiiiiiiiiie e 256
TestYourself questions for how to write rules to access external data............ccccooovecciiiiieiiiee e, 257

Progress Corticon: Rule Modeling: Version 6.3 7

Contents

Logical analysis and optimization............ccccccoimimiiimicciinscnrcre e 259
Test, validate, and Optimize YOUI FUIES............uiiiiiiiii e eae e e 259
Yot o= 15 (o TR (=1 1] o PRSP 260
Rulesheet analysis and optimization..............coooiiiiiiiiiii e 260
Traditional methods of analyzing 10GiC.............uuiiiiiiiii e 261
101 o g =T o (USRS 262

OOt SUITES. .ttt e e e e e e e e s e e e e e e e e e e e e e ee e 264
Validate and test Rulesheets in Corticon StUdio...........cccueeiiiiiiiiie e 267
[[0V A (o T =Y o 2= g o I U] =PRSS 267

The CONFlICE ChECKET e e e e e e e e e e e e aeeeeeeas 269

The comMPIeteNESS ChECKET.......uue e e e e e e e e e e e e e e e e e e eeeaaeeees 273
Logical 100p deteCHiON.........coiiiiiiei e 279

Test rule scenarios in the Ruletest Expected panel..............uuiiiiiiiiiiiiii e 280
How to navigate in Ruletest Expected comparison results.............ccccccvveeeeiiiiiiiciiieeneeee e 280
Review test results when using the Expected panel...............oueeiiiiiiiiiiiieeeeeeeee 280
Techniques that refine rule testing............oii i 284

HOW t0 Optimize RUIESNEELS.......ccoeeeeeeee e e e e e e e e e e e e e e e e e e eeeee 290
I =T oo 0] o =SS0 oo 290

How to produce characteristic Rulesheet patterns............oooooviii e, 292
Compression creates subrule redundanCy..............eeeiiiiiiiiiiiiii e 295

Effect of compression on Corticon Server performance..........cccccooevecciiiiiieieee e 295
Precise location of problem markers in €ditors........... ..o 296
TestYourself questions for Logical analysis and optimization...............cccccceeiei i 296
Advanced Ruleflow techniques and tools........ccccccoommmiecciiiiniieccciiienneens 299
How to use a Ruleflow in another RUIEFIOW.o 299
Conditional branching in RUIETIOWS............eiiiii e 301
Example of branching based on a Boolean..............coooii e 304
Example of branching based on an enumeration...........c.ccoccoieiiiiiiii i 309
Logical analysis of @ branch ContainNer................ooiiiiiiiiiii e 313

How branches in a Ruleflow are proCessed............ooouiiiiiiiiiiiiiiiiee e 315

How to generate Ruleflow dependency graphs..... ..o 317
Ruleflow versions and effeCtive datesooviiiiiiiiiiii e 323
TestYourself questions for Ruleflow versions and effective dates..............ccccoe, 325
Troubleshooting Corticon Studio problems.........cccccooiimiiciiiiiieeccciieens 327
Where did the problem OCCUN ... e 328
Use Corticon Studio to reproduce the behavior................oooiiiiiiiiiiii e 328
Observe constraint violations OF SEVEre ©ITOIS.........cccoiiiiiiiiiiiiie e 328
Analyze RUIEEST FESUILS. 329

Trace rUIE EXECULION. ... ettt e e e e e e e ettt e e e e e e e e e e s st eereeaaeeeeesaannsnnaeeeeeeas 330
[dentify the DreaKpPOiNt.........ooi i e e e et e e e e enate e e e e s snraeeeeeanen 332

8 Progress Corticon: Rule Modeling: Version 6.3

Contents

At the DreakpOint.o o et e e e et e e e s e e e e e e 333

[T = T O L= T T SRR 334

How to initialize null attribUtes.ooi i 335

How to handle nulls in compare Operations.............coooiiiiiiiiiiiiiee e 335
Studio ICENSE EXPIFALION. ...t et e et e e e e e e e 337
How to compare and report on Rulesheet differences.............eeeeeiiiiiiiiiiiiiiie e 337
TestYourself questions for Troubleshooting rulesheets and ruleflows............cccccoiiinee, 341
Appendix A: Studio properties and settings...........ccoeeeecciiiiiiecccnieneeee. 343
Appendix B: Answers to TestYourself questions.........cccccccoiimiienncinnnnes 349
TestYourself answers for Building the vocabulary...............oociiii e 350
TestYourself answers for Rule scope and CONtEXt...........uuuuuiiiiiiiiiiiiii e 351
TestYourself answers for Rule writing techniques and logical equivalents.............cccccccovvieneninnenn. 353
TestYourself answers for CollECHONS.oiiiiiii e 354
TestYourself answers for Rules containing calculations and equations............ccccovcieiiiiiien e, 355
TestYourself answers for Rule dependency and inferencing............cccveeiiii i 356
TestYourself answers for Filters and preconditions.............oocueiiiiiiiiiiiii e 357
TestYourself answers for Recognizing and modeling parameterized rules..............ccccoociiiiiiiniine. 358
TestYourself answers for Writing rules to access external data...........cccccceiiiiii i, 358
TestYourself answers for Logical analysis and optimization...............ccccooii i 359
TestYourself answers for Ruleflow versioning and effective dating...........cccoocoiiiiii, 360
TestYourself answers for Troubleshooting rulesheets............oo e 360

Progress Corticon: Rule Modeling: Version 6.3 9

Contents

10 Progress Corticon: Rule Modeling: Version 6.3

Introduction to Corticon rule modeling

This set of topics describes the core of Corticon. Here you construct the logic and patterns in vocabularies that
are assembled in row-and-column rule sheets where the diverse operators enable spreadsheet layouts of

readable rule patterns. The modeling topics are supported by guides to the modeling language and a quick
reference to the user interface's basic tooling functions.

Progress Corticon: Rule Modeling: Version 6.3

1"

Chapter 1: Introduction to Corticon rule modeling

12 Progress Corticon: Rule Modeling: Version 6.3

Build the Vocabulary

This section describes the concepts and purposes of a Corticon Vocabulary. You see how to build a Vocabulary
from general business concepts and relationships.

Depending on your point of view, a Vocabulary represents different things and serves different purposes. For
the rule modeler, the Vocabulary provides the basic elements of the rule language—the building blocks with
which business rules are implemented in Corticon. For a systems analyst or programmer, a vocabulary is an
abstracted version of a data model that contains the objects used in those business rules implemented in
Corticon.

A vocabulary serves the following purposes:

* Provides terms that represent business “things.” Throughout the documentation, these things are referred
to as entities, and the properties or characteristics of these things as attributes. Entities and their attributes
in underlying data sources (such as tables in a relational database or fields in a user interface) can be
represented in the Vocabulary.

* Provides terms that are used to hold temporary or transient values within Corticon (such as the outcome of
intermediate derivations). These entities and attributes usually have a business meaning or context, but do
not need to be saved (which are referred to as persistent) in a database, or communicated to other
applications external to Corticon. An example of this might be the following two simple computational rules:

1. itemSubTotal is equal to the product of item Count and itemPrice

2. orderTotal is equal to the sum of all iternSubTotals

Inthese tworules, i t enSubTot al is the intermediate or transient term. You may never use i t enSubTot al
by itself; instead, you may only create it for purposes of subsequent derivations, as in the calculation of
order Tot al in rule #2. Because a transient attribute may be the result of a very complicated rule, it may
be convenient to create a Vocabulary term for it and use it whenever rewriting the complex rule would be
awkward or unclear. Also see the note on Transients.

Progress Corticon: Rule Modeling: Version 6.3

13

Chapter 2: Build the Vocabulary

* Provides a federated data model that consolidates entities and attributes from various enterprise data
resources. This is important because a company's data may be stored in many different databases in many
different physical locations. Progress believes that rule modelers should not be concerned with where data
is, only how it is used in the context of building and evaluating business rules. The decision management
system should ensure that proper links are maintained between the Vocabulary and the underlying data.
This concept is called abstraction—the complexities of an enterprise's data storage and retrieval systems
were hidden so that only the aspects relevant to rule writing are presented to the rule modeler.

* Provides a built-in library of literal terms and operators that can be applied to entities or attributes in the
Vocabulary. This part of the Vocabulary, the lower half of the Vocabulary window shown in Figure 1: Operator
Vocabulary on page 14, is called the Operator Vocabulary because it provides many of the verbs (the
operators) needed for business rules. Many standard operators such as the mathematical functions (+, -,
*, /) and comparator functions (<, >, =) as well as more specialized functions are contained within this portion
of the Vocabulary. See the Rule Language Guide for descriptions and examples of all operators available,
as well as detailed instructions for extending the library.

Figure 1: Operator Vocabulary

& Rule Operators &2 = B

w = Attribute Operators
(= Boolean
= Date
= DateTime
= Decimal
[= Integer
[= String
= Time
w = Entity/Asscciation Operators
(= Collection
[= Entity
[= Sequence
w = General
= Functions
= Literals

* When XML messaging is used to carry data to and from the rules for evaluation, data must be organized
in a predefined structure that can be understood and processed by the rules. A schema supplies the contract
for sending data to and from a Corticon Decision Service. An XML schema, generated directly from the
Vocabulary, accomplishes this purpose. This schema is called a Vocabulary-Level service contract and
details can be found in the Deployment Guide.

Scope

An important point about a Vocabulary: there does not need to be a one-to-one correlation between terms in
the Vocabulary and terms in the enterprise data model. In other words, there may be terms in the data model
that are not included in or referenced by rules. Such terms do not need to be included in the Vocabulary.
Conversely, the Vocabulary may include terms (such as transient attributes) that are used only in rules. These
terms do not need to be present in the data model. Two guiding principles:

14

Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

* If the rule modeler wants to use a particular term in a business rule, then that term must be part of the
Vocabulary. Terms can exist only within the Vocabulary. These are the transient attributes that were
introduced previously.

* Ifarule produces a value that must be retained, persisted, or otherwise saved in a database (or other means
external to the rules), then that Vocabulary term must also be present in the enterprise data model. There
are many methods for linking or mapping these Vocabulary terms with corresponding terms in the data
model, but a discussion of these methods is technical and is not included in this manual.

There are two basic starting points for building a Vocabulary: construct one, or generate one from a REST or
database source.

For details, see the following topics:

* Generate a Vocabulary

¢ Build a Vocabulary by hand

* Populate a Vocabulary from a Datasource
* Extend a Vocabulary

* TestYourself questions for Build the vocabulary

Generate a Vocabulary

Overview

Corticon makes it easy to start your rule projects by letting you generate the Vocabulary directly from the JSON
that your rules will process. This technique accelerates development, so that you can quickly get started writing
rules, and ensures your vocabulary matches the JSON payloads that will be passed as input to your rules when
deployed.

To generate a vocabulary, select a JSON file that is representative of the range of objects and fields (entities
and attributes) that could be passed to your rules when deployed.

You need not be concerned if your JSON data model changes. Corticon lets you easily update your vocabulary
by reimporting JSON, or by editing your Vocabulary by hand.

Note: JSON or JSON schema as a source?—JSON schema is more common when working with
industry-standard data models, and has benefits because it more fully describes a data model, but JSON
schema is not widely used. In most projects, all you will have is JSON, in which case, try to have JSON that
represents all the entities and attributes that might occur in rule requests and output.

Use JSON Schema to generate a vocabulary

Create a Vocabulary from a JSON schema

Suppose your company belongs to an industry consortium that has defined a standard format for JSON
messages for communication between suppliers and customers. The consortium may opt to define a JSON
schema for the JSON. JSON schema providers a greater ability to define valid content for JSON payloads.

Progress Corticon: Rule Modeling: Version 6.3 15

Chapter 2: Build the Vocabulary

The use of JSON schema is in the early days of being adopted. JSON Schema is primarily used when different
organizations need a formal definition of an agreed upon data model. Using JSON schema has advantages
for vocabulary generation such as options for defining enumerated values and for transcribing comments into
the Vocabulary. Be careful: Some schemas are very large and have more than you need. You may want to cut
the schema down to just what you need before generating the vocabulary.

Note: Corticon uses JSON Schema Draft-07 to infer the patterns in the given source—whether a JSON payload
file or parsing a JSON schema file—to make its best effort to set up the entire Vocabulary complete with
associations. You might be using a different draft. As the specification gets more refined, improvements are
added to the schema.

¢ Sample JSON Schema on page 17

* To populate a Vocabulary from a JSON schema on page 18

* How Corticon generates a vocabulary from JSON on page 18
* How descriptions in your schema are handled on page 19

* How references in your schema are handled on page 20

* How enumerations in your schema are handled on page 19

* How to extend type definitions in your schema on page 20

16

Progress Corticon: Rule Modeling: Version 6.3

https://json-schema.org/draft/2019-09/release-notes.html

Generate a Vocabulary

Sample JSON Schema

The following code is an example of a JSON schema:

"$schema": "http://json-schema. org/draft-07/schema#",
"type": "object",
"properties": {
"Billi ngAddress": {
"description”: "Address to where a Customer's invoice nust go",
"type": "object",
"properties": {
"Zip": {
"type": "string"

" ét ate": {
"type": "string"

" Addr ess2":
"type": "string

},
" Addr ess1":
"type": "string"

"bity": {
"type": "string"
}
}

’ npanyNane": {
"type": "string"

}

" i3hone": {
"type": "string"

" Shi ppi ngAddress": {
"description": "Address to where a Customer's product nust go",
"type": "object",
"properties": {
"Zip": {
"type": "string"

"étate": {
"type": "string"

},
" Address2": {
"type": "string"

1,
"Address1": {
"type": "string"

" d t yII : {
"type": "string"

}

! tes": {
"type": "string"

}

" bont act": {
"type": "string"

Progress Corticon: Rule Modeling: Version 6.3 17

Chapter 2: Build the Vocabulary

To populate a Vocabulary from a JSON schema

1. Copy the preceding JSON and then save in a temporary file.

2. In Corticon Studio, create a new Rule Project named Cust oner Schena.
3.
4
5

In the project, create a Vocabulary named Cust orrer Schemna.

. Click in the Vocabulary edit window, and then select Vocabulary > Populate Vocabulary from JSON.

. Select the sample file Cust omer Schena. j son, and then click Open.

The Vocabulary that the JSON schema generates is the following:

g CustomerSchema.ecore 53

w [2] CustomerSchema

~ =] BillingAddress
= addressi
= address?
=) city
= ctate
= zip
w =] Root
= companyMame
= contact
= notes
= phone
= hillingAddress (BillingAddress)
— shippingAddress (ShippingAddress)
~ =] ShippingAddress
== addressi
=] address?
=] city
= ctate
= zip

How Corticon generates a vocabulary from JSON

To generate a vocabulary from a JSON schema document, Corticon examines the contents of the document
to identify the entities in the document, their attributes, and their associations. Where data types are not defined
with JSON, Corticon infers the data type of attributes based on the values present.

The process of inferring the schema is essentially as follows:

Entities: Entity names follow Corticon naming conventions and uppercase the first character of the entity
name.

* The entity Root entity always generated.
* If an existing entity has already been mapped to a JSON object, use that entity.

* If no entity is found, then create a new entity, and set the entity name to the object name.

Attributes: For each attribute in an Entity:
* If an entity has no attributes, assign it one string attribute with the name i t em

* Create a new attribute (no duplicate names including case) with attribute name in the Entity

18

Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

* Data type
* For a JSON schema where a data type is specified, use that data type.
* For a JSON instance:

* For a number that can be successfully converted to a relevant Java Date, set its data type as
Dat eTi ne.

* For a number with a decimal point, set its data type as Deci mal .

* For a number without a decimal point, set its data type as | nt eger .

* Fora string that is an ISO 8601 value, set its data type as Dat eTi ne, elseitisa Stri ng.
* For an attribute with a data type of null, itisa St ri ng.

* Foran empty array, itis a St ri ng array.

* Associations: Association role names are auto-assigned.
* Arrays are specified as a one-to-many with its corresponding parent entity.
* Associations are not be bidirectional.

* Both ends are not mandatory.

How descriptions in your schema are handled

The JSON Schema specification has description attributes that can be used to document your data structure.
The Vocabulary Generator puts the descri pt i on fields in the schema into the Vocabulary's Comments tab,

as shown:
= Comments 3 T T =0
Search: |type search text...
DateTime User Type Category ltemn Text
3521 227TPM gsaintma MNote Entity ShippingAddress Address to where a Customer's product must go
A 22TPM gsaintma MNote Entity BillingAddress Address to where a Customer's invoice must go

How enumerations in your schema are handled

The JSON Schema specification might have enumerations. When the Vocabulary Generator sees an enum
tag, it creates a Custom Data Type of that enumeration and use that as the attributes data type.

When a schema with an enumpopulates the Vocabulary, it generates a custom data type:

Lﬁé Customerdchemakbnum.ecore i3

wilZ] CustomerSchemaEnumi Custom Data Types
= BillingAddress

1 Root Data Type Mame Base Data Type Label Walue
1 ShippingAddress TypeEnurmeration String Residential 'Residential'
Business ‘Business’
v

Progress Corticon: Rule Modeling: Version 6.3 19

Chapter 2: Build the Vocabulary

The t ype attribute is still St ri ng, but its Dat a Type is now the custom data type TypeEnuner at i on, as
shown:

[CustomerSchemaEnum.ecore 3 = B

v [Z] CustomerSchemaEnum
w = BillingAddress

»

Basic Properties

Property Mame Property Value
=] address] Attribute Marme type
==| addressd Data Type TypeEnurneration
= city Mandatory Mo
= ctate Mode Base
=] type JSOM Properties S
=] zip JSOM Element Mame Type
—| Root

=l ShippingAddress

How references in your schema are handled

The JSON Schema specification provides for the use of $r ef attributes to have a single definition of an object
that can then be incorporated elsewhere in the schema. An example is an addr ess object defined once and
included as part of cust oner and suppl i er objects in the schema.

When Corticon generates a vocabulary from JSON schema, associations will be added from the referring entity
to the target entity. In the example, the generated vocabulary would contain Cust oner, Suppl i er, and
Addr ess entities. Corticon then adds associations from both Cust oner and Suppl i er entities to the Addr ess
entity.

How to extend type definitions in your schema

The JSON Schema specification allows you to specify different validation rules through the use of oneCr
anyOr, or al | O tags. For the most part, these tags do not effect vocabulary generation except when used
to extend a type definition. In the following example, the Type enumeration was added to the addr ess definition
because it is needed for Shi ppi ngAddr ess. However, it is not needed for other types of addresses, so does
it make sense to include it, optionally, in all addresses? This is where the al | OF tag comes in handy. You can
use it to extend the address type only for the Shi ppi ngAddr ess. A schema fragment that uses al | O is
shown:

" Shi ppi ngAddress": {
"description": "Address to where a Customer's product nust go",
"allOfF " [
{ "$ref": "#/definitions/address" },
{ "properties":

{ ”Eype":
"title": "Address Type Enuneration",
"description": "Specifies if the address is a Business or Residence",
"enum': ["residential", "business"]

Note: Get the complete extend sample.

The difference in the vocabulary generated by this schema and the previous one is that the type attribute will
only be in the Shi ppi ngAddr ess entity and not the Bi | | i ngAddr ess entity.

20 Progress Corticon: Rule Modeling: Version 6.3

https://community.progress.com/s/question/0D54Q00008TguQjSAJ/generate-a-javascript-vocabulary-schema-extend

Generate a Vocabulary

Use JSON to generate a vocabulary

Create a Vocabulary from a JSON payload

Suppose you are writing rules for a B2B e-commerce application that will determine what, if any, discounts
should be applied to an order. An order contains contact information about the customer, their partnership
status (‘elite' or 'standard’) and the items in the order. Your rules will examine this information to determine a
discount rate for the order in line with the promotions being offered by your company. For example, 'elite’
customers might get 15% off on orders over $10,000.

Working with IT, you've been supplied this sample JSON file representing an order. JSON in this format is used
by other components of your e-commerce application:

{
"orderld": 494748,
"custoner": "Acne Industries",
"custonerStatus": "elite",
"shi ppi ngAddress": {
"addressl1": "1234 |ndustrial Lane",
"address2": null,
"city": "Boston",
"state": "MA',
"zip": "01234"
e
"products": [
{
"sku": "XYZ-BB-43",
"unitPrice": 2300. 00,
"quantity": 2,
"tags": [
"industrial",
"conpressor”
]
}
i
"discount": 0.0
}

To populate a Vocabulary from a JSON payload:
. Copy the preceding JSON and then save in a temporary file.
. In Corticon Studio, create a new Rule Project named Onl i neRet ai | .

1

2

3. In the project, create a Vocabulary named O der s.

4. Click in the Vocabulary edit window, and then select Vocabulary > Populate Vocabulary from JSON.
5

. Choose the temporary file with the JSON you saved, and then click Open.
The Vocabulary that the JSON generates is the following:

Progress Corticon: Rule Modeling: Version 6.3

21

Chapter 2: Build the Vocabulary

% Orders.ecore i3

w [2] Orders
w =] Products
=] quantity
=] cloy
= unitPrice
—£ tags (Tags)
w = Root
== custormer
== customerStatus
= discount
= orderld
—€ products (Products)
— shippingfAddress (ShippingAddress)
w = ShippingAddress
= addressi
=| address?
=] city
= ctate
=] zip
~ (= Tags
= item

Let's take a closer look at the Vocabulary:

* Root entity—The JSON source has an object definition at root, indicated by the JSON starting with initial
brace. You know this root entity is an order. Corticon does not know that, so it named the top-level entity
Root . After vocabulary generation completes you can refactor the root entity name to Or der :

[*Orders.ecore 53

w [Z] Orders
= Order
=] Products
E ShippingAddress

= Tags

= O
Basic Properties 3
Property Mame Property Value
Entity Marme Order

Inhents From

J50M Properties

o

[JSOM Path | S

* Attributes—Each attribute takes the JSON Element Name that was in the source JSON. The root entity
has five attributes that are added as attributes of Root . You can manually revise the data type as appropriate.
This is the incoming payload identifier that will map to its Vocabulary attribute name:

22

Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

% *Orders.ecore 33

~ [Orders
w = Order

== cyustomer
m=| cyustomerStatus
== dizcount
== orderld
—€ products (Products)
— shipping&ddress (Shipping&ddress)

—| Products

—l ShippingAddress

—l Tags

Basic Properties

Property Mame
Attribute Mame
Data Type
Mandatory
Mode

JS0M Properties

[JSOM Element Mame

= O

=
Property Value
customer
String
Mo
Base

*
| customer

Note: If an attribute has a null value in the source JSON, the data type String is assumed.

* Non-root entities—Other entities take the name in the source JSON, and specify their JSON Path as

relative to the root:

@ *Orders.ecore &3 -
v (Z] Orders Basic Properties *
—| Order Property Mame Property Value
= PfDd'—'Cti. Entity Mame Products
=] quantity Inherits From
= Skl'_l) JSOM Properties -
==| ynitPrice
¢ tags (Tags) |JSOM Path | S.products
—| ShippingAddress
=l Tags

* Associations: Corticon added the Pr oduct s entity, and then added an association from Root (Or der)

to product s:

L_b *Orders.ecore &3

w [Z] Orders
s | Crder

m=| customer
m=| cystomerstatus
m=| dizcount
m=| orderld
—€ products (Products)
— shippingfddress (ShippingAddress)

—] Products

—l ShippingAddress

=l Tags

Basic Properties

Property Mame
Association Role Mame
Source Entity Mame
Target Entity Mame
Cardinalities
Mavigability
Mandatory

JSOM Properties

»

Property Value
products

Crder

Products

1-»*

Crder-» products
Mo

»

[JSOM Element Mame

| products

Progress Corticon: Rule Modeling: Version 6.3

23

Chapter 2: Build the Vocabulary

* Scalar arrays—A scalar array is handled as an association from the entity with its own identifying Entity.
The JSON Array's relationship shows that pr oduct s is relative to root ($) and one or more t ags are related

to product s:

Q:”O'd&'s.ecc"e &3 s
w [Z] Orders Basic Properties b3
=l Order Property Mame Property Yalue
v = F'ruducts. Entity Mame Tags
==| quantity Inherits From
i S’k"_ltp) JSOM Properties *
== nitPrice
[JSOM Path | S.products[*].tags

~€ tags (Tags)
—] Shippingfddress
w =] Tags
= tem

Note: Corticon does not support JSON arrays mixing scalar values and objects. For example:
"A' [1,2,3, {"B": {"color" : "red"}}]

This JSON snippet defines an array " A" containing the scalar values 1, 2, 3 and the object " B" . In Corticon,
an array must be either all scalar values or all objects.

Update a vocabulary from a JSON payload

Suppose your Sales department wants to enhance the discount program to provide an additional discount to
government agencies and whether an order is marked for expedited handling. In support of this IT has provided
an updated sample JSON the includes the new information.

24 Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

An update generates new entities, attributes, and associations. The existing entities, attributes, and associations
are not revised by regenerating over the existing Vocabulary. If you want one element to be regenerated, delete
it before you perform the update. You could even delete the vocabulary entirely, and then start fresh. The

original sample payload adds a requirement for Bi | | i ng Addr ess to the sanpl eCust orrer Vocabulary.
{
"orderld": 494748,
"customer": "Acme |ndustries"”,
"customerStatus": "elite",

"gover nment Agency": fal se,

"shi ppi ngAddress": {
"addressl1": "1234 |ndustrial Lane",
"address?2": null,
"city": "Boston",
"state": "MA",
"zip": "01234"
}

" hi ppi ngDetai |l s": {
"expedite": true,
"node": "ground"

H

"products": [
{
"sku": "XYZ-BB-43",
"unitPrice": 2300.00,
"quantity": 2,
"tags": [
"industrial",
"conpressor”
]
}

iscount": 0.0

]

Progress Corticon: Rule Modeling: Version 6.3 25

Chapter 2: Build the Vocabulary

When you regenerate your vocabulary from this JSON, it will add new entities, attributes and associations to
your vocabulary for the new items in the JSON. The Vocabulary shows the added entity, attributes, and

association:

L_b *Orders.ecore (3

w [Z] Orders
w = Order

=| customer
== customerStatus
= discount
= governmentAgency
=| crderld
—£ products (Products)

=l Preducts
~ (=] Shipping&ddress
= addressi
= address2
=] city
== ctate
= zip
w =] ShippingDetails
= expedite
= mode
= Tags

— shippingAddress (ShippingAddress)
— shippingDetails (ShippingDetails)

Note: If you rename or refactor entity or attribute names, an update from the same source will generate
duplicate entities and attributes for the ones you renamed in the Vocabulary. You will need to delete the

duplicates.

Integrating multiple sources into a Vocabulary

To build a single vocabulary that integrates multiple data feeds, it is convenient to import additional sources
into separate vocabulary domains. Corticon enables you to import into an added domain without impacting the

rest of the Vocabulary.

26

Progress Corticon: Rule Modeling: Version 6.3

Generate a Vocabulary

Consider a variation on the customer info so that it identifies a partner:

{

"orderld": 494749,
"partner": "Acme Partners",
"partnerStatus": "elite",

"shi ppi ngAddress": {
"address1": "2000 | ndustrial Ave",
"address2": null,

"city": "Boston",
"state': "MA"
"zip": "01234"

b

"shi ppi ngDetai | s": {
"expedite": true,
"mode": "ground"

}

b

"discount": 25.0

}

In the Vocabulary file, right-click at the root and then choose Add Domain:

g *Customer.ecore 3

~ [2] Customer
H Order <& Undo
=] Produ
&=l Shipg =
&=l Shipe] Add Domain

= Tags Add Entity

Report...

{1 Comment...

Click on the new domain to refactor the name to Part ner s.

L_& *Customer.ecore &3

~ [] Customer
Domain_1
=1 Order
=] Products
£ ShippingAddress
=l ShippingDetails
= Tags

Progress Corticon: Rule Modeling: Version 6.3 27

Chapter 2: Build the Vocabulary

Right-click on the Partners domain and then choose Populate Domain From JSON:

g *Customer.ecore 53

w [2] Customer

<] Partners _

= Order <~ Undo
=| F'rl?n:lu.d . Cut
= Shippin ©

] Shippin = CoPY
= Tags 3 Delete

Report...

Add Domain
Add Entity

[&

Populate Domain From JSOM...

Comment...

Choose the file where the preceding listing was saved, and click Open.

The data is added to the Vocabulary.

Note that a reference to an attribute in an added domain requires the domain as a qualifier of the attribute when
used in rules. In this example, the regular Shi ppi ngAddr ess. addr ess1 in a Rulesheet would be differentiated

from Par t ner s. Shi ppi ngAddr ess. addr ess1.

28

Progress Corticon: Rule Modeling: Version 6.3

Build a Vocabulary by hand

L_b Customer.ecore &3

] Customer
w =] Partners
w =] Partners
= orderld
=l partner
= partnerStatus
=— shippingAddress (ShippingAddress :Partners:)
— shippingDetails (ShippingDetails ::Partners:)
:=] ShippingAddress
£ ShippingDetails
w =] Order
= custormer
=| customerStatus
== discount
= governmenthgency
= crderld
— shippingAddress (ShippingAddress)

— shippingDetails (ShippingDetails)
=] Products
=l ShippingAddress
& ShippingDetails
=l Tags

Build a Vocabulary by hand

An alternative to generating a vocabulary is to create one by hand. Creating a vocabulary by hand requires
more effort then generating one, yet has the potential advantage of forcing you to carefully consider the elements
to include in your vocabulary.

The first step in creating a Vocabulary is to collect information about the specifics of the business problem you
are trying to solve. This step usually includes research into the more general business context in which the
problem exists. Various resources may be available to you to help in this process, including:

Interviews—The business users and subject matter experts are often the best source of information about
how business is conducted. They may not know how the process is supposed to work, or how it could work,
but in general, no one knows better how a business process or task is performed than those who actually
perform it.

Company policies and procedures—Any written policies and procedures are an excellent source of
information about how a process is supposed to work and the rules that govern the process. Understanding
the gaps between what is supposed to happen and what actually happens can provide valuable insight into
problems.

Existing systems and data sources— Systems address specific business needs, but needs often change
faster than systems can keep up. Understanding what the systems were designed to do versus how they
are actually used often provides clues about the core problems. Also, business logic contained in these
legacy systems often captures business policies and procedures (the business rules!) that are not recorded
anywhere else.

Progress Corticon: Rule Modeling: Version 6.3

29

Chapter 2: Build the Vocabulary

* Forms and reports—Even in heavily automated businesses, forms and reports are often used extensively.
These documents can be very useful for understanding the details of a business process. Reports also
illustrate the expected output from a system, and highlight the information users require.

Analyze the chosen scenario or existing business rules in order to identify the relevant terms and the relationships
among these terms. Statements that express the relevant terms and relationships are called facts, and Progress
recommends developing a Fact Model to more clearly illustrate how they fit together. A simple example shows
you the creation of a Fact Model and its subsequent development into a Vocabulary for use in Corticon Studio.

Step 1: Design the Vocabulary

Example

An air cargo company has a manual process for generating flight plans. These flight plans assign cargo
shipments to a specific aircraft. Each flight plan is assigned a flight number. The cargo company owns a small
fleet of three planes: two Boeing 747s and one McDonnell-Douglas DC-10 freighter. Each airplane type has a
maximum cargo weight and volume that cannot be exceeded. Each airplane type also has a tail number that
identifies it. A cargo shipment has characteristics like weight, volume and a manifest number.

Assume that the company wants to build a system that automatically checks flight plans to ensure that no
scheduling rules or guidelines are violated. One of the many business rules that needs to be checked by this
system is:

| 1. An aircraft must not carry a cargo shipment that exceeds its maximum cargo weight, h

Step 2: Identify the terms

Identify the terms (entities and attributes) for our Vocabulary by circling or highlighting those nouns that are
used in the business rules you want to automate. Example on page 30 is marked up:

An air cargo company has a manual process for generating flight plans. These flight plans assign|cargo
shipments to a specific/aircraftl Each|flight plan is assigned a|flight number| The cargo company owns a small
fleet of three planes: two Boeing 747s and one McDonnell-Douglas DC-10 freighter. Each airplane type|has a
maximum cargo weight and|volume|that cannot be exceeded. Each airplane type also has altail number|that
identifies it. A cargo shipment has characteristics like/weight) volume|and a/manifest number.

Step 3: Separate the generic terms from the specific

Why circle aircraft and not the names of the aircraft in the fleet? It is because 747 and DC-10 are specific
types of the generic term aircraft. The type of aircraft is an attribute of the generic aircraft entity. Several cargo
shipments and flight plans can exist. Like the specific aircraft, these are instances of their respective generic
terms. For the Vocabulary, you identify the generic (and therefore reusable) terms. But, ultimately, you need
a way to identify specific cargo shipments and flight plans from within the set of all cargo shipments and flight
plans. Assigning values to attributes of a generic entity accomplishes this goal, discussed later.

Step 4: Assemble and relate the terms

None of the circled terms exists in isolation. They all relate to each other in one or more ways. Understanding
these relationships is the next step in Vocabulary construction. The following facts are observed or inferred
from the example:

30 Progress Corticon: Rule Modeling: Version 6.3

Build a Vocabulary by hand

* An aircraft carries a cargo shipment.

* Aflight plan schedules cargo for shipment on an aircraft.
* A cargo shipment has a weight.

* A cargo shipment has a manifest number.

* An aircraft has a tail number.

* An aircraft has a maximum cargo weight.

* A 747 is a type of aircraft.

Notice that some of these facts describe how one term relates to another term; for example, an aircraft carries
a cargo shipment. This type of statement usually provides a clue that the terms in question, aircraft and cargo
shipment, are entities and are two primary terms.

Also notice that a fact “has a” relationship. For example, an aircraft “has a” tail number, or a cargo “has a”
weight. This type of relationship usually identifies the subject (aircraft) as an entity and the object (tail number)
as an attribute of that entity. By continuing the analysis, the Vocabulary contains 3 main entities, each with its
own set of attributes:

Entity: Aircraft

Attributes: aircraft type, max cargo weight, max cargo volume, tail number
Entity: Cargo

Attributes: weight, volume, manifest number, packaging

Entity: FlightPlan

Attributes: flight number

Step 5: Diagram the Vocabulary

Using this breakdown, sketch a simple Fact Model that illustrates the entities and their relationships, or
associations. In the Fact Model, entities are rectangular boxes, associations between entities are straight lines
connecting the entity boxes, and entity-to-attribute relationships are diagonal lines from the associated entity.
The following illustration is the resulting Fact Model:

weight
walume
manifesthumber
packaaging
Cargn
aircratType
mass argoWeight
maxZamgovolume
schewules tail M um ber
schedles
FlichtP lan Ajrcratt
fligghtt umber

Progress Corticon: Rule Modeling: Version 6.3 31

Chapter 2: Build the Vocabulary

A unified modeling language (UML) class diagram contains the same type of information, and may be more
familiar to you:

Cargo
@weight : Double
olurme : Double
EsmanifestMumber String
Epackaging © String

Alrcraft
FlightPlan &tailMumber : String

- — EpaircraftType © String
SolightNumber : String &rmaxCargoyeight - Double

%maxCarganlume : Double

It is not a requirement to construct diagrams or models of the Vocabulary before building it in Corticon. But, it
can be very helpful in organizing and conceptualizing the structures and relationships, especially for very large
and complex Vocabularies. The BRMS Fact Model and UML Class Diagram are appropriate because they
remain sufficiently abstracted from lower-level data models that contain information not typically required in a
Vocabulary.

Step 6: Model the Vocabulary in Corticon Studio

The next step is to transform the diagram into your Corticon Vocabulary. This can be done in Corticon Studio
using its built-in Vocabulary Editor.

In Corticon Studio, choose New > Rule Project. Click the Rule Project, and then choose New > Vocabulary.
Create the entities, attributes, and associations that were defined in the diagram.

Note: See "Vocabulary topics” in the Quick Reference guide for complete details on building a Vocabulary.

The naming conventions for the entities and attributes will be used in the Vocabulary:

* All attributes in our Vocabulary must have a data type specified. These data types can be any of the following
common data types: String, Boolean, DateTime, Date, Time, Integer, or Decimal.

* Attributes are classified according to the method by which their values are assigned. They are either:
* Base: Values are obtained directly from input data or request message

* Transient: Created, derived, or assigned by rules in Studio.

32 Progress Corticon: Rule Modeling: Version 6.3

Build a Vocabulary by hand

Note:

Transient attributes carry or hold values while rules are executing within a single Rulesheet. Because
XML messages returned by a Decision Service do not contain transient attributes, these attributes and
their values cannot be used by external components or applications. If an attribute value is used by an
external application or component, then the attribute must be a base attribute.

To show the rule modeler which attributes are base and which are transient, Corticon Studio adds an
orange bar to transient attributes, as shown for packDat e:

=] Cargo
m=| container
m=| manifesthNumber
= packDate
==| volume
w=| weight
3~ flightPlan (FlightPlan)

XML response messages created by Corticon Server will not contain the packDat e attribute.

It is a good idea to use a naming convention that distinguishes transient attributes from base attributes.
For example, you could start a transient attribute's name witht _ such ast _packDat e. Do not use
names that are cryptic. The intent is to express the names in terms that are understood by business
users as well as developers.

* Associations between entities have role names that are assigned when you build the associations in the
UML class diagram or Vocabulary Editor. Default role names simply duplicate the entity name, with the first
letter in lowercase. For example, the association between the Car go and Fl i ght Pl an entities would have
a role name of flightPlan as seen by the Car go entity, and cargo as seen by the FI i ght Pl an entity. Roles
are useful in clarifying context in a rule. A topic that covers this in more detail in the Scope chapter.

* Associations between entities can be directional (one way) or bidirectional (two way). If the association
between Fl i ght Pl an and Ai r cr af t were directional (with FI i ght Pl an as the source entity and
Ai r cr af t as the target), you would only be able to write rules that traverse from Fl i ght Pl anto Ai rcraft,
but not the other way. This means that a rule can use the Vocabulary term
flightPlan.aircraft.tail Number butcannotuseaircraft.flightPlan.flightNunber.
Bidirectional associations allow you to traverse the association in either direction, which allows you more
flexibility in writing rules. Therefore, Progress strongly recommends that all associations be bidirectional
whenever possible. New associations are bidirectional by default.

* Associations also have cardinality, which indicates how many instances of a given entity can be associated
with another entity. For example, in the air cargo scenario, each instance of FI i ght Pl an will be associated
with only one instance of Ai r cr af t, so there is a one-to-one relationship between Fl i ght Pl an and
Ai r cr af t . The practice of specifying cardinality in the Vocabulary deviates from the UML class modeling
technique because assigning cardinality can be viewed as defining a constraint-type rule. For example, a
f1i ght Pl an schedules exactly one ai r cr aft and one car go shipment is a constraint-type business
rule that can be implemented in a Corticon Studio as well as embedded in the associations within a
Vocabulary. In practice, however, it may often be more convenient to embed these constraints in the
Vocabulary, especially if they are unlikely to change.

* Another consideration when creating a Vocabulary is whether derived attributes must be saved (or persisted)
external to Corticon Studio, for example, in a database. It is important to note that while the structure of
your Vocabulary may closely match your data model (often persisted in a relational database), the Vocabulary

Progress Corticon: Rule Modeling: Version 6.3 33

Chapter 2: Build the Vocabulary

is not required to include all of the database entities/tables or attributes/columns, especially if they will not
be used for writing rules. Conversely, the Vocabulary may contain attributes that are used only as transient
variables in rules and that do not correspond to fields in an external database.

* Finally, the Vocabulary must contain all of the entities and attributes needed to build rules in Corticon Studio
that reproduce the decision points of the business process being automated. This process will most likely
be iterative, with multiple Vocabulary changes being made as the rules are buiilt, refined, and tested. It is
common to discover, while building rules, that the Vocabulary does not contain all the necessary terms.
But, the flexibility of Corticon Studio permits the rule developer to update or modify the Vocabulary
immediately, without programming.

The following figure shows the vocabulary modeled in Corticon Studio:

Figure 2: Vocabulary Window in Corticon Studio

(g Cargo.ecore 32 - O
v [2 Cargo Basic Properties b5
v H ;'-'urcraf't Property Name Property Value
=| aircraftType Attribute Name aircraftType
==| maxCargoVolume Data Type String
== maxCargoWeight Mandatory Mo
= tailMumber Mode Base
=€ flightPlan (FlightPlan)
w = Cargo

==| container

== rmanifestMumber

== volume

= weight

3~ flightPlan (FlightPlan)
w =] FlightPlan

=] flightNumber

)— aircraft (Aircraft)

—€ cargo (Cargo)

Populate a Vocabulary from a Datasource

Often you have data sources that you want to use as the basis for your rule modeling that might have many
tables, each with many columns. You could transcribe each data source's schema to create a Vocabulary, yet
the ability to populate the Vocabulary quickly from the schema would expedite the process dramatically.

When you use this built-in Vocabulary generation utility, Corticon sets up the name patterns and defines the
data types and associations as best it can. It is important that you review the Vocabulary against the source
schema, to validate that the results are correct.

Step 1: How Datasources are transformed into a Corticon
Vocabulary

The following are the relationships between relational Datasources and Corticon Vocabulary elements are:

34 Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

Relational database Corticon Vocabulary
Schema Vocabulary
Table Vocabulary: Entity
Table Column or Field Vocabulary: Attribute
Relationship between Tables Vocabulary: Association

After you connect to a Datasource and import its metadata, you can constrain the tables and attributes that
will be evaluated. Then, the internal algorithm makes its best effort to populate the Vocabulary.

Assuming that you are creating a new Vocabulary, these are the steps it takes:

1. For each selected Table in the Datasource, create a new Entity in the Vocabulary.

2. For each Column in the Table:
a. Create a new Attribute in the Entity.
b. Determine the best Corticon data type for the Attribute by referring to the column's data type information.
c. If the column is part of the Table's primary key, then mark the Attribute as part of the Entity identity.

3. After all Tables and Columns are processed, Associations are created for each foreign key for each table
(if the source and target tables are both mapped in the Datasource).

The creation process tries to be complete and accurate, but it has limited abilities:

* Columns that are referenced by foreign keys are not added as Attributes.

* Tables that do not have any valid columns are not created (such as, Association middle tables or Sequence
tables).

* The data type for an attribute is evaluated in this order: Datetime, Time, Date, Decimal, Integer, String, and
Boolean. Some Corticon data types might not get picked for attributes because of an overload of possible
mappings (such as, Date and Time could always be created as Datetime). Note that these decisions are
derived from data when data is in a REST source that has no schema.

Step 2: The Vocabulary generation process for RDBMS sources on page 35 shows the procedure for populating
a new Vocabulary.

Step 2: The Vocabulary generation process for RDBMS sources

Relational databases have well-structured schemas that declare every element's data type. The following steps
in Corticon Studio populate a new Vocabulary from a relational database Datasource. For an example, use
the Patient/Treatment schema that was created in SQL Server from SQL statements in the Data Integration's
ADC Connectivity sample.

To generate a Vocabulary from a relational data source:
1. In Corticon Studio, create a new Rules Project named GenMed.
2. In the new project, create a Vocabulary named GenMed.

3. Open the Vocabulary in its editor, and then select the menu command Vocabulary > Add Datasource >
Add ADC Datasource.

4. Define the Datasource name as Patient Data. Connect to SQL Server database PatientRecords. Enter
credentials, and the click CONNECTION Test:

Progress Corticon: Rule Modeling: Version 6.3 35

Chapter 2: Build the Vocabulary

Custorn Data Types | Query | Patient Data

METADATA MAPPING | COMMECTION | DATASOURCE

|'£| Import | | X Clear » Clear % Test m Delete

Datasource Mame: | Patient Data

Description:

Databaze Server: | Microsoft SOL Senver

URL: | Jdbeiprogress:sglserver//localhost:1433; databaseMame=PatientRecords

Authentication | Basic

Username: | 53

Srirdriririird

Password:

Catalog Filter |

Schema Filter: |

Note: You might want to add a Schema Filter value, such as dbo, to constrain the results of the next step.

5. Click METADATA Import, and then choose the option to choose the tables you want to use. For this

example, choose just the two dbo tables, as shown:

36

Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

¢

| Import Database Metadata

[What do you want to import?

Table Mame ”
PatientRecords.dbo. CORTICON_ADC_WRITE_DEFS

PatientRecords.dbo. CORTICOM_BATCH_READ

PatientRecords.dbo.Patient

PatientRecords.dbo. Treatment

PatientRecords.sys.all_columns

PatientRecords.sys.all_chjects

PatientRecords.sys.all_parareters

PatientRecords.sys.all_sql_modules

PatientRecords.sys.all_views W

K=

Select All Deselect All

< Back Mext = Cancel

and click Finish.

6. Select Vocabulary > Populate Vocabulary From Datasource:

Progress Corticon: Rule Modeling: Version 6.3 37

Chapter 2: Build the Vocabulary

Vocabulary Run Window Help
%] Add Domain
o] Add Entity

Add Attribute

Add Association...

Find References

Refactor...

Add Datasource
Datasource Configuration File
Add Decument Mapping

Populate Vocabulary From Datasource

Set to Read Only
V5 Show Vocabulary Details

Localize...
f[E| Report..

Export WS5DL...
Export X50...

7. Choose the Patient Data Datasource. If there were several Datasources defined, choose them one at a
time for this process. In this example, there is only one. Click Next.

8. A wizard opens to let you review the Datasource prior to creating the Vocabulary elements, where you can
select the Tables and Columns that create Entities and Attributes. In the following image, the tree was

expanded:

38

Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

¢

| Select the vocabulary elements to create

From the datasource metadata below, select the tables and columns
to be added to the vocabulary as entities and attributes,

w [/] =] PatientRecords

v []<3 dbo ;
v [Patient [
E dob datetime2
E gender warchar
[/2 patientld bigint
E patientMame warchar
B region varchar

o Treatment
v [Treatment

E approved bit

E medicalCode varchar

41 /2 patientld bigint

B providerld bigint

E treatmentDate date

41 42 treatmentld bigint [

|

Select All Deselect All [] Create Domains for Catalog and Scl |

@' = Back Mext > Cancel

9. Click Finish. The Vocabulary is generated, as shown:

Progress Corticon: Rule Modeling: Version 6.3 39

Chapter 2: Build the Vocabulary

(@ *GenMed.ecore 3% | Lg Medical.ecore

Datasource: | ADC

St

w [] GenMed
w 9 Patient

=5 patientld *
== dob

=5 gender

== patientMame
=5 region

= treatment (Treatment)

w 29 Treatrnent

== treatmentld *
== approved

== medicalCode
== patientld

== providerld

== treatmentDate
3= patient (Patient)

40

Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

Step 3: The Vocabulary generation process from REST sources

REST sources are usually not as clearly structured as relational databases. Some provide a schema, but
generally they do not. REST sources can conform to a relational database schema when Corticon uses the
Progresse DataDirect® Autonomous Rest Connector to access REST sources. The REST connector maps the
JSON in a REST source to a relational database schema, and then translates SQL statements to REST API
requests. These steps in Corticon Studio populate a new Vocabulary from the REST Datasource used in the
REST connectivity sample from the Data Integration guide. The REST source has no schema; its data looks

this:

1 - L

2~ "results”™

3+ | {

4 "procedureCode™: “B512877"
G- "ratez"”

.]

7 “startDate": "2815-1-1"
& "endDate": "2815-6-1",
9 "rate”: B.85
1la
11 ~
12 "startDate": "2818-6-2"
13 "endDate" ‘2818-12-31"
14 "rate™: 9.8
15
16
17
18
19

To generate a Vocabulary from a REST data source:

1. In Corticon Studio, create a new Rule Project named GenRates.

2. In the new project, create a Vocabulary named GenRates.

3. Open the Vocabulary in its editor, and then select Vocabulary > Add Datasource > Add REST Datasource.
4

. Define the Datasource connection for the URL
https://bj 361 9ki 66. execut e- api . us- east - 2. anazonaws. com pr od/ Rei nfour senent Rat e?pr ocedur eGde=B512022
as shown, and then click CONNECTION Test:

Progress Corticon: Rule Modeling: Version 6.3 41

Chapter 2: Build the Vocabulary

Custorn Data Types | REST Service

MAPPIMG SCHEMA COMMECTION | DATASOURCE

X Clear 73 Discover |'£| Import Export Clear E' Test m Delete

Datasource Mame: | REST Service

Description:

REST URL: | https://bj36i%ki66.execute-api.us-east-2. amazonaws.com/prod/ReimbursementRate |

Authentication | Mone v|
Cluery Parameter Default Value Type
procedureCode B3120Z7 URL

URL

5. Click SCHEMA Discover. If your REST source has a schema, or is one that you exported in an earlier
processing of this source you could import it now. For this source, you need to let the Progresse DataDirect®
Autonomous Rest Connector map the JSON in the REST source to a relational database schema, and then
translate SQL statements to REST API requests.

6. Select Vocabulary > Populate Vocabulary From Datasource

42 Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

Vocabulary Run Window Help
%] Add Domain
o] Add Entity
Add Attribute *

Add Association...

Find References

Refactor...

Add Datasource »
Datasource Configuration File]
Add Document Mapping »

Populate Vocabulary From Datasource

Set to Read Only
V5 Show Vocabulary Details

Localize...

f[E| Report..

Export WS5DL...
Export X50...

7. Choose the REST Service Datasource. If there were several Datasources defined, choose them one at a
time for this process. In this example, there is only one, REST Service. Click Next.

8. A wizard opens to let you review the Datasource prior to creating the Vocabulary elements, where you can
select the Tables and Columns to create as Entities and Attributes. Here, the tree was expanded for
REST_DATA, the primary table that was unnamed so it was given this default name. You can see links
between tables to all the other tables at the bottom of the table.

Progress Corticon: Rule Modeling: Version 6.3 43

Chapter 2: Build the Vocabulary

©

| Select the vocabulary elements to create

From the datasource metadata below, select the tables and columns to be added
to the vocabulary as entities and attributes,

w [w] S0 AUTOREST

v [RATES
E ENDDATE Date
[42 POSITION Integer
E RATE Double
[4] /2 REST_DATA_PROCEDURECODE VarChar
E STARTDATE Date

v [V REST_DATA
[4] /2 PROCEDURECODE VarChar
o RATES

Select All Deselect All [] Create Domains for Catalog and Schema

'i?;' < Back Mext = Cancel

9. Click Finish. The Vocabulary is generated, as shown:

Datasource: | REST Service e

w [] GenRates
~ 5 RATES
=5 POSITION *
== REST_DATA_PROCEDURECODE *
== EMDDATE
=5 RATE
=5 STARTDATE
3= rEST_DATA (REST_DATA)
« 5 REST DATA
=5 PROCEDURECODE ™
=& rATES (RATES)

The Primary Key in RATES is POSI T1 ON, a standard that REST connector uses to ensure keys are unique,
plus the REST_DATA PROCEDURECQODE, the default name of the primary entity. The Primary Key in the
REST _DATA entity is the single primary key, PROCEDURECCDE

44 Progress Corticon: Rule Modeling: Version 6.3

Populate a Vocabulary from a Datasource

Here is an association:

L_b GenRates.ecore &3 L_ig Medical.ecore

Datasource; | REST Service < | Basic Properties
. Property Mame Property Value
v G_E;P:_::; Association Role Mame rEST_DATA
V= - . Source Entity Mame RATES
=5 POSITION Target Entity Name REST_DATA
=5 REST_DATA_PROCEDURECODE ™ | Cardinalities a1
=5 ENDDATE Mavigability Bidirectional
== RATE Mandatory Mo
=5 STARTDATE REST Service Datasource Properties
2% rEST_DATA (REST_DATA) Join Expression AUTOREST.RATES.REST_DATA_PROCEDURECODE=AL
w 5 REST_DATA
=5 PROCEDURECODE *
=& rATES (RATES)

Step 4: Verify and update the generated Vocabulary

Produce a Vocabulary Report

The import of Datasource metadata to build a Vocabulary is a processed through a best-effort algorithm. You
should produce a Vocabulary report to review the entity names, attribute names and their data types, and the
implied associations.

Adding and deleting

You can delete any entity (which deletes all its attributes) and any attributes and associations. Be careful not
to delete primary keys. The effect of deletions in the Vocabulary are local. The deletions do not affect the
Datasource. You can add attributes, and because the metadata you imported was not deleted, you can re-add
a deleted attribute and bind it to the column in the Datasource.

Doing updates from a Datasource is not a synching operation. There is no provision for removing metadata
that is no longer in the Datasource.

Refactoring names

You can rename any entity and attribute even if it is a just a case change. For example, you can refactor dob
with DOB. It is important that you refactor, not rename, so that other instances of the name in the Vocabulary
such as associations are also updated.

If you repopulate the Vocabulary from the Datasource, then the name you entered is retained while it is still
logically the Datasource column name.

Note: MS Dynamics as a Datasource: Some table names in Dynamics might map to an unexpected name.
For example, a Case table might become an Incident entity by default on the initial import.

Progress Corticon: Rule Modeling: Version 6.3 45

Chapter 2: Build the Vocabulary

Data types

The algorithm in the import makes a best effort to map the Datasource's data type to a corresponding Corticon
data type. The data type for an attribute is evaluated in this order: Datetime, Time, Date, Decimal, Integer,
String, and Boolean. Some Corticon data types might not get picked for attributes because of an overload of
possible mappings (such as, Date and Time could always be created as Datetime). Note that these decisions
are derived from data when data is in a REST source that does not have a schema. After import, you can revise
the data type, for example when you have custom data types that apply constraints, or date of birth imports as
Datetime when your rules want just Date, or when " f1i ght _nunber": 55 is imported as an integer data
type when you want it as a String,

Mandatory

Whether an attribute is mandatory is set by you. It is not changed on a re-import.

Associations

The metadata from the Datasource often provides correct associations. When you use multiple Datasources,
you need to create the associations between entities. In all cases, review your associations.

Transients

You can add transients. If you change an imported attribute to a transient, then its binding to its Datasource
column is dropped.

Foreign keys

When if both the source and target table are mapped in the Datasource, then an association is created for
each foreign key for each table.

Domains

You might need multiple domains. If you use REST Datasources, then you need to rename the existing domains
before importing a new one.

Extend a Vocabulary

After a Vocabulary is defined, you can extend the design by customizing data types to enforce certain values
and constraints, use multiple domains, and implement inheritance.

Custom Data Types

Corticon uses seven basic data types: Boolean, Decimal, Integer, String, DateTime, Date, and Time. An attribute
must use one of these types. You also have the option of creating custom data types that “extend” any one of
these basic seven.

You define and maintain Custom Data Types in a Vocabulary by selecting the Vocabulary name in the tree
view.

Data Type Name

When defining a custom data type, you must give it a name with no blank spaces. The name must comply with
standard entity naming conventions (see the Quick Reference Guide for details), and must not overlap (match)
any of the base data types, any other custom data type names, or the names of any Vocabulary entities.

46 Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Base Data Type
The selection in this field determines which base data type the custom data type extends.

You already used this feature in the custom data type cont ai ner Type, a St ri ng, in the Basic Rule Modeling
Tutorial. The following figure lists its labels and values.

Figure 3: Vocabulary Editor Showing the Custom Data Type containerType

[¢ Cargo.ecore &2 =g
] Cargo Custom Data Types

=1 Aircraft

=l Cargo Data Type Mame Base Data Type Enumeration Constraint Expression = Label Value -

=1 FlightPlan String Yes standard 'standard’
oversize 'oversize'

heavyweight | 'heavyweight'

reefer ‘reefer’

Enumeration or Constraint Expression?

Enumeration—When the Enumeration for a Custom Data Type is set to Yes, as shown in the preceding
figure, the Constraint Expression field is disabled, and the Label and Value columns are enabled.

Constraint Expression—\When the Enumeration for a Custom Data Type is set to No, the Constraint
Expression field is enabled, and the Label and Value columns are disabled.

The following sections explore each of these features.

Constraint Expressions

When you want to prompt Rulesheet and Ruletest designers to use a specific range of values for an attribute,
a constraint expression will validate entries when the associated Ruletest runs.

Constraint expressions are optional for non-enumerated Custom Data Types, but if none are used, then the
Custom Data Type probably is not necessary because it reduces to a base attribute with a custom name.

All Constraint Expressions must be Bool ean expressions: they must return or resolve to a Boolean value
of t rue or f al se. The supported syntax is the same as Filter expressions with the following rules and
exceptions:

* Use val ue to represent the Custom Data Type value.
* Logical connectors such as and and or are supported.
* Parentheses can be used to form more complex expressions

* The expression can include references to Base and Extended Operators which are compatible with the
Base Data Type chosen.

* No Collection operators can be referenced in the expression.

* There should be no references to nul | . This is because nul | represents a lack of value and is not a real
value. The Constraint Expression is intended to constrain the value space of the data type, and expressions
such as attribute expr essi on <> nul | do not belong in it. An attribute that must not have a null value
can be designated by selecting Yes in its Mandatory property value.

The following are typical Constraint Expressions:

Progress Corticon: Rule Modeling: Version 6.3 47

Chapter 2: Build the Vocabulary

Constraint Expression

Meaning

value > 5

Integer values greater than 5

value >=10.2

Decimal values greater than or equal to 10.2

value in (1.1..9.9]

Decimal values between 1.1 (exclusive) and 9.9
(inclusive)

value in [1/1/2014 12:30:00 PM’.."1/2/2019 11:00:00
AM)

DateTime values between ‘“1/1/2014 12:30:00 PM’
(inclusive) and ‘1/2/2019 11:00:00 AM’ (exclusive)

value in [1:00:00 PM’..’2:00:00 PM’]

Time values between “1:00:00 PM’ (inclusive) and
‘2:00:00 PM’ (inclusive)

value.size >= 6 and (value.indexOf(1) > 0 or
value.indexOf(2) > 0)

String values of minimum 6 characters in length that
contain at leasta 1 or 2

How to use non-enumerated Custom Data Types in Rulesheets and Ruletests

Non-enumerated custom data types use Constraint Expressions and do not cause Rulesheet drop-down
lists to become populated with custom sets. Also, manually entering a cell value that violates the custom data
type's Constraint Expression is not prohibited in the Rulesheet. For example, in the following figure,

wei ght Range is defined as a non-enumerated custom data type with Base Data Type of Deci nal .

Figure 4: Non-enumerated Custom Data Types

Customn Data Types

Data Type Mame | Base Data Type | Enumeration
weightRange Decimal Mo

Constraint Expression
value < 2000

Then, after assigning it to the Vocabulary attribute Car go. wei ght , it is used in a Rulesheet Condition row as

shown:

Figure 5: Using Custom Data Types in a Rulesheet

Conditions
a cargo.weight

Actions

Post Message(s)
A
B

Cherrides

|Z] Rule Statements :3
Ref 1D Post Alias Text

E@ customDataTypeExamples.ers 52 | g customDatalype.ert

1 Violation | cargo 300,000 exceeds the CDOT constraint

1
300000

48

Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Notice in the preceding figure that the 300000 entry violates the Constraint Expression of the custom data
type assigned to Car go. wei ght , but does not turn red or otherwise indicate a problem. The indication comes
when data is entered for the attribute in a Ruletest, as shown:

Figure 6: Violating a Custom Data Type's Constraint Expression

@ custom DataTypeExam ples.ers @ customDataTypeert 53

untitled_1
|'RulesTutorial/customDataTypeExamples.ers

Input Output
w =] cargo [1]
== manifestMumber
= packaging
== volume
= weight [300000]

Notice that the small yellow warning icon & indicates a problem in the attribute, entity, and both Ruletest tabs.
Such an error is hard to miss. Also, a Warning message will appear in the Problems tab (if open and visible)
as shown. If the Problems tab is closed, you can display it by selecting Window > Show View > Problems
from the Studio menubar.

Figure 7: Violating the Constraint Expression of a Custom Data Type

[| Rule Statements) Problems 23
4 errors, 1 warning, 0 others
Descripticn Resource Path Location

3 Errors (4 itemns)
w (& Warnings (1 item)
Y, Value 300000 does not pass constraint validation: value < 200000, custernDataType.ert /RulesTutorial carge [1].weight

A Warning does not prevent you from running the Ruletest. However, an Error, indicated by a small red icon
B, will prevent the Ruletest execution. You must fix any errors before testing.

Enumerations

Enumerations are lists of strictly typed unique values that are the valid values for each attribute that is assigned
the custom data type name as its data type. These lists also prompt Rulesheet and Ruletest designers to use
a specific list of values. Enumerated lists, often referred to as enums, can be maintained directly in the
Vocabulary, or retrieved and updated from a data source.

Each item list can be partnered with a unique /abel that you select in Rulesheets and Ruletests.

How enumeration labels and values behave

Before you start setting up and using enumerations, you should get acquainted with labels and values.

Note: Itis important that you determine whether you want to use labels, because changing a set of enumerations
later to add or remove the labels data will affect any Rulesheets and Ruletests that use that custom data type's
enumerations as you can observe in this topic.

Progress Corticon: Rule Modeling: Version 6.3 49

Chapter 2: Build the Vocabulary

At the Vocabulary root, you created a String enumeration with only values. The base data type can be any
Corticon data type except Boolean. Every line requires a unique entry of its type, and the list must have no
blank lines from the top down to the last line.

The following examples are String values. They can contain spaces and most other characters. It needs to be
set off in plain single quotation marks. If you enter or paste text with the delimiters, they are added for you.
Like this:

Custom Data Types | Database Access

Data Type Mame Base Data.. Enum.. = Label Value -
colorLabeled String Yes 'red’
| colorUnlabeled String Yes ‘blue’

If you want to use labels, then the label is always a String of any alphanumeric characters but cannot contain
spaces. Each must be unique and must have a corresponding value. Even when you use labels, the values
must be unique.

Customn Data Types | Database Access

Data Type Mame Base Data... Enum.. = Label WYalue -
| colorLabeled String Yes red ‘Crimson’
colorUnlabeled String Yes blue ‘Cerulean’

Set d ove. col or to use the col or Unl abel ed data type:

g simple.ecore 32 | B@ *ballGlove.ers ¢ *Enumerations.ert = O
a [Z] Simple Property Mame Property Value
a =] Ball Attribute Mame color
= color Data Type colorUnlabeled
= size Mandatory Mo
Mode Base
4= Glove
= color
= cize

50 Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

SetBal | . col or to use the col or Label ed data type:

g simple.ecore 32 | @ *ballGlove.ers "¢ "Enumerations.ert = O
a [Z] Simple Property Mame Property Value
a4 =] Ball Attribute Name calor
= color Data Type colorLabeled
| size Mandatory Mo
4 = Glove Mode Base
= color
= cize

When you create a Rulesheet, the list offered at A1 contains the label (Bal | . col or = red), while the list
offered at B1 contains the value in qoutes (@ ove. col or="red").

Conditions] 1 2 3 -
a Ballsize 1 2
b Glovesize 1 2
Actions 1 T I
Post Message(s) [¥
A | Ball.color red blue
B Glove.color ‘red’ ‘blue’ i
Cherrides
m Rule Staterments 57 | 2 Rule Messages = O
Ref |ID Post Alias Teut -
1 Info Ball {Ball.cclor} ball and {Glove.color} glove
2 Info Ball {Ball.cclor} ball and {Glove.color} glove

You add Rule Statements so that you can see how the labeled and unlabeled items are handled.

In a simple Ruletest, add some size tests to see what happens. As shown, the labels and values in the resulting
Output are both unquoted. The Rule Messages tab displays the value when the label was in use and the
value of the value-only enumeration.

Progress Corticon: Rule Modeling: Version 6.3 51

Chapter 2: Build the Vocabulary

= wuntitled_1
feimple/ballGlove.ers
Input Output
a = Ball[1] 4 = Ball [1]
= cize [1] == color [red]
4 = Glove[1] = cize [1]
= cize [1] 4 = Glove [1]
a = Ball [2] == color [red]
= cize [2] = cize [1]
4 = Glove [2] 4 = Ball [2]
= size [2] =| color [blue]
= cize [2]
4 = Glove [2]
=| color [blue]
=| size [2]

3 Rule Messages &3

Severity Message Entity
Info Crimseon ball and red glove Ball[1]
Info Cerulean ball and blue glove Ball[Z]

Entry of test values in the Ruletest list the label+value's label:

Input
4 5 Ball[1]
=| color | -
= size [
a & Glove [1]|blue
= color
=) cize [1]
a = Ball [2]
=] cize [2]
4 = Glove [2]
=] cize [2]

Differences: 0

52

Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

The value-only list has quoted values:

Input
a = Ball[1]
== color [red)
= cize [1]
4 & Glove[1] -
== color| | —
= size [1[g
4 = Ball[2] |'blue'
= cize [2]
a = Glove[2]
= cize [2]
Both are reconciled to unquoted values in the displayed Input and Output columns:
Input Cutput
4 =] Ball[1] 4 =] Ball[1]
=| color [red] =| color [red]
= size [1] = size [1]
a & Glove[1] 4 = Glove[1]
== color [red) = color [red)
= cize [1] = cize [1]
4 = Ball[2] 4 = Ball [2]
= cize [2] = color [blue]
4 = Glove [2] = cize [2]
= cize [2] a = Glove [2]
=| color [blue]
=] cize [2]
m £ Rule Messages &3
Severity Message Entity
Info Crimson ball and red glove Ball[1]
Info Cerulean ball and blue glove Ball[Z]

Note: It is important that you determine in each custom data type whether you want to use labels. Some
enumerations can have labels while others do not. Changing a set of enumerations later, to add or remove the
labels data, affects any Rulesheets and Ruletests that use that custom data type's enumerations as you can
observe in this topic.

Enumerations defined in the Vocabulary

To set up an Enumeration, open the project's Vocabulary, and click its root—Car go, in this example. Then,
enter a preferred unique name without spaces, and click the Base Data Type cell of the row to choose the data
type (the values are all red until you have added a successful value or label/value pair). Click on the Enumeration
cell to choose Yes. Now, enter a value on the first row, and a label if you want one. All the cells are validated,
and the red markers are cleared. Then, you can add other value or label/value pairs on the next lines.

Progress Corticon: Rule Modeling: Version 6.3 53

Chapter 2: Build the Vocabulary

g Cargo.ecore i3

: Custom Data Types | Database Access

- & Aircraft

a = Cargo Data Type Mame | Base Data Type Enum.. = Label Yalue
F=| container containerType String Yes = standard 'standard’
= manifesthumber OVErSIZE 'oversize'
= needsRefrigeration heavyweight ‘heavyweight'
= vol reefer ‘reefer'

volume

= weight

When you complete a valid Custom Data Type, choose the attributes in the Vocabulary that will be constrained

to the enumeration.

a [Z] Cargo Property Mame Property Value

- 5 Aircraft Attribute Name container
4 = Cargo Data Type | containerType 7

== container ma:ldat-:lr}r Bool

: ode oolean

o] mamfestl"-l.uml:uj:r Decimal

== needsRefrigeration DateTime

=] volume Date

= weight Integer

3~ flightPlan (FlightPlan St”” e

. containerType

- 5 FlightPlan Tirme

If your custom data type is a local enumeration, then you enter the enumerated values of the base data type
into the Value column, and, if you intend to use labels, then enter label text into the Labels column.

Note: Pasting in labels and values—If you have the source data in a spreadsheet or text file, you can copy
from the source and paste into the Vocabulary after you define the name, base data type, and chosen yes to
enumeration. When you paste two columns of data, click the first label row. If you have one column of data
you want to use for both the label and the value, paste it in turn into each column. If the data type is String,
Date, Time, or DateTime, the paste action will add the required single quote marks.

The Label column is optional: you enter Labels only when you want to provide an easier-to-use or more intuitive
set of names for your enumerated values.

The Value column is mandatory: you need to enter the enumerations in as many rows of the Value column as
necessary to complete the enumerated set. Be sure to use normal syntax, so custom data types that extend
String, DateTime, Date, or Time base data types must be enclosed in single quote characters.

Here are some examples of enumerated custom data types:

Figure 8: Custom Data Type, example 1

Custom Data Types |
Data Type Mame Base Data Type | Enumerati..| Constraint Expression = Label Value -
containerType String Yes 2
Integer Yes E 3 E
USHolidays2020 Date Yes 5
ShirtSize Integer Yes 7
RiskProfile Integer Yes 11
DevTeam String Yes 13

54 Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Pri meNunber s is an Integer-based, enumerated custom data type with Value-only set members.

Figure 9: Custom Data Type, example 2

Custom Data Types |
Data Type Name Base Data Type Enumerati.. Constraint Expression = Label Value -
String Yes standard ‘standard’
PrimeMurnbers Integer Yes E oversize 'oversize' |E
USHolidays2020 Date Yes heavyweight | ‘heavyweight'
ShirtSize Integer Yes reefer "reefer’
RiskProfile Integer Yes
DevTeam String Yes

cont ai ner Type is a String-based, enumerated custom data type with Label/Value pairs.

Figure 10: Custom Data Type, example 3

Custom Data Types ‘

Data Type Mame Base Data Type Enumerati.. Constraint Expression =+ Label WYalue -
containerType String Yes Mew_year 1172015
PrimeMumbers Integer Yes =| Independen.. | 7/4/2015" |E

Date Yes Labor Day | '9/7/2015'
ShirtSize Integer Yes Thanksgiving | '11/26,/2015'
RiskProfile Integer Yes Christmas | '12/25/2015%'
DevTeam String Yes

USHol i days2015 is a Date-based, enumerated custom data type with Label/Value pairs.
Figure 11: Custom Data Type, example 4

Custom Data Types
Data Type Mame Base Data Type Enumerati.. Constraint Expression = Label Value -
containerType String Yes 5 1
PrimeMumbers Integer Yes E M 2 E
USHelidays2020 Date Yes L 3
Integer Yes AL 4
RiskProfile Integer Yes XXL 5
DevTeam String Yes

Shirt Si ze is an Integer-based, enumerated custom data type with Label/Value pairs.

Figure 12: Custom Data Type, example 5

Custom Data Types
Data Type Name Base Data Type Enumerati.. Constraint Expression = Label Value -
containerType String Yes Low 1
PrimeMurnbers Integer Yes E Mediurm 2 E
USHolidays2020 Date Yes High 3
ShirtSize Integer Yes VeryHigh 4
Integer Ves
DevTeam String Yes

Progress Corticon: Rule Modeling: Version 6.3 55

Chapter 2: Build the Vocabulary

Ri skProfi | e is an Integer-based, enumerated custom data type with Label/Value pairs

Figure 13: Custom Data Type, example 6

Custom Data Types

Data Type Mame Base Data Type | Enumerati..| Constraint Expression = Lakel Yalue -
containerType String Yes 'lehn'
PrimeMumbers Integer Yes 3 Jim' E
USHolidays2020 Date Yes 'Kendall'

ShirtSize Integer Yes ‘Eric’
RiskProfile Integer Yes 'Cheryl’
String Yes 'George’
Vidhi'
‘Suvasri’
"Thierry'
‘Sravanthi'

DevTeamis a String-based, enumerated custom data type with Value-only set members.

Use the Move Up ﬂ or Move Down E toolbar icons to change the order of Label/Value rows in the list.

Enumerations retrieved from a database

If you want your custom data type to gets its enumerated labels and values from a database, then you need
to define the database table and columns that will be accessed.

This topic covers the significant points of this feature in the context of the Vocabulary.

Note: This functionality uses Corticon's Enterprise Data Connector. For more information, see "Import possible
values of an attribute from database tables" in the "Advanced EDC Topics" section of the Data Integration
Guide

When your Vocabulary has a verified connection to a supported database, the Custom Data Types tab presents
three additional columns, as shown:

Figure 14: Custom Data Type columns for defining database retrieval

¢ Cargo.ecore 2 =8
& Carge Customn Data Types | Database Access

E Aircraft

= Cargo Data Type Mame Base Data Type Enumeration Constraint Expression | Lookup Table Name Labels Column Values Column - Label Value -

=1 FlightPlan String Yes = standard ‘standard’
oversize ‘oversize'

heavyweight 'heavyweig...
reefer ‘reefer

These columns are how you specify:
* Lookup Table Name—The database syntax that specifies the table that has the enumerations.

* Labels Column—The column in the lookup table that holds the label. This is optional because you can
elect to use only values.

* Values Column - The column in the lookup table that holds the value associated with the label or the solitary
value. This is required.

56 Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

The following examples show two options:

Figure 15: SQL Server table with values to use in the Vocabulary

“& Microsoft SQL Server Management Studio E@I
File Edit View Debug QueryDesigner Tocls Windoew Cemmunity Help
B New Query | [y | [| &F =
= =T Change Type~ | ¥ st | (2 | 5 -
Object Explorer 1 x NBBEDGSAINTMA1\...go - dbo.Planes| ¥ X
Connect~ 34 Model
= [NBBEDGSAINTMAL (SQL Server 10.50.1600 - s2) N oc-i0 |
= 3 Databases MD-11
[Systern Databases 747
= |J Cargo = 777
[Database Diagrams % A
= 1 Tables

3 System Tables
= dbo.Aircraft

= dbo.Cargo

= dbo.Carrier

= dbo.FlightPlan
= dbo.Planes

= 4 Celumns

=] Model (nchar{l0), null)

m T Kews

e

o0o®E ®

il 1 of4 | b Bkl b =

Ready

The value data is retrieved into the Vocabulary as highlighted:

Figure 16: Definition and retrieved values in Corticon Studio

g Cargo.ecore % =0
2] Cargo Custorn Data Types | Database Access
£ Aircraft
&= Cargo Data Type Ma.. BaseData Type Enumeration .. Lookup Table Mame Labels Column Values Colur + Label Value -
=] FlightPlan containerType String Yes = 4T -
| model | String Yes Cargo.dbo.Planes Model NI
carrier String Yes Cargo.dbo.Carrier planeCarrier planell ‘DE-10
‘MD-11'
P m | 3 <

Progress Corticon: Rule Modeling: Version 6.3 57

Chapter 2: Build the Vocabulary

Another example retrieves name-value pairs.

Figure 17: SQL Server table with labels and values to use in the Vocabulary

“& Microsoft SQL Server Management Studio E@I
File Edit View Debug QueryDesigner Tocls Windoew Cemmunity Help
8 New Query | [y | [y | 5 B .
= H Change Type~ | ¥ fad | (5 | T3 (&l
Object Explorer 3 x NBBEDGSAINTMAI\...go - dbo.Carrier| = X
Connect~ 34 planeCarrier planelD
= [NBBEDGSAINTMAL (SQL Server 10.50.1600 - s2) R LPs | N1001
= 3 Databases FedEx M1002
[Systern Databases DHL N1003
& 1 Cargo i Greatial N1004
Database Di
L Datahase Liagrams Heavylift M1005
= 1 Tables
3 System Tables ML ML
= dbo.Aircraft
= dbo.Cargo
= = dbo.Carrier
= 4 Celumns
=] planeCarrier (nchar(10), not null)
= planell (nchar(10), not null)
B C3 Keys il 1 of 5 [b M b _
[iI_(Cnnstraints =
Ready

The label/value data is retrieved into the Vocabulary as highlighted:

Figure 18: Definition and retrieved label-values in the Corticon Studio

L¢ Cargo.ecore i1 =8
&l Cargo Custom Data Types | Database Access
=1 Aircraft
= Cargo Data Type Ma... Base Data Type Enumeration Lookup Table Mame | Labels Column Values Colur = Label Value -
=1 FlightPlan containerType String Yes = DHL 'N1003" =
madel String Yes Cargo.dbo.Planes Muodel FedEx ‘N1002'
carrier String Yes Cargo.dbo.Carrier planeCarrier planell GreatWall ‘M1004'
Heawylift 'N1005'
UpPs 'N1001

How to use Custom Data Types

1

Custom data types are powerful additions to your Vocabulary that propagate their effects into Rulesheets and

Ruletests.

58

Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Use Custom Data Types in a Vocabulary

After a Custom Data Type is defined as shown, it can be used and reused throughout the Vocabulary's attribute

definitions.

Figure 19: Using Custom Data Types in the Vocabulary

g *Cargo.ecore 52 |E@ Cargo.ers = 8
=] U Cargo Basic Properties R
"J Aircraft Property Mame Property Value
EIJ Caran Attribute Name container
¢ .= container Data Type String
== manitesthumber Mandatory Boolean -
= volume Maode Decimal
= weight g:z:ﬁme
‘)— flightPlan (FlightPlan) Integer
=1 FlightPlan String
carrier
containerType
model -
Time k%

Notice in this figure that multiple attributes can use the same custom data type; the custom data type
cont ai ner Type is shown in the drop-down as a sub-category of the String-based data type. The other custom
data types will be grouped with their base data types as well.

Use enumerated Custom Data Types in Rulesheets

After an enumeration is defined and assigned to an attribute, its labels are displayed in selection drop-down
lists in both Conditions and Actions expressions, as shown. If Labels are not available (because Labels are
optional in an enumerated custom data type's definition), then Values are shown. The nul | option in the
drop-down list is only available if the attribute's Mandatory property value is set to No.

Figure 20: Using Custom Data Types in the Rulesheet

Conditiens] 1 -
a Cargo.container 4
b E
. _
d standard
e oversize
i heavyweight
g reefer
h null
i other
j

-

You can test a condition bound to an attribute by evaluating the attribute against a custom data type label using
the # tag, as shown:

Figure 21: Using # tag to test a custom data type

Conditions 0 1 2 -
Cargo.container = containerTypefreefer

m

Note: Using a dot instead of a # tag works, but if there is custom data type with the same name as an entity,
then the expression will be invalid.

Progress Corticon: Rule Modeling: Version 6.3 59

Chapter 2: Build the Vocabulary

Use enumerated Custom Data Types in Ruletests
An enumeration's Values and Labels are available as selectable inputs in a Ruletest, as shown:

Figure 22: Ruletest selecting container's containerType list

untitled_1
/Tutorial-Done/Enumeraticns.ers Differences: 0
Input Output Expected
= Carge [1]
#=| container | t]

=] manifestM tandard

=| needsRefri oversize

== volume heavyweight
= weight reefer

If you want the attribute value to be null, right-click the attribute, and then select Set to Null, as shown:

a = Cargo[1]
== container [hamnnusinkt]
== ranifest < Unde

== needsRe Cut
= volume | ® "
= weight | 5 Copy
¥ Delete
Set to Mull
Sort Entities
Properties

Use IN operator with an enumerated list

When your rule condition or filter is not defined by a range of values, you might have try to use a series of test
and logical OR operations to describe the test. For example, entityl. attri butel="This' or
entityl.attributel="That' or entityl.attributel="TheQ her' islong, and could evolve into
a very long expression. You can eliminate the use of the long form of enumeration literals by using the i n
operator's list format to reduce that filter or condition expressiontoentityl. attributel in
{'This','That',"' TheQ her'}.

You can go a step further by defining enumerated lists to define even more brisk expressions, where the labels
that you choose are abbreviations for the full names. For example, Regi ons. state in

{MA, NH, VT, CT, R, ME} to qualify only US New England states.

For more information about these features, see the topics in Qualify rules with ranges and lists on page 108.

How to relax enforcement of Custom Data Types

Using Custom Data Types lets you define general limitations of an attribute's values that are enforced on all
Rulesheets and Ruletests in the project and its Decision Services. While they are valuable in focusing on what
is valid in rule designs, violations of the constraints or lists cause rule processing -- Ruletests in Studio; Decision
Services on Servers -- to halt at the first violation. Such exceptions indicate that values in attributes are not
within numeric constraint ranges or not included in enumerated lists that were set in the Vocabulary's Custom
Data Types.

60 Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Note: Progress recommends that you use relaxed enforcement of CDTs only in test environments. In production,
you should enforce data constraints and lists to ensure valid processing by rules.

For Ruleflows, a rule that throws an exception in earlier Rulesheets disables processing in subsequent
Rulesheets. In the following example, the Advanced Tutorial testsheet outputs the following statements:

B2 Rule Messages &2 =0
Severity Message Entity

Info [Checks,2] The customer is a Preferred Cardholder Customer[1]

Info [coupons,2] 52 off next purchase when 3 or more Soda/Juice items are purchased in a single visit, ShoppingCart[1]
Info [coupons,3] 10% off next gas purchase when total is over 575, ShoppingCart[1]
Info [coupons,BO] §1.649800 cashBack bonus earned today, new cashBack balance is 510889800, ShoppingCart[1]
Info [use__cashBack1] cashback.bonus has been deducted from the total. New total = $71.600200. Today's savings = 510.883800. ShoppingCart[1]

Note: The rule tracing feature reveals which Rulesheets fired which rules.

By defining a Custom Data Type that specifies the | t emattribute pr i ce must be greater than zero, and then
entering the input value -1.00 for an item on the testsheet, the first constraint error stops all the subsequent
rules from firing:

3 Rule Messages &2 =08
Severity Message
Violation An unexpected error occurred in Input Data: com.corticon.cdo.ConstraintViolationException: constraint vielation setting Item.price to value [-1]

Relaxing the enforcement of Custom Data Type constraints produces warnings instead of violations, so that
development teams and preproduction testing teams can expedite their debugging of rules and error handling,

as shown:
E Rule Messages &3 =8
Severity Message Entity
Warning constraint violation setting Item.price to value [-1] Item([3]
Info The customer is a Preferred Cardhelder Custemer[1]
Info 52 off next purchase when 3 or more Soda/Juice items are purchased in a single visit. ShoppingCart[1]
Info §1.379800 cashBack bonus earned today, new cashBack balance is §10.619800. ShoppingCart[1]
Info cashback.bonus has been deducted from the total, Mew total = 558.370200. Today's savings = 510.613800. ShoppingCart[1]

This example might indicate that the applications that format requests should handle the data constraint before
forwarding a request to the rules engine.

Detailed example

The following example uses the Car go Vocabulary. It has two Custom Data Types, one numeric constraint
(assigned to Car go. wei ght and Car go. vol une) and an enumeration list (assigned to Car go. cont ai ner .)

Custom Data Types

Data Type Mame Base Data Type | Enumneration | Constraint Expression » Label Value -
String Yes = standard ‘standard’ |z
positivelnteger Integer Mo value ==1 OVErsize 'oversize'
heavyweight| 'heavyweight'
reefer ‘reefer’
A value that is outside the constraints (Car go [1] vol une = - 1)is noted as violating the attribute's data

type constraint on each input attribute and its entity, as well as noted on the Problems tab. But, when the
Ruletest runs, it stops on the first Vi ol ati on, as shown:

Progress Corticon: Rule Modeling: Version 6.3 61

Chapter 2: Build the Vocabulary

untitled_1

/Tutorial/Cargo.ers

Input Qutput Expected
= Cargo [1] E Cargo[1]
F=| container [secure] == container [secure]
P volume [-1] == volume [-1]
= weight [100] =l weight [100]
3 Rule Messages @3 =08
Severity Message Entity
Viclation An unexpected error occurred inInput Data: com.corticon.cdo.ConstraintVielationException: constraint viclation setting Carge.container to value [secure]
4 n [3
=l Properties | % Problems 53 QI ErrorLog ¥ =08
0 errors, 2 warnings, 0 others
Description ‘ Resource Location Path Type
& Warnings (2 items)
& Value -1 does not pass constraint validation: value >=1. Cargo.ert Cargo [1]wolume /Tutorial Validation Me...
¢ Value secure is not in defined Values List of the CustomDataType of standard, oversize, heavyweight, reefer Cargo.ert Carge [1].container /Tutorial Validation Me...

The details of that first exception are entered in the log (when the | ogl evel is | NFOor higher, and the
| ogl nf oFi | t er does notinclude VI OLATI ON—thereby accepting that type of information into the log.) No
further processing occurs.

Note: See the topic "How to change logging configuration” in the Using Corticon Server logs section of Server
Guide.

You can set the property in br ms. pr operti es that relaxes enforcement of Custom Data Types,

com corticon.vocabul ary. cdt. rel axEnf or cenment =t r ue, and then restart the Studio. The errors are
still flagged in the data, and the Problem information is unchanged. However, the Rule Messages section
flags each of the constraint breaches as a Wr ni ng, lets them proceed, and then fires all the other rules.

untitled_1
/Tutorial/Cargo.ers
Input Output Expected
= Carge [1] = Cargo [1]
= container [secure] == container [standard]
= volume [-1] = volume [-1]
=] weight [100] =] weight [100]
C Rule Messages &8 =0
Severity Message Entity
Warning constraint viclation setting Cargo.container to value [secure] Cargol[l]
Warning constraint viclation setting Cargo.volume te value [-1] Cargo[l]
Info Carge weighing <= 20,000 kilos must be packaged in a standard container. Cargo[l]
= Properties | 7 Problems &3 | 9] Error Leg ¥ =0
0 errors, 2 warnings, 0 others
Description = Resource Location Path Type
4 & Warnings (2 items)
% Value -1 does not pass constraint validation: value >=1. Cargo.ert Cargo [1]wolume /Tutorial Validation
& Value secure is not in defined Values List of the CustomDataType of standard, oversize, heavyweight, reefer Cargo.ert Carge [1].container /Tutorial Validation

Note: Progress recommends that you create or update the standard last-loaded properties file,

brms. properti es, tolist override properties such as this for Corticon Studios and Servers. See the introductory
topics in "Server properties and settings" in the Server Guide for more for information about where to locate
this properties file.

62

Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Domains

Occasionally, it may be necessary to include more than one entity of the same name in a Vocabulary. This can
be accomplished using Domains. Domains allow you to bundle one or more entities in a subset within the
Vocabulary, thus you can reuse entity names as long as the entity names are unique within each

Domain. Additional Domains, referred to as sub-Domains, can be defined within other Domains.

Select Vocabulary > Add Domain, or click ﬂ from the Studio toolbar.

A new folder S is listed in the Vocabulary tree. Assign it a name. The example in the following figure shows a
Vocabulary with two Domains, US_Fl eet and WV Fl eet :

Figure 23: Using domains in the Vocabulary>

g AirCargo_Domains.ecore 3

~ [Z] AirCargo_Domains
w) U5 _Fleet
w = Aircraft
= aircraftType
= FAAnumber
= maxCargoVolume
= maxCargoWeight
=€ flightPlan (FlightPlan)
w] WW_Fleet
~ (= Aircraft
= aircraftType
=| |CACQnumber
=] maxCargoVolurme
=] maxCargoWeight
—£ flightPlan (FlightPlan)
E Cargo
~ = FlightPlan
= flightMumber
—£ cargo (Cargo)
)— LSaircraft (Aircraft ;:L5_Fleet:)
)— WiWaircraft (Aircraft @ WW_Fleet::)

Notice that the entity Ai r cr af t appears in each Domain, using the same spelling and containing slightly
different attributes (FAAnunber vs. | CAOnunber). Notice, too, that the association role names from Fl i ght Pl an
to Ai r cr af t were named manually to ensure uniqueness: one is now USai r cr af t and the other is

Wi rcraft.

Progress Corticon: Rule Modeling: Version 6.3 63

Chapter 2: Build the Vocabulary

Domains in a Rulesheet

When using entities from domains in a Rulesheet, it is important to ensure uniqueness, which means aliases
must be used to distinguish one entity from another.

Figure 24: Non-unique Entity names prior to defining Aliases

Lb AirCargo_Domains.ecore E AirCargo_Domains.ers &3
Scope Conditions
{3l Aircraft =US_Fleet:

fa=l Aircraft s WW_Fleet:

[= T o B = i =]

In Non-unique Entity names prior to defining Aliases, both Ai r cr af t entities have been dropped into the
Scope section of the Rulesheet. But because their names are not unique, an error icon &= appears. Also, the
“fully qualified” domain name has been added after each to distinguish them. By fully qualified, we mean the
.. US_FI eet : : designator that follows the first Aircraft and : : WW Fl eet : : that follows the second.

But, it would be inconvenient (and ugly) to use these fully qualified names in Rulesheet expressions. So, you
must define a unique alias for each. The aliases will be used in the Rulesheet expressions, as shown:

Figure 25: Non-unique Entity names after defining Aliases

g AirCargo_Domains.ecore B¢ AirCargo_Domains.ers 53

Scope Conditions

~ (=] Aircraft :US_Fleet:: [usPlane] usPlane.FAAnumber
| FAANUMber wwPlane lCAQnumber

w (=] Aircraft 2WW_Fleet:: [wwPlang]
= |CACQnumber

Domains in a Ruletest

When using Vocabulary terms in a Ruletest, drag and drop them as usual. Notice that they are automatically
labeled with the fully qualified name, as shown:

Figure 26: Domains in a Ruletest

Input
=& aireraft [1] 1205 _Flest::
P = aircraftType
----- = Fasnumber
""" = maxCargovolume
P = maxCargoweight
- sircraft [1] 1 _Fleet::
----- =] aircraftType
""" =] 1CACnumber
""" = maxCargovolume
""" == mawCargoweight

64

Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Support for inheritance

UML Class diagrams frequently include a modeling/programming concept called inheritance, where a class
can “inherit” attributes and associations from another class, for example:

Figure 27: Rose UML model showing inheritance

Person -operatedBy

+age : Decimal

+operates

Equipment

+acquireDate : Date

+name : String | =

|

+propertylD : String

Employee

+hireDate : Date
+|Dnumber : String

|

Pilot
+certificationDate : Date

JAN
Customer
+loyaltyNumber @ String
" -carries
-carriedBy
Aircraft
-flownBy flies. [*type : String
+tailNumber : String
1.7 0.1

In this diagram, there is a UML model that includes inheritance. The solid-headed arrow indicates that the
Enpl oyee class is a descendant of the Per son class, and therefore inherits some of its properties. Specifically,
the Enpl oyee class inherits the age and nane attributes from Per son. In other words, Enpl oyee has all the
same attributes of Per son plus two of its own, hi r eDat e and | Dnunber . Likewise, Ai r cr af t inherits all of
Equi pnent ' s attributes (acqui r eDat e and pr opert yl D) plus has attributes of its own, t ype and

tai | Nunber.

Modeling this UML Class Diagram as a Corticon Vocabulary is straightforward. All Entities, Attributes and
Associations are created per normal practice. To incorporate the elements of inheritance, you only need to add
one additional setting for each of the descendant entities, as shown:

Figure 28: Selecting Ancestor Entity for Descendant

H\ = EW
= [:,.I Inhetitance 4| Basic Properties &
EIE .ﬁ.lrcral.:t Property Mame Property value
N = tailumber Entity Mame Aircraft
- = type Inhetits From Equipment i
i ----- = raptain (Pilak) Zuskomner -
PR —€ passenger {Customer) Employee i
EIE Cuskamer Perenn -
----- = | altyumber Pilot bl
“S= aircraft {Aircraft)
Progress Corticon: Rule Modeling: Version 6.3 65

Chapter 2: Build the Vocabulary

After all descendant entities are configured to inherit from their proper ancestor entities, you can save the
Vocabulary and view it in the Rule Vocabulary window:

Figure 29: Vocabulary with Inheritance

(8 pule vocabuary %

L] =
=

= [:..I Inheritance
E Aircraft
EIE Zustamer

EI operator (Equiprment)
E ----- — aquireDate

----- | propertyID
}f person (Persomn)
}E person (Zustomer)
x person (Emploves)
x person (Pilok)

[-2% operator (Aircraft)
}— aircraft {Aircraft)
#-=] Emploves

E Equipment

-1 Persan

- Pilat

Notice that many of the term names and icons are varying shades of gray. These color codes help you to
understand the inherited relationships that exist in the Vocabulary.

Inherited attributes

Attributes with names displayed in solid black type, such as Cust oner . | oyal t yNunber in Figure
29: Vocabulary with Inheritance on page 66, are native attributes of that entity.

Attributes with names displayed in dark gray type, such as Cust oner . age, are inherited attributes from the
ancestor entity (in the case of Cust oner, Per son).

Inherited associations

Inherited Associations are a bit more complicated. An entity can be directly associated with another entity or
that entity's descendants. An entity can also inherit an association from its ancestor.

Using the example shown in Figure 28: Selecting Ancestor Entity for Descendant on page 65 and Figure
29: Vocabulary with Inheritance on page 66 above, each of these combinations is described:

66

Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Cust oner. ai rcr af t is a direct association between Cust oner and Ai r cr af t entities. No inheritance
is involved, so the association icon is black, and the rolename is black.

Cust oner . oper at or (Equipment) is an association inherited from the Cust omer ancestor entity Per son,
which has a direct association with Equi prment and the rolename oper at or in our Vocabulary. The UML
class Diagram in Figure 28: Selecting Ancestor Entity for Descendant on page 65 shows the rolename as
oper at es because it is more conventional in UML to use verbs as rolenames, whereas nouns usually
make better rolenames in a Corticon Vocabulary. Because the association is inherited from the ancestor's
direct association, the icon is dark gray, and the rolename is black.

Equi pment (which you can see equally well in the expanded oper at or rolename) has several associations
with Per son. One of these is a direct association with the Per son entity. In this case, both the association
icon and the rolename are black. But, Equi prent also has associations with descendants of the Per son
entity, specifically Enpl oyee, Cust oner , and Pi | ot . These are filtered associations, and display their
rolenames in dark gray.

Finally, Cust orrer has another association with oper at or (Aircraft) because Ai r cr af t is a descendant
of Equi pnent . So, the inherited dark gray icon and the filtered dark gray rolename are combined to display
this association.

How to control the tree view

In cases where a Vocabulary contains inheritance (and includes the various icons and color schemes previously
described), but the modelers who use it do not intend to use inheritance in their rules, the inherited associations

and filtered rolenames can be hidden from view by clicking the E icon in the upper right corner of the Rule
Vocabulary window, as shown:

Figure 30: Vocabulary with inheritance properties hidden
| Rule Yocsbulary X =0

) A
| i

=l [:,J Inhetitance
EIE Aircraft

------ == | gilrumber

— capkain (Pilak)
: —f passenger (Cuskomer)
E Cuskomer

Per son and Equi prrent are associated (using named roles), but what relationship does Enpl oyee have with

Equi pnent or Ai rcraft, if any?

How to use aliases with inheritance

Any Entity, Attribute, or Association can be dragged into the Scope section for use in Rulesheets. But, if two

or more terms share the same name, then they must be assigned unique alias names before they can be used

in rules.

Progress Corticon: Rule Modeling: Version 6.3

67

Chapter 2: Build the Vocabulary

For example, in Figure 29: Vocabulary with Inheritance on page 66, there are four
Cust oner . oper at or . per son terms in the Vocabulary due to the various forms of inheritance used by the

entities and associations. If two or more of these nodes are dragged into the Scope window, they will be
assigned error icons € to indicate that their names are not unique, as shown:

Figure 31: Non-Unique nodes used in the Scope window

% = Inheritance.ers

-
E& Inheritance.ecare x

Scnpe|

-] Emploves
El{g_{ i_uskomer
EI--E operator (Equipment)
ﬂ'(person (Person)
ﬂ'é person (Cuskomer)

Without unique names, Corticon Studio does not know which one is intended in any rule that uses one of the
nodes. To ensure uniqueness, aliases must be assigned and used in rules, as shown:

Figure 32: Uniqueness Established using an Alias

i j—
g Inheritance. ecaore % *Ipheritance.ers

Scnpe|
FH-=] Emploves
= Customer
= operator (Equipment)
person (Person) [rmyPerson]
b }G person (Cuskomer)

Effects of inheritance on rule execution

The point of inheritance is not to complicate the Vocabulary. The point is to be able to write rules on ancestor
entities and have those rules affect descendant entities automatically.

68 Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

Examples of effects of inheritance on rule execution are:
* Inherited Conditions and Actions

The following Rulesheet contains two rules that test the age value of the Enpl oyee entity. There are no
explicit actions taken by these rules, only the posting of messages.

Figure 33: Rules written on Employee

W_fe Inheritance. ert

Conditions 1] 1 2
a Employvee.age < 15 - T =
b
C

Actions 4

Post Messagel(s) = —
A,
R

Cwverrides

=
D Rule Skatements &3 Rule Messages

Fef I Post Alias Texk
1 Warning Emploves [{Employves.name}] is koo woung ko be an emploves!
2 Info Emnploves [{Employes.name}] is old enough to be an employves

A Ruletest provides an instance of Enpl oyee and an instance of Pi | ot . Recall from the Vocabulary that
Pi | ot is a descendant of Enpl oyee, which means it inherits its attributes and associations. But more
important from a rule execution perspective, a Pi | ot is also be affected by any rules that affect Enpl oyee,
as shown:

Figure 34: Inheritance in action

Progress Corticon: Rule Modeling: Version 6.3 69

Chapter 2: Build the Vocabulary

Input
== Employee [1]

...... E age [74]

o = name [Joe Smith]
== Pilot [1]

..... E age [12]

“o] ertificationDate

- hireDate

= TDnumber

------ == name [Mary Jones]

Oubput
== Employes [1]

------ == age [24,000000]

o ®=| narne [Joe Smith]
== Pilot [1]

= age [12.000000]

- certificationDate

- hireDate

- TDnumber

------ = name [Mary Jones]

tule Skatements (D Rule Messages &3

Severiby | Message | Enkiky |
Info [Joe Smith] is old enough to be an employes Emnploves[1]
YWarning [Mary Jones] is too woung to be an employves! Pilok[1]

Using inheritance can be an efficient and powerful way to write rules on many different types of employees
(such as pilots, gate agents, baggage handlers, and mechanics) without needing to write individual rules

for each.

70

Progress Corticon: Rule Modeling: Version 6.3

Extend a Vocabulary

* Inherited Association

A similar test demonstrates how associations are inherited during rule execution. In this case, you test
Enpl oyee. hi r eDat e to see who is qualified to operate a piece of Equipment. The += syntax used by the
Action row is explained in more detail in the Rule Language Guide.

Figure 35: Rulesheet populating the operators collection

W\VE *Inheritance, erk
Scope Conditions 1]

=] Equipment Emploves hireDate = '1/1f2020' = T
- | properbyID

o * person (Employes) [operators]
#-] Employee

L I S o I Y o T}

Ackions 4

Filters | Past Message(s)

1 e L
A operakors += Emploves
z B
J c
j ll Overrides
=

D Rule Statements 3 Rule Messages

FRef ID Post | Alias Texk
1 Info Employes Ay employes with a hire date later than Jan, 1, 2020 can operate equiprent I0

[{Equipment. propertyI0}

In the following Ruletest, there is a sample Equi prrent entity, one Enpl oyee, and one Pi | ot . Both hire
dates satisfy the rule's Condition (the Pi | ot inheriting hi r eDat e from its Enpl oyee ancestor as before).
When Enpl oyee was added to the oper at or s collection alias, an instance of the association between
Equi pnent and Enpl oyee is created. But, what may be surprising is that the same occurs for Pi | ot ,
which also has an association to Equi pnent that it inherited from Enpl oyee.

Figure 36: Inheriting an Association

Progress Corticon: Rule Modeling: Version 6.3 7

Chapter 2: Build the Vocabulary

K@ Inheritancez. ers W
untitled_1 |
IInheritanceInheritancez ars
Irjput Cukput
=-E1 Equipment [1] == Equipment [1]
..... ™| aquireDate -/ aquireDate
----- == propertyID [123-ABC] = propertyID [123-ABC]
== Employest] i e <— person (Employee) [1]
..... = age ~— person (Pilot) [1]
----- == hireDate [1/1/2020] == Employes [1]
----- B IDrnumber - age
----- = name [Joe Smith] - hireDate [1/1/2020]
== pilok[ty e = IDnumber
..... = age - name [Joe Smith]
----- =] certificationDate == Filat [1]
----- == hireDate [1/1/2020] -~ age
----- = IDnumber - certificationDate
----- = name [Mary Jones] - hireDate [1/1/2020]
----- == IDnumber
----- =\ name [Mary Jones]
KFlule Statements | B Rule Messages 53
Severiby I Message I Enkity I
Info Any employes with a hire date laker than Jan. 1, 2020 can operate equipment ID [123-48C] Emplovee[1]
Info any employvee with a hire date laker than Jan, 1, 2020 can operate equipment 1D [123-ABC] Pilok[1]

TestYourself questions for Build the vocabulary

Note: Try this test, and then go to TestYourself answers for Building the vocabulary on page 350 to correct
yourself.

Give 3 functions of the Vocabulary.
True or False: All Vocabulary terms must also exist in the object or data model?
True or False: All terms in the object or data model must also exist in the Vocabulary?

True or False: In order to create the Vocabulary, an object or data model must already exist.

o > wbd =

The Vocabulary is an model, meaning many of the real complexities of an underlying data
model are hidden so that the rule author can focus on only those terms relevant to the rules.

6. The UML model that contains the same types of information as a Vocabulary is called a

7. What are the three components (or nodes) of the Vocabulary?

8. Which of the following are acceptable attribute names?

Hair_color hairColor HairColor hair color

9. Which color is used in the Entity icon?

10. Which of the three Vocabulary components can hold an actual value?

72 Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Build the vocabulary

1. What are the five main data types used by Vocabulary attributes?
12 Which colors are used in the Base attribute icon?

13. Which colors are used in the Transient attribute icon?

14. What is the purpose of a Transient Vocabulary term?

15. Associations are by default.

16. Association icons indicate:

optionality singularity cardinality musicality

17. Which of the following icons represents a one-to-many association?

=

18. Which of the following icons represents a one-to-one association?

=

19. If an association is one-directional from the Source entity to the Target entity, then which term is not available
in the Vocabulary?

Target.attribute Target.source.attribute | Source.target.attribute Source.attribute

20. The default role name of an association from the Source entity to the Target entity is:

role1 source target theTarget

21. Sketch a model for the following scenario:

A Purchase Order has a customer name, order date, total amount and an unlimited number of
Line ltems. Each Line ltem has a part number, quantity, price-per-unit and total price.

22 Create a Corticon Studio Vocabulary for the model sketched in 21.
23. List the six steps in constructing a Vocabulary.
24 Cardinality of an association determines:

a. The number of possible associated entities.

b. The number of attributes for each entity.

c. The number of associations possible within an entity.

d. The number of attributes for each association.

25. The Vocabulary terms are the nouns of Corticon rules. What are the verbs?

26. What Corticon document contains the complete list of all Vocabulary operators, descriptions of their usage,
and actual examples of use in Rulesheets?

Progress Corticon: Rule Modeling: Version 6.3 73

Chapter 2: Build the Vocabulary

27. True or False. In addition to the supported vocabulary data types, you can create any type of custom data
type you want?

28. You must name your custom data type. Which of the following are not custom data type naming convention
requirements?

a. Cannot match any other vocabulary entity names
b. May match other Custom Data Type Names
c. Base Data Type names may not be re-used.
d. The name must comply with the standard entity naming rules.
29, True or False. The Enumeration section of the Custom Data Types exposes the Label/Value columns and
allows you to create a list of acceptable value rows.

30. Selecting no in the Enumeration section of the Custom Data Types enables the Contraint Expression. Give
an example of a Constraint Expression:

31. True or False. Constraint Expressions must be equivalent to a Boolean expression to be vaild.
32 In an Enumeration, are both the Label and Value columns required?

33. When you create Enumerated Custom Data Types, which of the following are acceptable entries for the
Value column:

12/12/2011 “12/12/2011” Airbus ‘Airbus’

34. Name an advantage to using Enumerated Custom Data Types when it comes to testing your rules in a
Ruletest.

35. Explain what Domains do in the Vocabulary?

36. True or False. If you use a Domain, then you are required to create an alias for each unique Entity/Domain
pair?

37. True or False. Inheritance can be modeled in a Vocabulary.

38. In the following vocabulary, which Entities have native attributes and which Entities have inherited attributes?

74

Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Build the vocabulary

{-[:J Rule Vocabulary &% 57 T O
=1 Bicydes
El@ Bicyde
----- = cadence

""" = cpeed
=& MountainBike
----- B cadence

----- = seatHeight
=& Roadsike
----- = cadence

39. Give two examples of inherited attributes from the preceding vocabulary:

40. True or False. Using Inheritance can be a way to write efficient and powerful rules. For example, one rule
could be used to modify the cadence attribute for all the entities in the preceding Vocabulary example.

Progress Corticon: Rule Modeling: Version 6.3 75

Chapter 2: Build the Vocabulary

76 Progress Corticon: Rule Modeling: Version 6.3

Rule scope and context

The air cargo example that you started in the Vocabulary chapter is continued here to illustrate the important
concepts of scope and context in rule design.

A quick recap of the fact model:

Figure 37: Fact model

wneight
wialume
mani festM um ber
pack.aging
caroo
aircraftType
maxC argoy eight
maxZangosolume
schedules tail H L by
schediies
FlichtP lan Ajrcrat
flightMumber

Progress Corticon: Rule Modeling: Version 6.3

77

Chapter 3: Rule scope and context

According to this Vocabulary, an aircraft is related to a cargo shipment through a flight plan. In other words,
it is the flight plan that connects or relates an aircraft to its cargo shipment. The aircraft, by itself, has no direct
relationship to a cargo shipment unless it is scheduled by a flight plan; or, no aircraft may carry a cargo shipment
without a flight plan. Similarly, no cargo shipment can be transported by an aircraft without a flight plan. These
facts constitute business rules in and of themselves and constrain creation of other rules because they define
the Vocabulary you will use to build all subsequent rules in this scenario.

Also recall that the company wants to build a system that automatically checks flight plans to ensure no
scheduling rules or guidelines are violated. One of the many business rules that need to be checked by this
system is:

1. An Aircraft must not carry & Cargo shipment that exceeds its maximum Cargo weight

With your Vocabulary created, you can build this rule in the Studio. As with many tasks in Studio, there is often
more than one way to do something. We will explore two possible ways to build this rule — one correct and one
incorrect.

To begin write your rule using the root-level terms in the Vocabulary. In the following figure, column #1 (the
true Condition) is the rule you should be most interested in. The false condition in column #2 was added simply
to show a logically complete Rulesheet.

Figure 38: Expressing the rule using root-level Vocabulary terms

] Rule Vocabulary 52 % = =08 rootlevelScope.ers 53
y | P

w [airCargo Conditions 1 2

~ = aircraft cargo.weight > aircraft.maxCargoWeight T F
=l aircraftType
=| maxCargoVolume
=] maxCargoWeight Actions <
=] tailNumber Post Message(s) EA EA
—£ flightPlan (FlightPlan) A

w (= cargo
= container
= manifestMumber

=] packaging] Rule Statements 532

= volume -
= weight Ref |ID Post Alias Text
. . 1 Viclation | carge | Carge [{cargo.manifestMumber}] is too heavy to be
9-_ flightPlan (FlightPlan] carried by Aircraft [{aircraft.tailMumber}]
&l FlightPlan 2 Info carge | Cargo [{cargo.manifesthumber}] may be carried by
Aircraft [{aircraft.tailMumber}]

oo

m

Overrides

You can build a Ruletest to test the rule using the Cargo company's actual data, as follows:

78

Progress Corticon: Rule Modeling: Version 6.3

The company owns 3 Aircraft, 2 747s and a DC-10, each with different tail numbers. Each box represents a
real-life example (or instance) of the Ai r cr af t term from your Vocabulary.

Figure 39: The Cargo Company's 3 Aircraft

Lircraft

aircraftType: 747
maxCango eight: 200,000 kgs.
tailtumbaer: +1001

aircraftType: 747
rmax Cargmeight: 200,000 kgs.
tailkurrber. F1002

aircraftType: DC-10
maxCargoeight: 150,000 kgs.
tailurmber: F1003

These aircraft give the company the ability to schedule 3 cargo shipments each night. Another business rule
is implied:— “an Ai r cr af t cannot be scheduled for more than one flight per night”. This rule is not addressed
now because it is not relevant to the discussion}. On a given night, the cargo shipments look like those shown.
Again, like the Ai r cr af t , these cargo shipments represent specific instances of the generic Car go term from
the Vocabulary.

Figure 40: The three cargo shipments for the night of June 25th

Cargo

weight: 100,000 kgs.
volume: 300 cubic meters
manifesitiumber: 254

weight: 175,000 kgs.
volurne: 300 cubic meters
manifesthlumber: 6258

weight: 150,000 kgs.
volume: 300 cubic meters
mafifesitumber: B25C

Progress Corticon: Rule Modeling: Version 6.3

79

Chapter 3: Rule scope and context

Finally, the sample business process manually matches specific aircraft and cargo shipments together as three
flight plans, as shown below. This organization of data is consistent with the structure and constraints implicit

in the Vocabulary.

Figure 41: The three FlightPlans with their related Aircraft and Cargo instances

Lircraftc

FlightPlan

gircraftType: 747

tailMumber. M1 001

Cargo

wight: 100,000 kgs.

maxC any oiei ght: 200,000 kgs.

flighthumber: 101

gircrattType: 747

tailMumber. M1002

maxiC ang oieight: 200,000 kgs.

fligghth umber: 102

volum e: 300 cubic meters
rmanitesttumber: 52548

weight: 175,000 kgs.
woluim e 300 cubic meters

gircraftType: DC-10

tailMumber. M1003

manitesttumper. G238

weight: 150 000 kgs.

maxiCamgoyisight: 150,000 kgs.

flighthblumber: 103

volume: 300 cubic meters
manitestumiber. B25C

You can construct a Ruletest (in the following figure) so that the company's actual data is evaluated by the
rule. Because the rule used root-level Vocabulary terms in its construction, you use root-level terms in the

Ruletest:

Figure 42: Test the rule using root-level Vocabulary terms

= aircraftType
= maxCargoVolume
= maxCargoWeight

= flighthumber
3 aircraft (aircraft)

—€ cargo (cargo)

[Z] Rule Vocabulary 53 = 8 g rootlevelScopeert 53
% = untitled_1
w [airCargo) L
v 5] sircraft .l-RuIesTutorlaI; rootlevelScope.ers

Input
w &= aircraft [1]
= aircraftType [747]

w (= carge [1]
= manifestMumber [6254)]
= weight [100000]

w (= carge [2]
=] manifestMumber [6258]
= weight [173000]

w (= carge [3]
= manifestMumber [625C]
= weight [150000]

Output
w &= aircraft [1]
= aircraftType [747]

== tailNumber [=| maxCargoWeight [200000.000000] = maxCargoWeight [200000.000000]
= flightPlan (FlightPlan) = tailMumber [M101] = tailMumber [N101]
w (=] cargo +v & aircraft [2] ~ = aircraft [2]
= container =] aircraftType [747] = aircraftType [747]
= manifesthlumber =] maxCargoWeight [200000.000000] == maxCargoWeight [200000.000000]
==| packaging =] tailNumber [N102] =] tailNumber [N102]
= volume v & aircraft [3] ~ & aircraft [3]
=] weight = aircraftType [DC10] =] aircraftType [DC10]
2~ flightPlan (FlightPlan) | maxCargoWeight [150000.000000] =] maxCargoWeight [150000.000000]
v & FlightPlan B tailMumber [N103] B tailMNumber [N103]

w (= carge [1]
= manifestMumber [6254)]
= weight [100000.000000]
w (= carge [2]
=] manifestMumber [6258]
[=| weight [175000.000000]
w (= carge [3]
= manifestMumber [625C]
= weight [150000.000000]

80

Progress Corticon: Rule Modeling: Version 6.3

Running the Ruletest:

Figure 43: Results of the Ruletest

[2'; airCargo.ecore E rootlevelScope.ers

untitled_1

fRulesTuterial/rootlevelScope.ers

Input
w = aircraft [1]
= aircraftType [747]
= maxCargoWeight [200000.000000]
= tailMumber [M101]
w = aircraft [2]
= aircraftType [747]
= maxCargoWeight [200000.000000]
= tailMumber [M102]
w = aircraft [3]
= aircraftType [DC10]
= maxCargoWeight [150000.000000]
= tailMumber [M103]
w & cargo [1]
== manifestMumber [6254)]
= weight [100000]
w (= cargo [2]
= manifestMumber [6258]
=] weight [173000]
w = cargo [3]
= manifestMumber [625C]
= weight [150000]

@ rootlevelScope.ert 53

Output
w =] aircraft [1]
= aircraftType [747]
=] maxCargoWeight [200000.000000]
=] tailMurmber [M101]
w = aircraft [2]
= aircraftType [747]
=] maxCargoWeight [200000.000000]
=] tailMumber [M102]
w =] aircraft [3]
= aircraftType [DC10]
=] maxCargoWeight [150000.000000]
= tailMurmber [M103]
w & cargo [1]
== manifesttflumber [6234)]
=] weight [100000.000000]
w (=] cargo [2]
= manifestfumber [6258]
f==| weight [175000.000000]
w = cargo [3]
= manifestfumber [625C]
B=] weight [150000.000000]

E| E Rule Messages &3

Severity Message Entity
Yiolation Cargo [625B] is too heavy to be carried by Aircraft [N103] cargo(2]
Info Cargo [625B] may be carried by Aircraft [M102] carga[2]
Info Cargo [6254] may be carried by Aircraft [M102] carga[1]
Info Cargo [625C] may be carried by Aircraft [N102] carge(3]
Info Cargo [625B] may be carried by Aircraft [M101] carga[2]
Info Cargo [6254] may be carried by Aircraft [M101] carga[1]
Info Cargo [625C] may be carried by Aircraft [N101] carge(3]
Info Cargo [6254] may be carried by Aircraft [M103] carga[1]
Info Cargo [625C] may be carried by Aircraft [N103] cargel3]

Progress Corticon: Rule Modeling: Version 6.3

Chapter 3: Rule scope and context

Note the messages returned by the Ruletest. Recall that the intent of the rule is to verify whether a given

FI i ght pl an is in violation by scheduling a Car go shipment that is too heavy for the assigned Ai rcraft.
You already know that there are only three Fl i ght pl ans. And you also know, from examination of Figure
41: The three FlightPlans with their related Aircraft and Cargo instances on page 80, that the combination of
aircraft N1003 and cargo 625Cdoes not appear in any of the three Fl i ght pl ans. So, why was this combination,
one that does not actually exist, evaluated? For that matter, why did the rule fire nine times when only three
sets of Aircraft and Cargo were present? The answer is in the way the rule was defined, and in the way the
rules engine evaluated it.

The Ruletest has three instances of both Ai r cr af t and Car go. Studio treats Ai r cr af t as a collection or
set of these three specific instances. When Studio encounters the term Ai rcr af t in a rule, it applies all
instances of Ai r cr af t found in the Ruletest (all three instances in this example) to the rule. Because both
Ai rcraft and Car go have three instances, there are a total of nine possible combinations of the two terms.
In the following figure, the set of these nine possible combinations is called a cross product, Cartesian product,
or tuple set in different disciplines. Progress uses cross-product when describing this outcome.

Figure 44: All possible combinations of Aircraft and Cargo

aircraftType: 747 waeight: 100,000 kgs.
maxCargoeight: 200,000 kgs. go| wolum e 300 cubic meters
tailMumber, M1 001 rmanitestdumber. G254
aircraftType: 747 weight: 175 000 kgs.
maxCarnoeight: 200,000 kgs. | wolum e 300 cubic meters
tailMumber. K1 002 manitestMumper. 62358
aircraftType: DC-10 weight: 150 000 kgs.
maxCangoteight: 150,000 kgs. g volum e 300 cubic meters
tailMumber, M1 003 rmanmesttumber, B23C

One pair, the combination of manifest 625B and plane N1003 (shown as the red arrow in the preceding figure),
is illegal, because the plane, a DC- 10, can only carry 150, 000 kilograms, while the cargo weighs 175, 000
kilograms. But, this pairing does not correspond to any of the three Fl i ght Pl ans created. Many of the other
combinations evaluated (five others) are not represented by real flight plans either. So why did Studio perform
three times the necessary evaluations? It is because the rule, as implemented in Figure 38: Expressing the
rule using root-level Vocabulary terms on page 78, does not capture the essential elements of scope and
context.

You want your rule to express the fact that you are only interested in evaluating the Car go—Ai r cr af t pair
for each Fl i ght Pl an, not for all possible combinations. How do you express this intention in your rule? You
use the associations included in the Vocabulary.

82 Progress Corticon: Rule Modeling: Version 6.3

Refer to the following figure:

Figure 45: Rule expressed using FlightPlan as the Rule Scope

1 RuleVocabulary 32 35 < = B | B FlightPlanScope.ers 53
w] airCargo Conditions 1 2
= aircraft a FlightPlan.cargo.weight = T F
H cargo FlightPlan.aircraftimax CargoWeight
v] FlightPlan p
= flightMumber Actions «
~ 3~ aircraft (aircraft) Post Message(s) £ e
= aircraftType ‘;
== maxCargoVolume c
= m_axCargoWaght Overrides
=] tailMumber
v —€ cargo (cargo)] Rule Statements i3
tai
S con 1'"‘:;\1 b Ref ID Post | Alias Text
man E_S umauss 1 Yiolation FlightPlan | Carge [{FlightPlan.cargo.manifestMumber}] is too
=1 packaging heavy for Aircraft [{FlightPlan.aircraft.tailNumber}]
=] volume 2 Info FlightPlan | Cargo [{FlightPlan.cargo.manifestMumber}] may be
9 g 9] Y
=] weight carried by Aircraft [{FlightPlan.aircraft.tailNumber}]

Here, the rule was rewritten using the ai r cr af t and car go terms from inside the Fl i ght Pl an term.

Note: Inside means that the Ai rcr af t and Car go terms that appear when the Fl i ght Pl an term is opened
in the Vocabulary tree, as shown by the orange highlights in Rule expressed using FlightPlan as the Rule
Scope.

This is significant. It means that you want the rule to evaluate the Car go and Ai r cr af t terms only in the
context of a Fl i ght Pl an. For example, on a different night, the Cargo company might have eight cargo
shipments assembled, but only the same three planes on which to carry them. In this scenario, three flight
plans would still be created. Should the rule evaluate all eight cargo shipments, or only those three associated
with actual flight plans? From the original business rule, only those cargo shipments in the context of actual
flight plans should be evaluated. To put it differently, the rule's application is limited to only those cargo shipments
assigned to a specific aircraft using a specific flight plan. We express these relationships in the Rulesheet by
including the FI i ght Pl an term in the rule, so that car go. wei ght is properly expressed as

FI i ght Pl an. car go. wei ght , and Ai rcr af t . maxCar goWei ght is properly expressed as

Fl i ght Pl an. ai rcraft. maxCar goWei ght . By attaching Fl i ght Pl an to the terms

ai rcraft. maxCar goWei ght and car go. wei ght, you indicate mandatory traversals of the associations
between Fl i ght Pl an and the other two terms, Ai r cr af t and Car go.This instructs the rules engine to
evaluate the rule using the intended context. When writing rules, it is important to understand the context of a
rule and the scope of the data to which it will be applied.

For details, see the following topics:

* Rule scope
* Aliases
* Scope and perspectives in the vocabulary tree

* TestYourself questions for Rule scope and context

Progress Corticon: Rule Modeling: Version 6.3

83

Chapter 3: Rule scope and context

Rule scope

Because the rule evaluates both Car go and Ai r cr af t in the context of Fl i ght Pl an, the rule has scope,
which means that the rule evaluates only that data which matches the rule's scope. This has an interesting
effect on the way the rule is evaluated. When the rule is executed, its scope ensures that the Corticon Server
evaluates only those pairings that match the same Fl i ght Pl an. This means that car go. wei ght is compared
toai rcraft. maxCar goWei ght only if both car go and ai r cr af t share the same Fl i ght Pl an. This
simplifies rule expression greatly, because it eliminates the need to specify which Fl i ght Pl an is referred to
for each Ai r cr af t - Car go combination. When a rule has context, the system takes care of this matching
automatically by sending only those aircraft - cargo pairs that share the same flight plan to be evaluated by the
rule. And, because Corticon Studio automatically handles multiple instances as collections, it sends all pairs
to the rule for evaluation.

Note: See the Collections topic for a detailed discussion of this subject.

To test this new rule, structure your Ruletest to correspond to the new structure of your rule and reflect the
rule's scope. For more information about the mechanics of creating associations in Ruletests, see and "Add
and edit association nodes and their properties" and "Create associations in the test tree" in the Quick Reference
Guide.

84 Progress Corticon: Rule Modeling: Version 6.3

Rule scope

Finally, one Fl i ght Pl an is created for each Ai r cr af t - Car go pair. This means that a total of three

FI i ght Pl ans are generated each night. Using the terms in your Vocabulary and the relationships between
them, Figure 41: The three FlightPlans with their related Aircraft and Cargo instances on page 80 shows the
possibilities. The rule evaluates these combinations and identifies any violations.

Figure 46: New Ruletest using flight plan as the rule scope

g FlightPlanContextTestshestert 53

untitled_1
fRulesTutorial/FlightPlanContextRulesheet.ers

Input
w = FlightPlan [1]
= flightMumber [101]
w o— aircraft (aircraft) [1]
= aircraftType [747]
= maxCargoWeight [200000.000000]
== tailMumber [M101]
w o— cargo (cargo) [1]
= manifestMumber [6254]
=] weight [100000]
w =] FlightPlan [2]
= flightMumber [102]
~ o— aircraft (aircraft) [2]
= aircraftType [747]
= maxCargoWeight [200000.000000]
= tailMurmber [M102]
~ o— cargo (cargo) [2]
= manifestMumber [6258]
=] weight [173000]
~ =] FlightPlan [3]
= flightMumber [103]
w <— aircraft (aircraft) [3]
= aircraftType [DC10]
=] maxCargoWeight [150000.000000]
=) tailMurmber [M103]
w — cargo (cargo) [3]
==| manifestfumber [625C]
=] weight [150000]

What is the expected result from this Ruletest? If the results follow the same pattern as in the first Ruletest,
you might expect the rule to fire nine times (three Ai r cr af t evaluated for each of three Car go shipments).

Progress Corticon: Rule Modeling: Version 6.3 85

Chapter 3: Rule scope and context

In the following figure you see that the rule fired only three times, and only for those Ai r cr af t - Car go pairs
that are related by common flight plans. This is the result that you want. The Ruletest shows that there are no

FI i ght Pl ans in violation of the rule.

Figure 47: Ruletest results using scope — note no violations

g FlightPlanContextTestshestert 53

untitled_1

Input
~ =] FlightPlan [1]
= flightMumber [101]
w — aircraft (aircraft) [1]
= aircraftType [747]

= tailMumber [M101]

w o— carge (cargo) [1]
== manifestMumber [6254)]
=] weight [100000]

~ = FlightPlan [2]
= flightMumber [102]

w o— aircraft (aircraft) [2]

B aircraftType [747]

= tailMumber [M102]

w <— cargo (cargo) [2]
== manifestMumber [625E]
=l weight [175000]

~ =] FlightPlan [3]
= flightMurmber [103]

w o— aircraft (aircraft) [3]

= aircraftType [DIC10]

= tailMumber [M103]

w ¢— carge (cargo) [3]
== manifestMumber [625C]
=] weight [150000]

L’RulesTutu:u rial/FlightPlanContextRulesheet.ers

= maxCargoWeight [200000.000000]

== maxCargoWeight [200000.000000]

E=| maxCargoWeight [150000.000000]

Output
~ =] FlightPlan [1]
= flightMumber [101]
w $— aircraft (aircraft) [1]
= aircraftType [747]
= maxCargoWeight [200000.000000]
=] tailMumber [M101]
w £— carge (carga) [1]
== manifestMumber [6254)
=] weight [100000.000000]
~ =] FlightPlan [2]
= flightMumber [102]
w ¢— aircraft (aircraft) [2]
B aircraftType [747]
== maxCargoWeight [200000.000000]
= tailMumber [M102]
w <— cargo (cargo) [2]
== manifesttlumber [625E]
=] weight [175000.000000]
~ =] FlightPlan [3]
= flightMurmber [103]
w ¢— aircraft (aircraft) [3]
= aircraftType [DIC10]
E=| maxCargoWeight [150000.000000]
=] tailMumber [M103]
w <— carge (carga) [3]
== manifestMumber [625C]
=] weight [150000.000000]

Carge [623B] may be carried by Aircraft [M102]
Cargo [625C] may be carried by Aircraft [M103]
Cargo [6253A)] may be carried by Aircraft [N101]

B EA Rule Messages i3
Severity Message

Info

Infa

Infa

Entity

FlightPlan[2]
FlightPlan[3]
FlightPlan[1]

86

Progress Corticon: Rule Modeling: Version 6.3

Aliases

One final point about scope: it is critical that the context you choose for your rule supports the intent of the
business decision you are modeling. At the beginning of the example, the purpose of the application was to
check flightplans that have already been created. Therefore, the context of the rule was chosen so that the
rule's design was consistent with this goal: no aircraft-cargo combinations should be evaluated unless they are
already matched up using a common flight plan.

But what if the business purpose was different? What if the problem trying to be solved is modified to: Of all
possible combinations of aircraft and cargo, determine which pairings must not be included in the same flight
plan. The difference here is subtle but important. Before, you were identifying invalid combinations of pre-existing
flight plans. Now, you are trying to identify invalid combinations from all possible cargo-aircraft pairings. This
other rule might be the first step in a screening or filtering process designed to discard all the invalid combinations.
In this case, the original rule you built, root-level context, is the appropriate way to implement the rule, because
now you are looking at all possible combinations prior to creating new flight plans.

Aliases

To clean up and simplify rule expression, Corticon Studio allows you to declare aliases in a Rulesheet. Using
an alias to express scope results in a less cluttered Rulesheet.

To define an alias, you need to open the Scope tab on the Rulesheet. Either click the toolbar button E to
open the advanced view, or choose the Rulesheet menu toggle Advanced View.

If rules were already modeled in the Rulesheet, then the Scope window contains those Vocabulary terms used
in the rules so far. If rules were not yet modeled, then the Scope window is empty.

To define an alias, double-click the term, and then type a unique name in the entry box, as shown:

Figure 48: Defining an alias in the Scope window

Scope

vil—] FlightPlan | plan| |
W }— aircraft (aircraft)
= maxCargoWeight
f=| tailMurmber
~ —€ cargo (cargo)
=| manifestMumber
f=| weight

After an alias is defined, any subsequent rule modeling in the Rulesheet automatically substitutes the alias for
the Vocabulary term it represents.

Progress Corticon: Rule Modeling: Version 6.3 87

Chapter 3: Rule scope and context

In the next illustration, notice that the terms in the Condition rows of the Rulesheet do not show the FI i ght PI an
term. That is because the alias pl an substitutes for FI i ght Pl an.

Figure 49: Rulesheet with FlightPlan alias declared in the Scope section

@ FlightPlanScopedliases.ers @3

Scope Conditions 1 2
=] aircraft a plan.cargoaweight = plan.aircraft.rmaxCargoWeight T F
£ cargo b

~ [=] FlightPlan [plan] ;

W)— aircraft (aircraft) .
F=| maxCargoWeight .
b= tailMumber Actions €
v—{ cargo (cargo) Post Message(s) EA i |
= manifestMumber ';
f=| weight c

Filters D
1 ~ | E
2 W Cherndes

|Z] Rule Statements £3
Fef ID |Post Aliaz | Text
1 Yiolation | plan Carge [{plan.cargo.manifestilumber}] is too heavy for Aircraft [{plan.aircraft.tailMumber}]
2 Info plan Carge [{plan.cargo.manifesthumber}] may be carried by Aircraft [{plan.aircraft.tailMumber}]

After an alias is defined, any new Vocabulary term dropped onto the Rulesheet is adjusted accordingly. For
example, dragging and dropping Fl i ght Pl an. car go. wei ght onto the Rulesheet displays as

pl an. car go. wei ght .

Aliases work in all sections of the Rulesheet, including the Rule Statement section. Modifying an alias name
defined in the Scope section causes the name to update everywhere it is used in the Rulesheet.

Note: Rules modeled without aliases do not update automatically if aliases are defined later. So if you intend
to use aliases, define them as you start your rule modeling. That way, they apply automatically when you drag
and drop from the Vocabulary or Scope windows.

Scope and perspectives in the vocabulary tree

Because the Vocabulary is organized as a tree in Corticon Studio, it may be helpful to extend the tree analogy
to better understand what aliases do. The tree view permits us to use the business terms from a number of
different perspectives, each perspective corresponding to one of the root-level terms and an optional set of

one or more branches.

88

Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

Table 1: Vocabulary Tree Views and Corresponding Branch Diagrams

Vocabulary Tree Description Branch Diagram
This portion of the Vocabulary tree
can be visualized as the branch
== FlightPlan diagram shown to the right.
= Flighthurber Because this piece of the
-] FlightRrange Vocabulary begins with the
-3 %craft {Aircraft) FI i ght Pl an root, the branches
""" aircraftType also originate with the FI i ght Pl an .
""" = maxCargotiolume root or ?runk The Fl i ghtgPI an's cargo gaircraft
----- = maxCargoieight . ’ .
_____] taiiumber associated cargo and ai rcraft
Bl —€ cargn (Carga) terms are branches from the trunk.
----- = marifesthumber Any rule expression that uses FlightPlan
..... = packaging Fl i ght Pl an,
""" = volume Fli aht Pl
..... = weight g an. cargo, or .
Fl i ght Pl an. ai rcraft is using
scope from this perspective of the
Vocabulary tree.
== aircraft This portion of the Vocabulary tree
=] aircraftType begins with Ai r cr af t as the root,
8 maxCargovolume with its associated f | i ght Pl an
E maxCargaieight branching from the root. A car go, |
= tailtdumber in turn, branches from its associated cargo
== FlightPlan (FlightPlan) f1i ght Pl an
E FlightMurnber ' | .
=1 FightRange Any rule expression that uses flightPlan
E—(cargo {Cargo) Aircraft, I
B8 manifestilumber Aircraft.flightPlan,or Aircraft
= packaging Aircraft.flightPlan.cargo
o] yalume
L e is using scope from this perspective
weight
of the Vocabulary tree.
== Cargo This portion of the Vocabulary tree
/=] manifesthumber begins with Car go as the root, with
= packaging its associated f | i ght Pl an
E VD'_L'F“E branching from the root. An | _
= weight ai rcraft,inturn, branches from aircraft
515~ flishtlan (FightPlan) its associated f | i ght Pl an
E FlightMurnber ' | .
=] FlightRange Any rule expression that uses flightPlan
E|>' aircraft (aircraft) Car go, Car go. f 1 i ght Pl an, or I
B aircraftType Cargo.flightPlan.aircraft Cargo
-] maxCargoiolume
]] is using scope from this perspective
i maxCargoieight
=] bailumber of the Vocabulary tree.

Scope can also be thought of as hierarchical, meaning that a rule written with scope of Ai r cr af t applies to

all root-level Ai r cr af t data. And other rules using some piece (or branch) of the tree beginning with the root
term Ai rcraft,includingAircraft.flightPlanandAircraft.flightPlan. cargo, also apply to this
data and its associated collections. Likewise, a rule written with the scope of Car go. f I i ght Pl an does not

apply to root-level Fl i ght PI an data.

Progress Corticon: Rule Modeling: Version 6.3

89

Chapter 3: Rule scope and context

This provides an alternative explanation for the different behaviors between the Rulesheets in Expressing the
Rule Using Root-Level Vocabulary Terms and Rule Expressed Using FlightPlan as the Rule Scope. The rules
in the former are written using different root terms and therefore different scopes, whereas the rules in the latter
use the same FI i ght Pl an root and therefore share common scope.

How to use roles

Using roles in the Vocabulary can often help to clarify rule context. To illustrate this point, a slightly different
example will be used. The UML class diagram for a new (but related) sample Vocabulary is as shown:

Figure 50: UML Class Diagram without Roles

Person

Ajrcraft

&pnarme : String
&page : Integer
&pdepartment : String

&aircraftType © String
&rmaxCargovWeight - Double
Q}maxCargnVulume : Double
EtailMumber : String

As shown in this class diagram, the entities Per son and Ai r cr af t are joined by an association. However,
can this single association sufficiently represent multiple relationships between these entities? For example,
a prior Fact Model might state that “a pilot flies an aircraft” and “a passenger rides in an aircraft”. Both pilot and
passenger are descendants of the entity Per son. Furthermore, some instances of Per son may be pilots and
some may be passengers. This is important because it suggests that some business rules may use Per son
in its pilot context, and others may use it in its passenger context. How do you represent this in the Vocabulary

and rules in Corticon Studio?

Assume that you want to implement two new rules:

1. By FAA regulations, 747 aircraft must be flown by at least 2 pilots

2. ADC-10 may not carry more than 200 passengers

90

Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

These rules are called cross-entity because they include more than one entity (both Ai r cr af t and Per son)
in the expression. Unfortunately, with the Vocabulary as it is, you have no way to distinguish between pilots
and passengers, so there is no way to unambiguously implement these two rules. This class diagram, when
imported into Corticon Studio, looks like this:

Figure 51: Vocabulary without roles

L_b airCargoMoRoles.ecore i3

w [airCargoMNoRoles
w =] Aircraft
= aircraftType
= maxCargoVolume
= maxCargoWeight
== tailMumber
3£ person (Person)
~ =] Person
= age
= departrment

==| name
){ aircraft (Aircraft)

However, there are several ways to modify this Vocabulary to allow you to implement these rules.

Use Inheritance

Use two separate entities for Pi | ot and Passenger instead of a single Per son entity. This may often be the
best way to distinguish between pilots and passengers, especially if the two types of Per son reside in different
databases or different database tables (an aspect of deployment that rule modelers may not be aware of).
Also, if the two types of Per son have some shared and some different attributes (Pi | ot may have attributes
like I i censeRenewal Dat e and t ypeRat i ng while Passenger may have attributes like f ar ePai d and
seat Sel ect i on), then it may make sense to set up entities as descendants of a common ancestor entity
(such as Enpl oyee).

Add an attribute to Person

If the two types of Per son differ only in their type, then you can add a per sonType (or similar) attribute to the
entity. In some cases, per sonType will have the value of pi | ot , and sometimes it will have the value of
passenger . The advantage of this method is that it is flexible: in the future, a Per son of type manager or
bag handl er orair nmarshal can easily be added. Also, this construction may be most consistent with the
actual structure of the employee database or database table, and maintains a normalized model. The
disadvantage comes when the rule modeler needs to refer to a specific type of Per son in a rule. While this
can be accomplished using any of the filtering methods discussed in Rule Writing Techniques, they are
sometimes less convenient and clear than the final method, discussed next.

Progress Corticon: Rule Modeling: Version 6.3 91

Chapter 3: Rule scope and context

Use roles

A role is a noun that labels one end of an association between two entities. For example, in our

Per son—Ai r cr af t Vocabulary, the Per son may have more than one role, or more than one kind of relationship,
with Ai r cr af t . Aninstance of Per son may be a pi | ot orapassenger ; each is a different role. To illustrate
this in our UML class diagram, we add labels to the associations as follows:

Figure 52: UML class diagram with roles

Adrcraft
o ———__|&aircrafiType : String
T . & maxCargoWeight : Double

&age : Integer &
. maxCargotolume : Double
& ;] : R
st &tailNumber : String

+passenger

Person +pilot

When the class diagram is imported into Corticon Studio, it appears as the Vocabulary below:

Figure 53: Vocabulary with roles

g airCargoRole.ecare &2

w [] airCargoRole

~ =] Aircraft
= aircraftType
== maxCargoVolume
= maxCargoWeight
= tailMurmber
—£ passenger (Person)
—£ pilot (Person)

~ = Person
= age
F=| departrment
= name
3~ aircraft] (Aircraft)
3~ aircraft2 (Aircraft)

Notice the differences between the two preceding Vocabularies In Vocabulary with Roles, Ai r cr af t contains
2 associations, one labeled passenger and the other pi | ot , even though both associations relate to the
same Per son entity. Also notice that the cardinalities of both Ai r cr af t —Per son associations have been
updated to one-to-many.

92

Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

Written using roles, the first rule is illustrated below. There are a few aspects of the implementation to note:

* UseofaliasesforAircraft andAircraft. pilot (pl ane and pi | ot O Pl ane, respectively). Aliases
are just as useful for clarifying rule expressions as they are for shortening them.

* The rule Conditions evaluate data within the context of the pl ane and pi | ot O Pl ane aliases, while the
Action posts a message to the pl ane alias. This enables you to act on the Ai rcr af t entity based upon
the attributes of its associated pilots. Note that Condition row b uses a special operator (- >si ze) that
counts the number of pilots associated with a plane. This is called a collection operator, and is explained
in detail in the section on Collections on page 129.

Figure 54: Rule #1 implemented using roles

Eg airCargoRale.ers 52

Scope Conditions 1 2 3
~ (=] Aircraft [plang] a | planeaircraftType 74T 4T 4T
W= aircraftType b | pilotOfPlane -» size 0,1} 2 s 2
—£€ pilot (Person) [pilotOfPlane] Actions <
Post Message(s) =4 B =
Filters A
1 - B
2 W Overrides

[Rule Statements 3

Ref 1D Post Alias Text

1 Viclaticn plane Exactly 2 pilots are required to fly a 747 - fewer than 2 viclates FAA regulations

2 Info plane Exactly 2 pilots are required to fly a 747 - 2 are assigned to this flight

3 Warning plane Exactly 2 pilots are required to fly a 747 - more than 2 is unnecessary but not unsafe

Progress Corticon: Rule Modeling: Version 6.3 93

Chapter 3: Rule scope and context

To demonstrate how Corticon Studio differentiates between entities based on rule scope, construct a new
Ruletest that includes a single instance of Ai r cr af t and 2 Per son entities, neither of which has the role of

pil ot.

Figure 55: Ruletest with no Person entities in pilot role

“g airCargoRole.ert 53

| untitled_1

JRulesTutorial/airCargoRole.ers

Input Output
~ = Aircraft [1] w = Aircraft [1]
= aircraftType [747] = aircraftType [747]
== maxCargoVolume = maxCargoVolume
=] maxCargoWeight = maxCargoWeight
=) tailMumber = tailMumber
w =] Person [1] w =] Person [1]
= age[23] = age[23]
=] department [Flight Crew] F=| department [Flight Crew]
= name [Joe Smith] = name [Joe Smith]
w =] Person [2] w =] Person [2]
= age [32] = age[32]
=] department [Flight Crew] F=| department [Flight Crew]
== name [Bob Roberts] == name [Bob Roberts]

[{] Rule Statements | & Rule Messages &3

Severity Meszage
{Miolation | Exactly 2 pilots are required to fly a 747 - fewer than 2 violates FAA regulations

Although there are two Per son entities, both of whom are members of the Fl i ght Cr ewdepartment, the
system recognizes that neither of them have the role of pi | ot (in relation to the Ai r cr af t entity), and therefore
generates the violation message shown.

94 Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

If you create a new Input Ruletest, then this time with both persons in the role of pilot, you see a different result,
as shown:

Figure 56: Ruletest with both Person entities in role of pilot

g airCargoRole.ert 53

| wuntitled_1

|'RulesTutorial/airCargoRele.ers

Input Output
w =] fircraft [1] w = Aircraft [1]
= aircraftType [747] = aircraftType [747]
= maxCargoVolurme =] maxCargoVolurme
=] maxCargoWeight =] maxCargoWeight
= tailMumber = tailMumber
w o— pilot (Persen) [1] w o— pilot (Person) [1]
= age[52] = age [52]
= department [Flight Crew] =] department [Flight Crew]
= name [Joe Smith] == name [Joe Smith]
w o— pilot (Person) [2] w o— pilot (Person) [2]
= age[22] = age [22]
= department [Flight Crew] =] department [Flight Crew]
== name [Sam Roberts) == name [Sam Roberts]

(21 Rule Messages &3

Severity Message

Info Exactly 2 pilots are required to fly a 747 - 2 are assigned to this flight

Progress Corticon: Rule Modeling: Version 6.3 95

Chapter 3: Rule scope and context

Finally, the rules are tested with one pilot and one passenger:

Figure 57: Ruletest with one Person entity in each of pilot and passenger roles

g "airfCargoRole.ert 57

| untitled_1
SRulesTutorial/airCargoRole.ers

Input
w =] Aircraft [1]
=] aircraftType [747]
=] maxCargoVolume
=] maxCargoWeight
== tailMumber
w 4— passenger (Person) [2]
= age[32]
= department [Maintenance]
== name [Jake Jones]
w 4— pilot (Person) [1]
= age [52]
= department [Flight Crew]
=] name [Carla Diaz]

Output
w = Aircraft [1]
= aircraftType [747]
= maxCargoVolume
= maxCargoWeight
== tailMumber
w o— passenger (Person) [2]
=l age [32]
F=| department [Maintenance]
==| name [Jake Jones]
w o— pilot (Person) [1]
=l age [52]
F=| department [Flight Crew]
==| name [Carla Diaz]

|Zf] Rule Statements | & Rule Messages &3

Severity
{Wiolation Exactly 2 pilots are required to fly a 747 - fewer than 2 violates FAA regulations

Message

Despite the presence of two Per son elements in the collection of test data, only one satisfies the rules' scope:
pi | ot associated with ai r cr af t . As a result, the rules determine that one pilot is insufficient to fly a 747,

and the violation message is displayed.
These same concepts apply to the DC-10/Passenger business rule, which is not implemented.

96 Progress Corticon: Rule Modeling: Version 6.3

Scope and perspectives in the vocabulary tree

Technical aside

Understanding rule associations and scope as relationships between tables in a
relational database

Although it is not necessary for the rule modeler or developer to understand database theory, a business or
systems analyst who is familiar with it may have already recognized that the preceding discussion of rule scope
and context is an abstraction of basic relational concepts. Actual relational tables that contain the data for the
cargo example might look like the following:

Figure 58: Tables in a relational database

Aircraft Cargo
tailNumber* |(aircraftType (maxCargoWeight manifeatHumber* (volume| weight
N1001 747 200,000 6254 300 100,000
N1002 747 200,000 6258 300 175,000
N1003 DC-10 150,000 6250 300 150,000
FlightPlan

flightNumber*| tailMumber |[(manifestNumber

101 N1001 6254
102 N1002 6258
103 N1003 6250

Each one of these tables has a column that is a unique identifier for each row (or record). In the case of the
Ai rcraft table, thetai | Nunmber is the unique identifier for each Aircraft record. This means that no two
aircraft can have the same t ai | Nunber . Mani f est Nunber is the unique identifier for each Car go record.
These unique identifiers are known as primary keys. Given the primary key, a particular record can always be
found and retrieved. A common notation uses an asterisk (*) to indicate those table columns that are primary
keys. If a Vocabulary is connected to an external database using Datasource Configuration features, then you
may notice asterisks next to attributes, indicating their designation as primary keys. See "How Datasource
information is viewed in the Vocabulary" in the Data Integration Guide for complete details.

Notice that the FI i ght PI an table contains columns that did not appear in the Vocabulary. Specifically,

tai | Nunber and mani f est Nunber existin the Ai r cr af t and Car go entities, respectively, but you did not
include them in the Fl i ght Pl an Vocabulary entity. Does this mean that your original Vocabulary was wrong
or incomplete? No, the extra columns in the Fl i ght Pl an table are duplicate columns from the other two
tables: t ai | Number came from the Ai r cr aft table, and mani f est Nunber came from the Car go table.
These extra columns in the FI i ght Pl an table are called foreign keys because they are the primary keys from
other tables. They are the mechanism for creating relations in a relational database.

For example, f 1 i ght Nunber 101 (the first row or record in the FI i ght Pl an table) includes Ai r cr af t of
tai | Nunber N1001 and Car go of mani f est Nunber 625A. The foreign keys in Fl i ght Pl an serve to link
or connect a specific Ai r cr af t with a specific Car go. If the database is queried (using a query language like
SQL, for example), then a user could determine the weight of Car go planned for Ai r cr af t N1001 by traversing
the relationships from the Ai rcr af t table to the Fl i ght Pl an table, you see that Ai rcraft N1001 is
scheduled to carry Car go 625A. By traversing the Fl i ght Pl an table to the Car go table, you can see that
Car go 625A weighs 100,000 kilograms. Matching the foreign key in the Fl i ght Pl an table with the primary
key in the Car go table makes this traversal possible.

Progress Corticon: Rule Modeling: Version 6.3 97

Chapter 3: Rule scope and context

The Corticon Vocabulary captures this essential feature of relational databases, but abstracts it in a way that
is friendlier to non-programmers. Rather than deal with concepts like foreign keys in the Vocabulary, there are
“associations” between entities. Traversing an association in the Vocabulary is equivalent to traversing a
relationship between database tables. When a term like Ai rcraft. tai | Nunber is used in a rule, Studio
creates a collection of t ai | Nunber s from all records in the Ai r cr af t table. This collection of data is then
fed to the rule for evaluation. If, however, the rule uses Fl i ght Pl an. ai rcraft.tail Nunmber, then Studio
creates a collection of only those t ai | Nunber s from the Ai r cr af t table that have FI i ght Pl ans related
to them. It identifies these aircraft instances by matching the t ai | Nunber in the Ai r cr af t table with the

t ai | Nunber (foreign key) in the Fl i ght Pl an table. If the Ai r cr af t table contains 7 instances of aircraft
(7 unique rows in the table), but the Fl i ght Pl an table contains only 3 unique instances of flight plans, the
term Fl i ght Pl an. ai rcraft. tai |l Nunber creates a collection of only 3 tail numbers—those instances
from the Ai r cr af t table that have flight plans listed in the FI i ght Pl an table. In database terminology, the
scope of the rule determines how the tables are joined.

When Fl i ght Pl an is used as the scope for the rule, Corticon Studio automatically ensures that the collection
of data contains matching foreign keys. That is why, when the rule using proper scope, the rule only fired 3
times —there are only 3 examples of Ai r cr af t - Car go combinations where the keys match. This also explains
why, prior to using scope, the rule produced 6 irrelevant outcomes—6 combinations of Ai r cr af t and Car go
that were processed by the rule do not, in fact, exist in the Fl i ght Pl an table.

While the differences in processing requirements are not extreme in this simple example, for a large company
with a fleet of hundreds of aircraft and several thousand unique cargo shipments every day, the system
performance differences could be enormous.

TestYourself questions for Rule scope and context

Note: Try this test, and then go to TestYourself answers for Rule scope and context on page 351 to see how
you did.

Use the following Vocabulary to answer the questions.

98 Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rule scope and context

[£] Rule Vocabulary 53

mi

o fos] starRating
=€ roles (Role)

- Award
- Distributor
-= ovD

-] DVDExtras
- Movie

----- = yearReleased
=-—€ dvD ([DVD)

[=-=— extras (DVDExtras)
----- = altEnding

----- | commentary

----- | deletedScenes
""" | extendedScenes
----- = wideScreen
=-3€ supplier {Distributar)
----- =] edition

----- == packaging
EEI----(goldenGlobe (Award)
-€ oscar (Award)
-(roles (Role)

& Role

Progress Corticon: Rule Modeling: Version 6.3

99

Chapter 3: Rule scope and context

1. How many root-level entities are in the Vocabulary?

2. Which of the following terms are allowed by the Vocabulary?

Movie.roles Actor.roles DVD.actor Award.movie

3. Which of the following terms are not allowed by the Vocabulary?

Movie.oscar Movie.supplier Movie.roles.actor Movie.dVD.extras

4. Which Vocabulary term represents the following phrases?

* A movie's Oscars

* A movie's roles

* An actor's roles

* A DVD's distributor

* A movie's DVD extras

* An actor's Oscars

5. Which of the following terms represents the phrase “an actor in a role of a movie”

Movie.roles.dVD Actor.roles.movie DVD.actor.movie Actor.movie.roles

6. Because the association between Actor and Role is bidirectional, you can use both Actor.roles and
in the rules.

7. Which two entities are associated with each other by more than one role?
8. What are the role names?

9. Besides roles, how else could these two relationships be represented in the Vocabulary to convey the same
business meaning?

10. What is the advantage of using roles in this way?

1. When more than one role is used to associate two entities, each role name must be:

friendly unique colorful melifluous

12 True or False. Rules evaluate only data that shares the same scope

13. Write a conditional expression in a Rulesheet for each of the following phrases:
* If a movie's DVD has deleted scenes...
* If an actor played a role in a movie winning an Oscar...
* Ifthe DVD is an import...
* If the movie was released more than 50 years before the DVD...
* If the actor ever played a leading role...

* |f the movie was nominated for a Golden Globe...

100

Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rule scope and context

* If the distributor offers any drama DVDs...
Given the rule “Disney animated classics are priced in the high tier’, answer the following questions:
14. Which term should be used to represent Movi e?

15. Which term should be used to represent DVD?

16. True or False. The following Rulesheet correctly relates the Movi e and DVD entities?

rrd DVD. ecore (@ scopel untiled_lers &3
Conditions 0 1
a |Movie.studio - ‘Disney’
b | Movie.genre - 'Classic Animation’
C
d
e
.F
a
[
Actions 1 |
Post Message(s) EA
A |DVD.priceTier "High'
B
C
D
E
Overrides
KD Rule Statements &3 E Rule Messagesw I
Ref |ID Post Alias Text -
1 Info Mavie Disney animated dassics are priced in the high tier

17. Given the business intent, how many times do you want the rule to fire given this Input Testsheet?

-
"¢ scopelert &3

|=| scopel
[scopel.erf

Input

EI@ Movie [1]

b genre [Clazsic Animation]
= studio [Disney]

EE oWD [1]

P E priceTier
E@ Mavie [2]

- genre [Animation]
i otydio [Pixar]

i =] title [Toy Story]
=-E ovo [2

"""] priceTier

18. Given the Ruletest above, how many times does the rule actually fire?

Progress Corticon: Rule Modeling: Version 6.3 101

Chapter 3: Rule scope and context

19. Assume that you update the Rulesheet to include another rule, as shown. Answer the following questions:

#@ scopel untited_l.ers &3

Conditions 0 1 2
a |Moviestudio - ‘Disney’ not {Disney’, MGM', 'BBC', 'PBS', 'Pixar}
b |Movie.genre - 'Classic Animation' 'Animation’
C
d
e
.F
g
[

Actions 4 | |

Post Message(s) = i
& | DWD.priceTier ‘High' ‘Low'
B
C
D
E

Overrides
r’I_I Rule Statements &3] Rule Messages}
Ref ID Post Alias Text
1 Info Mavie Disney animated dassics are priced in the high tier
2 Warning Movie Other animated movies are priced in the low tier

* Assuming the same Ruletest Input as question 17, what result do you want for Cinderella?
* What result do you want for Toy Story?

* What results do you get when the test is executed?

* How many times does each rule fire?

* How many fotal rule firings occurred?

* This set of combinations is called a

* Does the result make business sense?

* What changes should be made to the Rulesheet so that it functions as we intend?

20. True or False. Whenever rules contain scope, you must define aliases in the Scope section of the Rulesheet.

21. Scope is another way of defining a specific in the Vocabulary

22 If you change the spelling of an alias in the Scope section, then everywhere that alias is used in the Rulesheet
will:

turn red be deleted be updated be ignored

23. True or False. The spelling of an alias can be the same as the Vocabulary entity it represents?

102 Progress Corticon: Rule Modeling: Version 6.3

Rule writing techniques

The Corticon Studio Rulesheet is a very flexible device for writing and organizing rules. It is often possible to
express the same business rule multiple ways in a Rulesheet, with all forms producing the same logical results.
Some common examples, as well as their advantages and disadvantages, are discussed in this set of topics.

For details, see the following topics:

How to work with rules and filters in natural language
Filters versus conditions

Qualify rules with ranges and lists

How to use standard Boolean constructions

How to embed attributes in posted rule statements
How to include apostrophes in strings

TestYourself questions for Rule writing techniques and logical equivalents

How to work with rules and filters in natural language

Progress Corticon lets you use Natural Language (NL) words, phrases, and sentences as substitute terms in
Rulesheet conditions and actions, making it easier to discuss the rules with stakeholders and analysts.

To use natural language on a Rulesheet:

1. Right-click within a Rulesheet, and then choose Natural Language.

2. The Natural Language view opens, and typically places itself above the Rulesheet, as shown:

Progress Corticon: Rule Modeling: Version 6.3

103

Chapter 4: Rule writing techniques

() Matural Language &2

Condition Expressicn
a Cargo.weight
Cargo.volume

Cargo.needsRefrigeration

Action Expression
A Cargo.container

E@ *Cargo.ers 23

Conditions
Cargo.weight
Carga.wvelume

LU = B B = -

Actions
Post Message(s)
Carge.container

m I

Cargo.needsRefrigeration

English (United States)

<= 20000

Fl 1
EA
standard

= 30

i
ovErsize

3
= 20000
==30

=
heavyweight

= g

B4
reefer

Note: If the Natural Language window does not open, choose Window>Show View>Natural Language.

3. Enter plain language descriptive text for each condition and action, as shown:

L) Matural Language 3

Condition Expression
a | Cargo.weight
b Cargo.wolume

c Cargo.needsRefrigeration

Action Expression
A Cargo.container

English (United States)
If the cargo weight is...
If the cargo volume is...

Does the cargo need refrigeration?

English (United States)
Then the type of container required by this carge is...

= 8

-

While your use of natural language might vary, it is good practice to use a consistent, clear style. Here are

some tips:

* Usel f in the text for conditions and Then in the text for actions.

* Conditions that are Tr ue/ Fal se often read better as questions.

* Adding ellipses helps a reader continue the expression with the values in its column cells.

* If you enter no natural language text, then the existing expression is shown.

4. Expose your natural language expressions in the Rulesheet by either clicking the Show Natural Language

toolbar button ﬂ or Rulesheet > Show Natural Language. The natural language is displayed as shown:

104

Progress Corticon: Rule Modeling: Version 6.3

How to work with rules and filters in natural language

B Cargo.ers £2 =B
Conditions 0 1 2 3 -

a |If the Cargo's weight is... = <= 20000 - = 20000 [

b |If the Cargo's volume is... = - =30 <=30

¢ |If the Cargo needs refrigeration... = - - -

d -
Actions 4 m L
Post Message(s) i i | i

A | Then the type of container required by this Cargo is... standard OVErsize heavyweight

B

=

D -

Overrides {1.4}

In Natural Language mode, the values in rule columns can be edited but the Condition and Action expressions
are locked and cannot be edited.

5. Save the Rulesheet to store its expressions as well as its natural language data.

6. You can revert to the actual, editable expressions by clicking the Hide Natural Language toolbar button
ﬂ, or Rulesheet > Hide Natural Language.
7. Close the Natural Language view by clicking its close button.

Using natural language as an aid to Rulesheet design

You can create natural language phrases for the conditions, actions, and filters before defining those expressions.

() Matural Language 52 = 08
Filter Expression English (United States) -
1 Cargo.weight<Aircraft.maxCargoWeight Reject any package that exceeds the assigned aircraft weight capacity =
2 Reject any package that exceeds the assigned aircraft volume capacity
3 -
Cendition Expression English (United States) -
a | (Cargo.weight What is the weight (in kilograms) of the package? E
Cargo.wvolume What is the volume (LxWxH in cubic meters) of the package?
Action Expression English (United States) »
A Cargo.container Then use this type of container...
B
F@ "Cargo.ers 52 = O
Scope Conditions 0 1 2 3 *
. : a |What is the weight (in kilograms) <= 20000 - = 20000
’ _I .(ﬂ:\lrcraft of the package?
L= ane b | What is the volume (LWxH in - =30 <=30
cubic meters) of the package?
Filters S 2
15 Reject any package that exceeds the - Actions 1 o E e
assigned aircraft weight capacity Post Message(s) i i i
2 | Reject any package that exceeds the A | Then use this type of container... standard oversize | heavyweight
assigned aircraft volume capacity rB_ il
3 - Overrides 1

Adding the natural language phrase makes the next line available for additional entries. Then, in the Rulesheet,
define the expression that satisfies the natural language phrase, as shown:

Progress Corticon: Rule Modeling: Version 6.3 105

Chapter 4: Rule writing techniques

() Matural Language &2 = 8
Filter Expression English (United States) -
1 Cargo.weight<Aircraft.maxCargoWeight Reject any package that exceeds the assigned aircraft weight capacity =
2 Cargowvelume<Aircraft.maxCargoVolume Reject any package that exceeds the assigned aircraft velume capacity
3 -
Condition Expressicn English (United States) -
a |Cargoweight What is the weight (in kilograms) of the package? =
b Cargowolume What is the volume (LxWxH in cubic meters) of the package?
. -
Action Expression English (United States) *
A Cargo.container Then use this type of centainer...
B
E@ *Cargo.ers 22 = 8
Conditions] 1 2 3 -
a (Cargo.weight <= 20000 - = 20000
b Cargowolume - =30 ==30
Filters S Z
~7 Cargo.weight<Aircraft.maxCargeWeight - Actions 1 o A=
1 Post Messagel(s) Ea i i
Cargo.volumes=Aircraft.maxCargoValume A Cargo.container standard oversize heavyweigl
I B
= -
3 - Overrides 1

Localization with natural language

When your stakeholders are comfortable in different natural languages, you can accommodate them easily
with the natural language feature.

106 Progress Corticon: Rule Modeling: Version 6.3

Filters versus conditions

When you enable locales, the Natural Language window adds columns for the other locales. You can then
define Natural Language text for each of those locales, as shown:

L) Matural Language

Condition Expression English (United States) French Portuguese (Brazil) Spanish

a Cargo.weight If the cargo weight is... Si le poids de la cargaison est .. Se o peso da carga €. Si el peso dela carga es ...

b | Cargo.wolume If the cargo volume is... Sile velume de chargement est ... Se o volume de carga € ... Si el volumen de carga es ..
Cargo.needsRefrigeration If the cargo must be refrigerated... | 5ila cargaison doit étre réfrigérée ... | 5e a carga deve ser refrigerado ... | 5i la carga debe ser refrigerad
Action Expression | English (United States) French Portuguese (Brazil) Spanish

A Cargo.container | Then the type of container required by this cargo is.. | Puis le type de conteneur ... Em seguida, o tipo de recipiente ... | A continuacidn, el tipo de

() Matural Language &2

Conditicn Expression English (United States) French Portuguese (Brazil)

a Cargo.weight If the cargo weight is... 5i le poids de la cargaison est .. Se o peso da carga €
Cargo.wolume If the cargo volume is... 5i levolumne de chargernent est ... 5e o volume de cargz
Cargo.needsRefrigeration | If the cargo must be refrigerated... | 5ila cargaison doit étre réfrigérée ... | 5e a carga deve ser re
Action Expression | English (United States) French Portuguese (Brazil)

A | Cargo.container | Then the type of container required by this cargeo is.. | Puis le type de conteneur ... | Ermn seguida, o tipo d

Filters versus conditions

The Filters section of a Rulesheet can contain one or more master conditional expressions for that Rulesheet.
In other words, other business rules fire if and only if data survives the Filter, and shares the same scope as
the rules. Using the air cargo example from the previous chapter, model the following rule:

| 1. A7AY has a maximum cargo weight of 200000 kilagrams. h

Figure 59: Rulesheet using a filter and nonconditional rule

E@ logical_equiv_pcr.ers 53
Scope Conditions 0
w =] aircraft a
w 4z Filters b
W aircraft.aircraftType = 747 €
B=| aircraftType Actions <
F=| maxCargoWeight Post Message(s)
A aircraft.max CargoWeight = 200000
Filters B
17 | aircraft.aircraftType = '747 ~ L C
3 W Owverrides

Progress Corticon: Rule Modeling: Version 6.3 107

Chapter 4: Rule writing techniques

Here, the value of an aircraft's maxCar goWei ght attribute is assigned by column 0 in the Conditions/Actions
pane (what is sometimes called a nonconditional or action-only rule because it has no conditions). The filter
acts as a master conditional expression because only aircraft that satisfy the filter. In other words, only those
aircraft of ai rcraft Type = ' 747", successfully “pass through” to be evaluated by rule column 0, and are
assigned a maxCar goWei ght of 200000. This effectively filters out all non-747 aircraft from evaluation by
rule column 0.

If this filter were not present, all Ai r cr af t, regardless of ai r cr af t Type, would be assigned a

max Car goWei ght of 200000 kilograms. Using this method, additional Rulesheets can be used to assign
different maxCar goWei ght values for each ai r cr af t Type. The Filters section can be thought of as a
convenient way to quickly add the same conditional expression or constraint to all other rules in the same
Rulesheet.

You can also achieve the same results without using filters. The following figure shows how you use a
Condition/Action rule to duplicate the results of the previous Rulesheet. The rule is restated as an if/then type
of statement: if the ai r cr af t Type is 747, then maxCar goWei ght equals 200000 kilograms.

Figure 60: Rulesheet using a conditional rule

Conditions 1
a | aircraft.aircraftType = 747 T
b
c

Actions <

Post Message(s)

aircraft.max CargoWeight = 200000

M om I

Owerrides

|Z] Rule Statements &3

Ref |ID | Post Alias | Text
1 Aircraft max cargo weight must equal
200000 kg if aircraft type is a 747

Regardless of how you choose to express logically equivalent rules in a Rulesheet, the results will be equivalent.
While the logical result may be identical, the time required to produce those results may not be. See How to
optimize Rulesheets on page 290 for information about compression techniques that remove redundancies.

There may be times when it is advantageous to choose one way of expressing a rule over another, at least in
terms of the visual layout, organization, and maintenance of the business rules and Rulesheets. The example
discussed in the preceding paragraphs was very simple because only one action was taken as a result of the
filter or condition. In cases where there are multiple actions that depend on the evaluation of one or more
conditions, it may make the most sense to use the Filters section. Conversely, there may be times when using
a condition makes the most sense, such as the case where there are numerous values for the condition that
each require a different action or set of actions as a result. In the preceding example, there are different types
of aircraft in the company's fleet, and each has a different naxCar goWei ght value assigned to it by rules.
This could easily be expressed on one Rulesheet by using a single row in the Conditions section. It would
require many Rulesheets to express these same rules using the Filters section.

Qualify rules with ranges and lists

You can use values for any data type except Boolean in conditions, condition cells, and filters.

These values can be imprecise. They can be in the form of a range expressed in the format: x. . y, where x
and y are the starting and ending values for the range.

108 Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

The values can also be very specific. They can be in the form of a list expressed in the format { x, z, y} , where
the values are in any order but must adhere to the data type or the defined labels when the data type is bound
to an enumerated list with labels.

Ranges and lists in conditions and filters

Conditions and filters can qualify data by testing for inclusion in a from-to range of values or in a comma-delimited
list. The result returned is t r ue or f al se. All attribute data types except Boolean can use ranges and lists in
conditions and filters.

Value ranges in condition and filter expressions

You can use value range expressions in conditions or filters.

Syntax of value ranges in conditions and filter rows

When you use the i n operator to specify a range of values, you can specify the range in a several ways. The
following illustration shows how you can encapsulate a range:

Figure 61: Rulesheet filters showing ways to encapsulate a range

Filters

7
87 Entity 1.integerl in 100..300
0%F Entity 1.integerl in {100,300}
107F Entity_l.integerl in (100..300)
117F Entity 1.integerl in [100..300]
1275F Entity_l.integerl in (100..300]
137F Entity_1.integerl in [100..300]

where:
* Filter 8 does no encapsulation.

* Filter 9 uses braces for encapsulation. Its delimiter in the expression is a comma, rather than two dots like
the others. Because this syntax defines a set and overloads the syntax for a list, it is a good practice to not
use it to encapsulate a range.

* Filters 10 through 13 use (and mix) parentheses and brackets where a bracket on either side expresses
that the value on that side also passes the test.

Progress Corticon: Rule Modeling: Version 6.3 109

Chapter 4: Rule writing techniques

Examples of value ranges in filter rows
The following value ranges show how the Corticon data types can be used as Filter expressions.

Figure 62: Rulesheet filters showing the syntax of ranges for each data type

Filters

17F Entity_l.dateOnhyd in ['1/1/15'..'12/31/17"] -
27F Entity_1.dateTimel in ('12/25/15 00:00:00'..'12/25,/15 9:59:59")

7 | Entity_1.decimall in [-.01..99.99)

7 | Entity_l.integerl in (-128.6..136.4)

"I | Entity_1.stringl in ['a'..'z'] or Entity_1.stringl in ['A"."Z']

i | Entity_1.timeCnlyl in ("9:00 AM'..'5:00 PM')

? -

O okn e g

Notice that ranges are always from..to. The examples show that negative decimal and integer values can be
used, and that uppercase and lowercase characters are filtered separately.

Value lists in condition and filter expressions

You can use value list expressions in conditions or filters.

Syntax of value list in conditions and filter rows
When you use the i n operator to specify a list of values, you can encapsulate the range in only one way:

Figure 63: Rulesheet Filters showing encapsulation of a list

Filters

177 El.al in {RED,BLUE YELLOW}
2
3

The value list is always enclosed in braces. The order of the items in the comma-delimited list is arbitrary.

110 Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Ranges and value sets in condition cells

When using values in condition cells for attributes of any data type except Boolean, the values do not need to
be discreet. They can be in the form of a range. A value range is typically expressed in the following format:
X. .Yy, where x and y are the starting and ending values for the range inclusive of the endpoints if there is no
other notation to indicate otherwise, as illustrated:

Figure 64: Rulesheet using value ranges in the column cells of a condition row

@ ValueRanges.ers &3

Conditions 1 2 3 4
a FlightPlan.flightMumber <= 100 101..200 201..300 = 300
Actions <
Post Message(s)
A FlightPlan.aircraft.maxCargoWeight 50000 100000 150000 200000
E
Overrides

|Z] Rule Statements &3

Ref Post Alias | Text
1 Aircraft max cargo weight must be 30000 when flight number is less than or equal to 100
2 Aircraft max cargo weight must be 100000 when flight number is between 101 and 200, inclusive
3 Aircraft max cargo weight must be 130000 when flight number is between 201 and 300, inclusive
4 Aircraft max cargo weight must be 200000 when flight number is greater than 300

In this example, a maxCar goWi ght value is assigned to each Ai r cr af t depending on the f | i ght Nunber
value from the Fl i ght Pl an that Ai r cr af t is associated with. The value range 101. . 200 represents all
values (integers in this case) between 101 and 200, including the range endpoints 101 and 200. This is an
inclusive range; the starting and ending values are included in the range.

Progress Corticon: Rule Modeling: Version 6.3

111

Chapter 4: Rule writing techniques

Corticon Studio also gives you the option of defining value ranges where one or both of the endpoints are not
inclusive, meaning that they are not included in the range of values. This is the same idea as the difference
between greater than and greater than or equal to. The following figure shows the same Rulesheet as in the
previous figure, but with one difference: the value range was changed from 201. . 300 to (200. . 300] . The
starting parenthesis (indicates that the starting value for the range, 200, is exclusive; it is not included in the
range. The ending bracket] indicates that the ending value is inclusive. Because f | i ght Nunber is aninteger
value, and therefore there are no fractional values allowed, so 201. . 300 and (200. . 300] are equivalent.

Figure 65: Rulesheet using open-ended value ranges in condition cells

E@ ValueRangesExclusivelnclusive.ers 53

Conditions 1 2 3 4
a FlightPlan.flightMumber <= 100 101..200 (200,.300] = 300
b

Actions L4

Post Message(s)
£ | FlightPlan.aircraft.maxCargoWeight 50000 100000 150000 200000
B

Crvernides

|Z] Rule Statements £3

Ref Post Alias Text
1 Aircraft max cargo weight must be 30000 when flight number is less than or equal to 100
2 Aircraft max cargo weight must be 100000 when flight number is between 101 and 200, inclusive
3 Aircraft max cargo weight must be 130000 when flight number is between 201 and 300, inclusive
4 Aircraft max cargo weight must be 200000 when flight number is greater than 300

All of the possible combinations of parenthesis and bracket notation for value ranges and their meanings are:

Figure 66: Rulesheet using open-ended value ranges in condition cells

{%..¥)] -Iisthe range between = & v, excluding both = & v

{®..¥] -Iistherange between = & v, excluding x and including v

[#..7) -Iisthe range between = & v, including = and excluding v

[#..¥] -istherange between = & v, including both = &

If a value range has no enclosing parentheses or brackets, it is assumed to be inclusive. It is therefore not
necessary to use the [. .] notation for a closed range in Corticon Studio. However, should either end of a value
range have a parenthesis or a bracket, then the other end must also have a parenthesis or a bracket. For
example, x. . y) is not allowed, and is properly expressed as [X. .Y).

Value ranges can also be used in the Filters section of the Rulesheet. See the Ranges and lists in conditions
and filters on page 109 for details about usage.

112 Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Boolean condition versus values set

A simple Boolean Condition that evaluates to either Tr ue or Fal se might look llike this:

Figure 67: Rulesheet using a conditional rule

Conditions 1
a aircraft.aircraftType = '747 T
b
c
Actions <
Post Message(s)
A aircraft.max CargoWeight = 200000
E
C
Overrides
] Rule Statements 3
Ref I Post Alias Text
1 Aircraft max carge weight must equal
200000 kg if aircraft type is a 747

The action related to this condition is either selected or not, on or off, meaning the value of maxCar goWei ght
is either assigned the value of 200, 000 or it is not. (Action statements are activated by selecting the check
box that automatically appears when the cell is clicked.)

However, there is another way to express both conditions and actions using values sets.

Figure 68: Rulesheet illustrating use of multiple values in the same condition row

@ ValueSetsinConditionalRules.ers 23

Conditions 1 2 3
a aircraft.aircraftType ‘DC-10 ‘A3l 74T
b

Actions <

Post Message(s)
A | aircraft.maxCargoWeight 100000 150000 200000
B

Overrides

|Z] Rule Statements &3
Ref Post | Alias | Text

Al Aircraft max cargo weight must be 100000 when aircraft type is a DC-10
A2 Aircraft max cargo weight must be 130000 when aircraft type is an A340
A3 Aircraft max cargo weight must be 200000 when aircraft type is a 747

By using different values in the column cells of Condition and Action rows in this Rulesheet, you can write
multiple rules (represented as different columns in the table) for different condition-action combinations.
Expressing these same rules using Boolean expressions requires many more Condition and Action rows, and
would fail to take advantage of the semantic pattern that these three rules share.

Progress Corticon: Rule Modeling: Version 6.3 13

Chapter 4: Rule writing techniques

Exclusionary syntax
The following examples are logically equivalent:

Figure 69: Exclusionary logic using Boolean condition, Pt. 1

Q ExclusionarnySyntax.ers 23
Conditions o 1
a aircraftaircraftType <= 747 T
Actions <
Post Message(s) i |
A | aircraft.maxCargoWeight = 100000
B
Owerrides
|Z] Rule Statements &3
Ref |ID Post |Alias Text
1 Info | aircraft | Aircraft max cargo weight must be 100000 when aircraft type is NOT a 747
Figure 70: Exclusionary logic using Boolean condition, Pt. 2
Q ExclusionarySyntax.ers 23
Conditions 0 1
a aircraft.aircraftType = 747 F
b
Actions 4
Post Message(s) i |
A | aircraft.maxCargoWeight = 100000
B
Owerrides
[Z] Rule Statements &3
Ref I |Post |Alias | Text
1 Info | aircraft | Aircraft max cargo weight must be 100000 when aircraft type is NOT a 747
Figure 71: Exclusionary logic using negated value
E@ ExclusionarySyntax.ers 53
Conditions 0 1
a aircraft.aircraftType not 74T
b
Actions €
Post Message(s) EA
A aircraft.max CargeWeight = 100000
E
Overrides
[Rule Statements 3
Ref 1D Post | Alias Text
1 Info | aircraft | Aircraft max cargo weight must be 100000 when aircraft type is NOT a 747

114 Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Notice that the last example uses the unary function not , described in more detail in the Rule Language Guide,
to negate the value 747 selected from the values set.

Once again, you can see that the same rule can be expressed in different ways on the Rulesheet, with identical
results. The rule modeler decides which way of expressing the rule is preferable in a given situation. Progress
recommends, however, avoiding double negatives. Most people find it easier to understand at t ri but e=T
instead of at t ri but e<>F, even though logically the two expressions are equivalent.

Note: This discussion of Boolean logic assumes bi-value logic. If tri-value logic is assumed (such as, for a
non-mandatory attribute), meaning the null value is available in addition to true and false, then these two
expressions are not equivalent. If attribute = null, then the truth value of attribute<>F is true while that of
attribute=T is false.

How to use other in condition cells

Sometimes it is easier to define values we don't want matched than it is to define those we do. In the example
shown above in Exclusionary Logic Using Negated Value, a maxCar goWi ght is assigned when

ai rcraft Type is not a 747. But, what would you write in the Conditions cell if you want to specify any

ai r cr af t Type other than those specified in any of the other Conditions cells? For this, you use a special
term in the Operator Vocabulary named ot her , shown in the following figure:

Figure 72: Literal term other in the Operator Vocabulary

@® Rule Operators 53 = 0

[= Attribute Operators
[= Entity/Association Operators
w = General
= Functions
w [Literals
=g F
=T
=¢ cellValue
=y false
S null
=§ other
S true

The term ot her provides a simple way of specifying any value other than any of those specified in other cells
of the same Conditions row. The following figure illustrates how you can use ot her in the example.

Here, a new rule (column 4) was added that assigns a maxCar goWi ght of 50000 to any ai r cr aft Type
other than the specific values identified in the cells in Condition row a (for example, a 727). The Rulesheet is
now complete because all possible condition-action combinations are explicitly defined by columns in the
decision table.

Progress Corticon: Rule Modeling: Version 6.3 115

Chapter 4: Rule writing techniques

Numeric value ranges in conditions

Figure 73: Rulesheet using numeric value ranges in condition values set

Conditions
Entity1.integer]

o o

Actions
Post Message(s)
A | Entityl.integer2

[Z] Rule Statements 23
Ref Post Alias

1
2
3
4

E MNumericValuesinConditions.ers &3

1 2 3 4
< 100 101..200 201..300 = 300
<
50000 100000 150000 200000
Overrides
Text

If integer! is less than 100, then assign a value of 30000 to integer?

If integer! is between 101 and 200, inclusive, then assign a value of 100000 to integer
If integer! is between 201 and 300, inclusive, then assign a value of 130000 to integer?

If integerl is greater than 300, then assign a value of 200000 to integerd

In this example, an i nt eger 2 value is assigned to Ent i t y1 depending on its i nt eger 1 value. The value
range 101. . 200 represents all values (integers in this case) between 101 and 200, including 101 and 200.
This is an inclusive range because both the starting and ending values are included in the range.

String value ranges in condition cells

When using value range syntax with String types, be sure to enclose literal values inside single quotation marks,
as shown in the following figure. Corticon Studio will add the single quotation marks for you, but always check
to make sure it has interpreted your entries correctly.

Figure 74: Rulesheet using String value ranges in condition values set

=

E String Values in Conditions.ers &3

Conditions 1 2 3
a Entityl.string 'a'..'s’ ‘AT other
b
Actions
Post Message(s)
A | Entityl.stringd 'lowercase’ 'uppercase’ 'other char'

[Rule Statements 3

1
2

3

Ref |ID Post |Alias Text

Chverrides

If Entity1.string1 is lowercase, set Entity1.string2 to 'lowercase’
If Entity1.string is uppercase, set Entityl.stringd to 'uppercase’
If Entity1.string1 is ancther character, set Entity1.stringd to 'other char'

116

Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Value sets in condition cells

Most conditions implemented in the Rules section of the Rulesheet use a single value in a cell, as shown:

Figure 75: Rulesheet with one value selected in condition cell

Q ValueSetsiInConditionCells.ers &3
Conditions 1 2
a2 FlightPlan.cargo.weight -
h -
.
Actions 500,400
Post Message(s) > 400
A | FlightPlan.aircraft.aircraftType Aull
B other
Overrides

Sometimes, however, it is useful to combine more than one value in the same cell. You do this by holding
CTRL while clicking multiple values from the Condition cell's drop-down list. Then, pressing ENTER encloses
the resulting setin braces { . . } in the cell as shown in the sequence of the next two figures. Additional values
may also be typed into Cells.

Figure 76: Rulesheet with two values selected in condition cell

E@ ValueSetsinConditionCells.ers 53

Conditions 1 2
a FlightPlan.cargo.weight = 200, > 400 w -
h -

: < 200

Actions 200,400

Post Message(s) > 400
A FlightPlan.aircraft.aircraftType Aull
B ather

Chverrides

Figure 77: Rulesheet with value set in condition cell

Q ValueSetsInConditionCells.ers 3

Conditions 1
a FlightPlan.cargo.weight {< 200, = 400}
b

Actions <

Post Message(s)
A | FlightPlan.aircraft.aircraftType ‘DC-10
E

Overrides

[Z] Rule Statements &3

Ref |II Post | Alias | Text

1 If the cargo weight is between 200 and 400,
exclusive, the aircraftType must be DC-10

Progress Corticon: Rule Modeling: Version 6.3 117

Chapter 4: Rule writing techniques

The rule implemented in Column 1 of the preceding figure is logically equivalent to the Rulesheet shown in the

following figure:

Figure 78: Rulesheet with two rules instead of a value set

@ ValueSetsiInConditionCells.ers &3
Conditions
FlightPlan.cargo.weight

o o

Actions
Post Message(s)
A FlightPlan.aircraft.aircraftType

< 200

‘DC-10

Crverrides

= 400

D10

Both are implementations of the following rule statement:

1. Ifaflightplan’s cargo weightis less than 200 OR greater than 400, then the flightplan’s
aircraft type must be a DC-10

If you write rules using the logical OR operator in separate columns, performing a Compression E reduces
the Rulesheet to the fewest number of columns possible by creating value sets in cells wherever possible. Fewer
columns results in faster Rulesheet execution, even when those columns contain value sets. Compressing the
Rulesheet in Rulesheet with two rules instead of a value set results in the Rulesheet in Rulesheet with value

set in condition cell.

Condition cell value sets can also be negated using the NOT operator. To negate a value, type not in front of
the leading brace {, as shown in Negating a Value Set in a Condition Cell. This is an implementation of the

following rule statement:

aircraft type must be a DC-10

1. If aflightplan's cargo weight is NOT less than 200 OR NOT greater than 400, then the flightplan’s

Given the condition cell's value set, the rule statement is equivalent to:

must be a DC-10

1. Ifaflightplan’s cargo weightis between 200 and 400 (inclusive), then the flightplan’s aircraft type

Figure 79: Negating a value set in a condition cell

E@ ValueSetsinConditionCells.ers 53
Conditions
a FlightPlan.cargo.weight

Actions
Post Message(s)
A FlightPlan.aircraft.aircraftType

1
not {= 200, > 400}

‘DC-10

Chverrides

Value sets can also be created in the Overrides Cells at the bottom of each column. This allows one rule to
override multiple rules in the same Rulesheet.

118

Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Variables as condition cell values

You can use a variable as a condition's cell value. However, there are constraints:

* Either all of the rule cell values for a condition row contain references to the same variable (with the exception
of dashes), or none of the rule cell values for a condition row reference any variable.

* Only one variable can be referenced by various rules for the same condition row.

* Logical expressions in the various rules for the same condition row should be logically non-overlapping.

* A condition value that uses a colon, such as A: B, is not valid.

Derived value sets are created by accounting for all logical ranges possible around the variable.

Note: The issue with using multiple attributes in a condition row (or attributes mixed with literals) is a warning,

not an error; as such, analysis functions are not available.

The following Rulesheet uses the Car go Vocabulary to illustrate the valid and invalid use of variables. Note

that the Vocabulary editor marks invalid values in red.

Conditions 0
Aircraft. maxCargoVolume
Aircraft.maxCargoVolume
Aircraft. maxCargoVeolume
Aircraft.maxCargoVolume

Aircraft.maxCargoVolume
Aircraft. maxCargoVeolume
Aircraft.maxCargoVolume
Aircraft. maxCargoVeolume

=M —h M| N O

1
< Cargowolume
<= Cargo.wvolume
= Cargowvolume
= Cargowolume

= Cargowolume

= Cargowvolume

= Cargowolume
Al:B2

Derived values when using variables

2
= Cargowvolume
= Cargowvolume
= Cargowvolume

FlightPlan.cargo.wvolume

5
<= Cargowvolume

3

Cargowvolume

Cargowolume
10.15
Cargowolume

The following tables abbreviate the attribute references shown in the illustration.

Table 2: Rulesheet columns

Conditions 1 2 Derived Value Set
A. maxCVv < Cv > Cv Cv {<Cv, >Cv, Cuv}

A. maxCVv <= CvV > Cv {<=Cv, >CvVv}

A. maxCVv < Cv > Cv {<Cv, >Cv, Cv}

A. maxCVv < Cv {< Cv, >= Cv}

Progress Corticon: Rule Modeling: Version 6.3

119

Chapter 4: Rule writing techniques

Incorrect use of variables

Table 3: Rulesheet condition f: Attempt to use multiple variables

Conditions 1 2 3

A. maxCVv < Cv > FP.c.v Cv

Table 4: Rulesheet condition g: Attempt to mix variables and literals

Conditions 1 2 3

A. maxCVv <Cv 5 10. .15

Table 5: Rulesheet condition h: Attempt to use logically overlapping expressions

Conditions 1 2 3

A. maxCVv < Cv <= C.v Cv

DateTime, date, and time value ranges in condition cells

When using value range syntax with date types, be sure to enclose literal date values inside single quotation
marks, as shown:

Figure 80: Rulesheet using a date value range in condition cells

Eg DateandSubtypeinConditions.ers 532

Conditions 1 2 3
a | Entityl.dateTimel < '1/1/201¢' 1/12016"..12/31/2016' ="15207
Acticns <
Post Message(s)
A | Entity1.string1 ‘earlier’ ‘current’ '|later’
B
Owverrides

[Z] Rule Statements 23
Ref |ID Post Alias | Text

1 If dateTimel is before Jan. 1 2016, then string1 is assigned a value of "earlier’

2 If dateTimel is between Jan. 1 2016 and Dec. 31 2016, then string1 is assigned
a value of 'current’

3 If dateTimel is on or after Jan. 1 2017, then string is assigned a value of 'later’

120 Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Inclusive and exclusive ranges

Corticon Studio also gives you the option of defining value ranges where one or both of the starting and ending
values are not inclusive, meaning that the starting and ending value is not included in the range of

values. Rulesheet using an integer value range in condition values set shows the same Rulesheet as in
Rulesheet using numeric value ranges in condition values set, but with one difference: the value range 201. . 300
was changed to (200. . 300] . The starting parenthesis (indicates that the starting value for the range, 200,
is excluded. It is not included in the range of possible values. The ending bracket] indicates that the ending
value is inclusive. Because i nt eger 1 is an integer value, and therefore no fractional values are allowed,
201. . 300 and (200. . 300] are equivalent, and the values set in Rulesheet using an integer value range in
condition values set is still complete, as it was in Rulesheet using numeric value ranges in condition values

set.

Figure 81: Rulesheet using an integer value range in condition values set

@ RulesheetUsingAnintegerValueRange.ers &3
Conditions 1 2 4
a Entityl.integer < 100 101..200 (200..300] = 300
b
Actions 4
Post Message(s)
A | EntityTl.integer2 50000 100000 150000 200000
E
Owverrides
|Z] Rule Statements 23
Ref I | Post Alias Text
1 If integer is less than 100, then assign a value of 30000 to integer2
2 If integerl is between 107 and 200, inclusive, then assign a value of 100000 to integer2
3 If integerl is between 201 and 300, inclusive, then assign a value of 150000 to integer2
4 If integer is greater than 300, then assign a value of 200000 to integer2

All of the possible combinations of parenthesis and bracket notation for value ranges and their meanings are:

(%..v) -isthe range between x & v, excluding both % & v
(%..¥] -isthe range hetween x & v, excluding x and including v

[x..v) -isthe range between x & v, including ¥ and excluding ¥

[x%..¥] -isthe range between x &y, including both x & vy

As illustrated in Rulesheet using numeric value ranges in condition values set and Rulesheet using an integer
value range in condition values set, if a value range has no enclosing parentheses or brackets, then it is
assumed to be closed. It is, therefore, not necessary to use the [. .] notation for a closed range in Corticon
Studio. In fact, if you try to create a closed value range by entering [. .], then the brackets are automatically
removed. However, should either end of a value range have a parenthesis or a bracket, then the other end
must also have a parenthesis or a bracket. For example, x. . y) is not allowed, and is correctly expressed as

[x..y).

When using range notation, always ensure that x is less than y, that is, an ascending range. A range where x

is greater than y (a descending range) can result in errors during rule execution.

Progress Corticon: Rule Modeling: Version 6.3

121

Chapter 4: Rule writing techniques

Value ranges that overlap

One final note about value ranges: they might overlap. In other words, condition cells can contain the two
ranges 0. . 10 and 5. . 15. It is important to understand that when overlapping ranges exists in rules, the rules
containing the overlap are frequently ambiguous, and more than one rule may fire for a given set of input

Ruletest data. Rulesheet with Value Range Overlap shows an example of value range overlap.

Figure 82: Rulesheet with value range overlap

E overlap.ers &3

Conditions 0 1 2 3
a | Entity_l.integer 1 < 100 100..200 150..300
b
C

Actions 1

Post Message(s) EA A EA
A Entity_l.intetger 2 50000 100000 150000
B
C

Owerrides

] Rule Statements 52 ¢ Comments [Rule Messages

Ref ID Post Alias Text

1 Info Entity 1 integer is less than 100

2 Warning Entity 1 integer is between 100 and 200
3 Yiclation Entity 1 integer is between 150 and 300

Figure 83: Rulesheet expanded with conflict check applied

E@ overlap.ers &2

Conditions] 1 2 3
a Entity_l.integer 1 < 100 100,.200 150..200
b
C

Actions 1 |

Post Message(s) i | EA B
A Entity_l.intetger 2 50000 100000 150000
B
C

Crwerrides

|Z] Rule Staternents =3

Ref 1D Post Alias Text

1 Info Entity_1 integer is less than 100

2 Warning Entity_1 integer is between 100 and 200
E Violation Entity_1 integer is between 150 and 300

= 0O

F

-
e

[=]

122 Progress Corticon: Rule Modeling: Version 6.3

Qualify rules with ranges and lists

Figure 84: Ruletest showing multiple rules firing for given test data

Input Output
55 Entity 1 [1] =5 Entity 1 [1]
L= integer_1 [175] .. integer_1 [175]

] Rule Statements ¢ Comments B Rule Messages &3

Severity | Message | Entity |
Warning integer is between 100 and 200 Entity_1[1]
Violation integer is between 150 and 300 Entity 1[1]

Alternatives to value ranges

As you might expect, there is another way to express a rule that contains a range of values. One alternative
is to use a series of Boolean conditions that cover the ranges of concern, as illustrated:

Figure 85: Rulesheet using Boolean conditions to express value ranges

Q BooleansAs\ValueRanges.ers i3
Conditions 1 2 3 4
a FlightPlan.flightMumber = 100 F T T T
b FlightPlanflightMumber = 200 F F T T
¢ FlightPlan.flightMumber = 300 F F F T
Actions <
Post Message(s)
A | FlightPlan.aircraft.max CargoWeight 50000 100000 150000 200000
Owerrides
[Z] Rule Statements 23
Ref ID Post | Alias | Text
Al Aircraft max carge weight must be 50000 kg when flight number is less than or equal to 100
A2 Aircraft max cargo weight must be 100000 kg when flight number is between 101 and 200, inclusive
A3 Aircraft max cargo weight must be 150000 kg when flight number is between 201 and 300, inclusive
Ad Aircraft max carge weight must be 200000 kg when flight number is greater than 300

The rules here are identical to the rules in Rulesheet Using Value Ranges in the Column Cells of a Condition
Row and Rulesheet Using Open-Ended Value Ranges in Condition Cells, but are expressed using a series
of three Boolean conditions. Recall that in a decision table, values aligned vertically in the same column
represent conditions that use the AND operator. So rule 1, as expressed in column 1, reads:

if £1ightNumberisnot greater than 100 and £1ightNumber isnot greater than 200 and
flightNumber isnot greater than 300, then its maxCargoWeight must equal 50000 kgs.

The following expresses this rule in friendlier, more natural English:

An Aircraft’'s max cargo weight must be 50000 kgs when flight number is less than or equal to 100.

Progress Corticon: Rule Modeling: Version 6.3 123

Chapter 4: Rule writing techniques

This is how the rule is expressed in the Rule Statements section in the preceding figure, Rulesheet Using
Boolean Conditions to Express Value Ranges. The same rules can also be expressed using a series of
Rulesheets with the applicable range of f | i ght Nunber values constrained by filters. Corticon Studio gives
you the flexibility to express and organize your rules any number of possible ways. As long as the rules are
logically equivalent, they produce identical results when executed.

In the case of rules involving numeric value ranges as opposed to discrete numeric values, the value range
option allows you to express your rules in a simple and elegant way. It is especially useful when dealing with
decimal type values.

How to use standard Boolean constructions

A decision table is a graphical method of organizing and formalizing logic. If you have a background in computer
science or formal logic, then you may have seen alternative methods. One such method is called a truth table.

The section "Standard Boolean Constructions” in the Rule Language guide presents several standard truth
tables (AND, NAND, OR, XOR, NOR, and XNOR) with examples of usage in a Rulesheet.

How to embed attributes in posted rule statements

It is frequently useful to embed attribute values within a Rule Statement, so that posted messages contain

actual data. Special syntax must be used to differentiate the static text of the rule statement from the dynamic
value of the attribute. As shown in Sample Rulesheet with Rule Statements Containing Embedded Attributes,
an embedded attribute must be enclosed by braces { . . } to distinguish it from the static Rule Statement text.

It may also be helpful to indicate which parts of the posted message are dynamic, so a user seeing a message
knows which part is based on current data and which part is the standard rule statement. As shown in Sample
Rulesheet with Rule Statements Containing Embedded Attributes, brackets are used immediately outside the
braces so that the dynamic values inserted into the message at rule execution are enclosed withing brackets.
The use of these brackets is optional; other characters can be used to achieve the intended visual distinction.

124 Progress Corticon: Rule Modeling: Version 6.3

How to embed attributes in posted rule statements

Remember, action rows execute in numbered order (from top to bottom in the Actions pane), so a rule statement
that contains an embedded attribute value must not be posted before the attribute has a value. Doing so results
inanul | value inserted in the posted message.

Figure 86: Sample Rulesheet with rule statements containing embedded attributes

@ EmbeddedAttributes.ers i3

Conditions 1 2 3
a Entityl.integer < 18 18..25 » 25
b

Actions £

Post Message(s) i i 2
A
B

Overrides

|Z] Rule Statements 23
Ref | ID Post Alias Text

1 Info | Entityl | This person is [{EntityT.integer1}] which is less than 18, so they cannot drink or vote

2 Info | Entityl | This person is [{EntityT.integer]}] which is between 18 and 25, so they can drink, vote,
and be drafted, but not rent a car

3 Info Entityl | This person is [{Entity1.integerl}] which is greater than 23, so they can drink, vote, be

drafted, and rent a car

Figure 87: Rule Messages window showing bracketed embedded attributes

Input Output
» =] Entity1[1] w =] Entity1 [1]
== integerl [15] == integerl [15]
~ =] Entity1 [2] ~w =] Entity1 [2]
==| integer] [23] ==| integerl [23]
» =] Entity1[3] w =] Entity1 [3]
== integerl [33] = integerl [33]

=] Rule Statements | & Rule Messages &3

Severity Message

Info This person is [15] which is less than 18, so they cannot drink or vote
Info This person is [23] which is between 18 and 23, so they can drink, vote, and be drafted, but not rent a car
Info This person is [33] which is greater than 25, so they can drink, vote, be drafted, and rent a car

When an attribute uses an enumerated Custom Data Type, the dynamic value embedded in the posted rule

message is the value, not the label. See the Rule Modeling Guide, “Building the Vocabulary” chapter for more
information about Custom Data Types.

No expressions in Rule Statements

A reminder about the tables "Usage restrictions" in the Rule Language Guide, which specifies that the only

parts of the Vocabulary that can be embedded in rule statements are attributes. No operators or expressions
are permitted inside rule statements. Often, operators cause error messages when you try to save a Rulesheet.
Sometimes the rule statement turns red. Sometimes an embedded equation executes as you intended, but no

obvious error occurs, but the rule does not execute as intended. Remember that operators and expressions
are not supported in rule statements.

Progress Corticon: Rule Modeling: Version 6.3 125

Chapter 4: Rule writing techniques

How to include apostrophes in strings

String values in Corticon Studio are always enclosed in single quotation marks. But occasionally, you may want
the String value to include single quotation marks, or apostrophes. If you enter the following text in Corticon
Studio:

entityl.stringl="Jane's dog Spot'

The text turns red, because Corticon Studio thinks that the st ri ngl value is' Jane' and the remaining text
s dog Spot' isinvalid.

To properly express a String value that includes single quotation marks or apostrophes, you must use the
special character backslash (\) that tells Corticon Studio to ignore the apostrophe, as shown:

entityl.stringl="Jane\'s dog Spot'
When preceded by the backslash, the second apostrophe is ignored and assumed to be just another character

within the String. This notation works in all sections of the Rulesheet, including values sets. It also works in the
Possible Values section of the Vocabulary Editor.

TestYourself questions for Rule writing techniques
and logical equivalents

Note: Try this test, and then go to TestYourself answers for Rule writing techniques and logical equivalents
on page 353 to see how you did.

Filters act as master rules for all other rules in the same Rulesheet that share the same
An expression that evaluates to a true or false value is called a expression.
True or False. Condition row values sets must be complete.

True or False. Action row values sets must be complete.

The special term can be used to complete any condition row values set.

Which operator is used to negate a Boolean expression?

N o a s~ v Ddhd-=

If a Boolean expression is written in a condition row, which values are automatically entered in the values
set when Enter is pressed?

8. A Filter expression written as Ent i ty. bool ean1=T is equivalent to which of the following? (Circle all that
apply.)

Entity. bool eanl Entity. bool eanl<>F |Entity. bool eanl=F [not
(Entity. bool eanl=F)

9. Of all alternatives listed in Question 8, which is the best choice? Why?

10. Describe the error (if any) in each of the following value ranges. Assume all are used in Conditions values
sets.

126 Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rule writing techniques and logical equivalents

{1...10, other}
{1..a, other}
{'a'..other}

{1..10, 5..20, other}
{1..10, [10..20), other}
{'red', ‘green’, ‘blue'}
g. {<0, 0..15, >3}

= ® 2 0 T ®

1. True or False. The special term ot her can be used in Action row values sets.

12 Using best practices discussed in this section, model the following rules on a single Rulesheet:
* |If the partis in stock and it has a blue tag, then the part's discount is 10%.
* If the partis in stock and it has a red tag, then the part's discount is 15%.
* Ifthe partis in stock and it has a yellow tag, then the part's discount is 20%.
* If the partis in stock and it has a green tag, then the part's discount is 25%.

* If the partis in stock and it has any other color tag, then the part's discount is 5%.

13. True or False. A nonconditional rule is equivalent to an action expression with no condition.

14. True or False. A nonconditional rule is governed by any preconditions on the same Rulesheet.

Progress Corticon: Rule Modeling: Version 6.3 127

Chapter 4: Rule writing techniques

128 Progress Corticon: Rule Modeling: Version 6.3

Collections

Collections enable operations to be performed on a set of instances specified by an alias.

For details, see the following topics:

How Corticon Studio handles collections

How to visualize collections

A basic collection operator

How to filter collections

How to use aliases to represent collections
Sorted aliases

Advanced collection sorting syntax

Statement blocks

Using sorts to find the first or last in grandchild collections
Singletons

Special collection operators

Aggregations that optimize EDC database access

TestYourself questions for Collections

Progress Corticon: Rule Modeling: Version 6.3

129

Chapter 5: Collections

How Corticon Studio handles collections

Support for using collections is extensive in Corticon Studio. The integration of collection support in the Rule
Language is so seamless and complete that the rule modeler often discovers that rules are performing multiple
evaluations on collections of data beyond what they anticipated! This is partly the point of a declarative
environment. The rule modeler need only be concerned with what the rules do, rather than how they do it. How
the system iterates or cycles through all the available data during rule execution should not be of concern.

As you saw in previous examples, a rule with term Fl i ght Pl an. ai r cr af t was evaluated for every instance
of Fl i ght Pl an. ai r cr af t data delivered to the rule, either by a message or by a Ruletest (which are really
the same thing, because the Ruletest serves as a quick and convenient way to create message payloads and
send them to the rules). A rule is expressed in Corticon Studio the same way regardless of how many instances
of data are to be evaluated by it. Contrast this to more traditional procedural programming techniques, where
for-do or while-next type looping syntax is often required to ensure all relevant data is evaluated by the logic.

How to visualize collections

Collections of data can be visualized as discrete portions, subsets, or branches of the Vocabulary tree. A parent
entity is associated with a set of child entities, which are called call elements of the collection. The collection
of pilots can be illustrated as:

Figure 88: Visualization of a collection of pilots

]

aircraft

pilot

In this figure, the ai r cr af t entity is the parent of the collection, while each pi | ot is a child element of the
collection. As you saw in the role example, this collection is expressed as ai r cr aft . pi | ot in the Corticon
Rule Language. It is important to reiterate that this collection contains scope. You are seeing the collection of
pilots as they relate to this aircraft. Or, more simply, you are seeing a plane and its 2 pilots, arranged in a way
that is consistent with the Vocabulary. Whenever a rule exists that contains or uses this same scope, it also
automatically evaluates this collection of data. And, if there are multiple collections with the same scope (for
example, several aircraft, each with its own collection of pilots), then the rule automatically evaluates all those
collections as well. In the Corticon lexicon, evaluate has a different meaning than fire. Evaluate means that a
rule's scope and conditions will be compared to the data to see if they are satisfied. If they are satisfied, then
the rule fires, and its actions are executed.

130 Progress Corticon: Rule Modeling: Version 6.3

A basic collection operator

Collections can be much more complex than this simple pilot example. For instance, a collection can include
more than one type or level of association:

Figure 89: Three-level collection

grandechild

grandechild

parent

grandehild

grandechild

i

This collection is expressed as par ent . chi | d. grandchi | d in the Corticon Rule Language.

Note: The parent and child nomenclature is a bit arbitrary. Assuming bidirectional associations, a child from
one perspective could also be a parent in another.

A basic collection operator

As an example, use the - >si ze operator.
For more information, see "Size of collection" in the Corticon.js Rule Language Guide.

This operator returns the number of elements in the collection that it follows in a rule expression. Using the
collection from Visualization a Collection of Pilots:

aircraft.pilot -> size
returns the value of 2. In the expression:
aircraft.crewSize = aircraft.pilot -> size

crewSi ze (assumed to be an attribute of Aircraft) is assigned the value of 2.

Corticon Studio requires that all rules containing collection operators use unique aliases to represent the
collections. How to use aliases to represent collections is described in greater detail in this chapter. A more
accurate expression of the previous rule becomes:

pl ane. pil ot -> size

or

pl ane. crewsi ze = plane.pilot -> size

where pl ane is an alias for the collection of pi ot s onaircraft.

Progress Corticon: Rule Modeling: Version 6.3 131

Chapter 5: Collections

How to filter collections

The process of screening specific elements from a collection is known as filtering, and the Corticon Studio
supports filtering by a special use of Filter expressions. See the Filters and preconditions on page 209 topic for
more details.

How to use aliases to represent collections

Aliases provide a means of using scope to specify elements of a collection; more specifically, you use aliases
(expressed or declared in the Scope section of the Rulesheet) to represent copies of collections. This concept
is important because aliases give you the ability to operate on and compare multiple collections, or even multiple
instances of the same collection. There are situations where such operations and comparisons are required

by business rules. Such rules are not easy (and sometimes not possible) to implement without using aliases.

Note: To ensure that the system knows which collection (or copy) you are referring to in your rules, use a
unique alias to refer to each collection.

For the purposes of illustration, a new scenario and business Vocabulary will be used. This new scenario
involves a financial services company that compares and ranks stocks based on the values of attributes such
as closing price and volume. A model for doing this kind of ranking can get very complex in real life; however,
this example is kept simple. The new Vocabulary is illustrated in a UML class diagram:

Figure 90: Security Vocabulary UML class diagram

Seclnfo
: &busDay : Date
Security &closePrice : Long
&ssecName String Evolume Long

&ticker : String

lﬂ'prulﬂWeighl . Long
&rating : String

&rule2Weight : Long
Q}tutalWeight : Long
Eprank - Integer

_.
—
)

This Vocabulary consists of only two entities:

Securi t y: Represents a security (stock) with attributes like security name (secNan®e), t i cker symbol, and
rating.

Secl nf o: Is designed to record information for each stock for each business day (busDay); attributes include
values recorded for each stock (cl osePri ce and vol une) and values determined by rules (t ot al Wi ght
and r ank) each business day.

The association between Securi ty and Secl nfois 1. . * (one-to-many) because there are multiple instances
of Secl nf o data (multiple days of historical data) for each Securi ty.

In this scenario, three rules determine a security's rank:

132 Progress Corticon: Rule Modeling: Version 6.3

How to use aliases to represent collections

1. A security whose closing price today is higher than its closing price on the previous business day
must have a value of 0.5 assigned to its rule 1 weight; otherwise, a value of 0 must be assigned to its
rule 1 weight.

2. A osecurity whose trading wolume today is greater than its trading volume on the previous business
day must have a value of 0.25 assigned to its rule 2 weight; otherwise, a value of 0 must be assigned
to its rule 2 weight.

3. A security's total weight is equal to the sum of its rule 1 weight and its rule 2 weight.

Finally, rules are used to assign a rank based on the total weight. It is interesting to note that although the rules
refer to a security's closing price, volume, and rule weights, these attributes are actually properties of the
Secl nf o entity. The Rulesheet that accomplishes these tasks is this:

Figure 91: Rulesheet with ranking model rules 1 and 2

Scope Conditions 1] 1 2 3 4

El B security [sec] a seclnfol.closePrice = secinfoz, closePrice T F - -
...—','d Filters b secInfol.volume > secinfo2,volume - - T F
=€ secinfo [secirfol] c
=€ seclnfo [secinfo2] Actions |

Post Messageis) = M| = =

Filkers A secInfal.rulelWeight 05 0

177 | secInfol.busDay = today 4| B | secInfol.rule2Weight 075 | 0

277 secInfoz.busDay = koday,addDays(-11 -

3 LI Crverrides

-
=] Rule Statements 23 Fule Messages

Fef ID Post Alias | Text

Info |sec If today's closing price = last business day's closing price, then rule 1 weight = 0.5

Info |sec If today's closing price <= last business day's closing price, then rule 1 weight =0

Info |sec IF today's closing wolume = lask business day's closing volume then rule 2 weight = 0,25
Info |sec | IF boday's closing waolume <= last business day's closing volume then rule 2 weight =0

B E R

In the preceding figure, two business rules are expressed in a total of four rule models (one for each possible
outcome of the two business rules). The rules are straightforward, but the shortcuts (alias values) used in these
rules are different than other rules you have seen. In the Scope section, you see that Securi ty is the scope
for the Rulesheet, which is not a new concept. But then, there are two aliases for the Secl nf o entities associated
with Security: secinfolandseci nf 02. Each of these aliases represents a separate but identical collection
of the Secl nf o entities associated with Securi t y. In this Rulesheet, you constrain each alias by using filters.
In a later example, you will see how more loosely constrained aliases can represent many different elements
in a collection when the rules engine evaluates rules. In this example, though, one instance of Secl nf o
represents the current business day (t oday), and the other instance represents the previous business day
(t oday. addDays(-1).)

Note: For details about the . addDays operator, see that topic in the Rule Language Guide.

After the aliases are created and constrained, you can use them in your rules where needed. In the figure
Rulesheet with Ranking Model Rules 1 and 2, you see that the use of aliases in the Conditions section
allows comparison of cl osePri ce and vol urre values from one specific Secl nf o element (the one with
today's date) of the collection with another (the one with yesterday's date).

Progress Corticon: Rule Modeling: Version 6.3 133

Chapter 5: Collections

The following figure shows a second Rulesheet that uses a nonconditional rule to calculate the sum of the
partial weights from the model rules determined in the first Rulesheet, and conditional rules to assign a rank
value between 1 and 4 to each security based on the sum of the partial weights. Because you are only dealing
with data from the current day in this Rulesheet (as specified in the filters), only one instance of Secl nf o per
Secur i ty applies, and we do not need to use aliases.

Figure 92: Rulesheet with total weight calculation and rank determination

[secrniozers x W

Scope Conditions] 1 2 3 4
Bl £ Security [sec] a | secInfo.tokalWeight 0 | 02s 05 075
<7l Filtkers b
&-—€ secnfo [secInfo] Actions 4
Post Message(s) =l = = = =
m & seclnfo.tokalWeight = secInfo.rulelWeight + secInfo.rule2Weight
157 secInfo.busDay = today = E secInfo.rank 1 2 3 4
2 - Overrides

Ref |ID Poskt
1] Info
1 Info
z Info
3 Info
4 Info

E
|=] Rule Statements &2

alias
SEC
seC
SEC
SEC
sec

Rule Messages |

Texk

Tatal weight = sum aof rule 1 weight and rule 2 weight
IF takal weight = 0, then rank =1

If tokal weight = 0,25, thenrank =2

If takal weight = 0.5, then rank = 3

IF tokal weight = 0,75, then rank =4

You can test your new rules using a Ruleflow to combine the two Rulesheets. In a Ruletest that executes the
Ruleflow, you expect to see the following results:

1. The Security. secl nf o collection that contains data for the current business day (the expectation is that
this collection reduces to a single seci nf o element, because only one seci nf 0 element exists for each
day) should be assigned to alias seci nf 01 for evaluating the model rules.

2. The Secl nf o instance that contains data for the previous business day (again, the collection filters to a
single seci nf o element for each Securi t y) should be assigned to alias seci nf 02 for evaluating the

model rules.

3. The partial weights for each rule, sum of partial weights, and resulting rank value should be assigned to the
appropriate attributes in the current business day's Secl nf o element.

134

Progress Corticon: Rule Modeling: Version 6.3

How to use aliases to represent collections

A Ruleflow constructed for testing the ranking model rules is as shown:

Figure 93: Ruleflow to test two Rulesheets in succession

(T . W
L?: secInfol.ers L?: secInfoz.ers M *RankingModel. ert

cecInfol cecInfo?

Figure 94: Ruletest for testing security ranking model rules
[——
= untitled 1 |

IRMGRankingModelz . ers

Input

= & security [1]
----- == ticker [IEBM]
[=]-¢— secInfo (SecInfa) [1]
..... = busDay [11/12/2020]
----- == rlosePrice [50.0]
..... =] olume [700.0]
El-4— secInfo {SecInfo) [2]

..... == busDay [11/11/2020]
----- == closePrice [45.0]
----- == olume [600,0]
[=l-4— secInfo {SecInfo) [3]
..... = busDay [11/10/2020]
----- == losePrice [55.0]
----- == olume [200,0]

In this figure, one Securi t y object and three associated Secl nf o objects were added from the Vocabulary.
The current day at the time of the Ruletestis 11/ 12/ 2020, so the three Sec| nf o objects represent the current
business day and two previous business days. The third business day is included in this Ruletest to verify that
the rules are using only the current and previous business days. None of the data from the third business day
should be used if the rules are executing correctly. Based on the values of cl osePri ce and vol une in the
two Secl nf o objects being tested, you expect to see the highest rank of 4 assigned to your security in the
current business day's Secl nf o object.

Progress Corticon: Rule Modeling: Version 6.3 135

Chapter 5: Collections

Figure 95: Ruletest for security ranking model rules

Inpuk Oubpuk
= =l Security [1]
] ticker [16M]
=-¢— secInfo {SecInfo) [1]

= E Security [1]
1 ticker [1BM]
Ele— secInfo (SecInfoi[1]

----- B busDay [11/12)2020]
----- #=| ClosePrice [S0,0]

----- = olume [700.0]
[=-4— secInfo (SecInfo) [2]

----- B busDay [11/1172020]
----- B closePrice [45.0]

----- = olume [600.0]
[=-4— secInfo {(SecInfo) [3]

----- == busDay [11/1042020]
----- = closePrice [55.0]

----- B olume [800.0]

- busDay [11/12{2020]

- closePrice [S50,000000]
- rank [4]

- pule1Weight [0.500000]
- pule2Weight [0.250000]
- rotalWeight [0.750000]
- yolume [700,000000]

El-e— secInfo (SecInfo) [2]

- busDay [11/11/2020]
-5 closePrice [45,000000]
- yvolume [600,000000]

El-4— secInfao (SecInfo) [3]
- husDay [11/10f2020]
- closePrice [55,000000]
< wolume [800,000000]

tule Statements | B Rule Messages @3

SEN... | Message | Enkity "
Irfo If today's closing price = last business dayv's closing price, then rule 1 weight = 0.5 Security[1]
Info If today's dosing wolume = lask business dav's closing wolume then rule 2 weight = 0,25 Security[1]
Info Tokal weight = sum of rule 1 weight and rule 2 weight Securitv[1]
Irfo If total weight = 0,75, then rank = 4 Security[1]

Both cl osePri ce and vol une for 11/12/2020 were higher than the values for those same attributes on
11/11/2020; therefore, both r ul e1Wei ght and r ul e2Wei ght attributes were assigned their high values by
the rules. Accordingly, the t ot al Wei ght value calculated from the sum of the partial weights was the highest
possible value, and a r ank of 4 was assigned to this security for the current day.

As previously mentioned, the preceding example was tightly constrained in that the aliases were assigned to
two specific elements of the referenced collections. What about the case where there are multiple instances
of an entity that you would like to evaluate with your rules?

136 Progress Corticon: Rule Modeling: Version 6.3

How to use aliases to represent collections

The second example is also based on the security ranking scenario, but, in this example, the rank assignment
that was accomplished will be done in a different way. Instead, you will rank a number of securities based on
their relative performance to one another, rather than against a preset ranking scheme. In the rules for the new
example, you compare the t ot al Wi ght value that is determined for each security for the current business
day against the t ot al Wi ght of every other security, and determine a r ank based on this comparison of

t ot al Wi ght values. A Rulesheet for this alternate method of ranking securities is shown in the next figure.

Figure 96: Rulesheet with alternate rank determination rules

v .
€ *RankingModel, ert W\
Scope | Conditions 1] 1 z
=] Security [secl] a secinfol.totalWeight > secinfoZ.botalWeight - T F
: *‘,ﬂ Filters b
=] ticker €
EEI----(secInfo [secinfol] d
=-E1 Security [sec2] &
*rid Filters f
- ticker d :
EEI----€ secInfo [secinfoz] Actions 1
Posk Message(s) = =
m & | secinfol.rank += 1
157 secl <= sec? il B
27F secinfol.busDay = today =
37F secinfoZ.busDay = today E
: LI Crverrides
r’LI Rule Skatements &3 Rule Messages
Ref | ID Post Alias Text
1 Info If Security 1 [{secl ticker}] tokal weight = Security 2 [{sec2. ticker}] takal weight, then
increment [{secl.ticker}] rank by 1
a Info If Security 1 [{seci ticker}] kokal weight <= Security 2 [{secZ. ticker} kokal weight, then
kake no ackion

In these new ranking rules, aliases were created to represent specific instances of Secur i t y and their
associated collections of Secl nf 0. As in the previous example, filters constrain the aliases, most notably in
the case of the Secl nf o instances, where secl nf 01 and secl nf 02 are filtered for a specific value of bus Day
(today's date). However, our Secur i t y instances were loosely constrained. You have a filter that prevents
the same element of Secur i t y from being compared to itself (when sec1l =sec?2). No other constraints are
placed on the Securi ty aliases.

Progress Corticon: Rule Modeling: Version 6.3 137

Chapter 5: Collections

Note that single elements of Secur i t y are not assigned to our aliases. Instead, the rules engine is instructed
to evaluate all allowable combinations (that is, all those combinations that satisfy the first filter) of Security
elements in the collection in each of the aliases (sec1 and sec?2). For each allowable combination of Securi ty
elements, the t ot al \éi ght values from the associated Secl nf o element forbusDay = t oday are compared,
and increment the rank value for the first Secl nf o element (seci nf 01) by 1 ifits t ot al Wi ght is greater

than that of the second Secl nf o object (seci nf 02). The end result should be the relative performance ranking
of each security.

Figure 97: Input Testsheet for testing alternate security ranking model rules

‘F [
Q AlternateRank. ers W

untitled 1 |
IRMG[alernateRank. ers

Input

== security [1]
-5 ticker [16M]
El-o— seclnfo {SecInfol [1]
E busDay [29)2025]
E rank [1]
~-m otalweight [0,750000]
== security [2]

-5 ticker [MSFT]
El-o— seclnfo {SecInfo) [2]
E busDay [2/9/2025]
E rank [1]
=] bokalweight [0,000000]
=& security [3]

- bicker [TNTC]
E-4— secInfo (SecInfo) [3]
E busDay [2/9/2025]
-] rank [1]
= bokalweight [0,500000]
== security [4]
-5 ticker [AMAT]
El-e— secInfo (SecInfo) [4]
E busDay [2/9/2025]
-] rank [1]
] bokalweight [0,250000]

This figure shows a Ruletest constructed to test these ranking rules. In the data, four Securi t y elements and
an associated secl nf o element for each were added. Note that each alias represents all four security
elements and their associated secl nf o elements. The current day at the time of the Ruletest is 2/9/2025, so
each Security. secl nf o. busDay attribute is given the value of 2/9/2025 (if additional seci nf o elements
in each collection were added, they would have earlier dates, and therefore would be filtered out by the
preconditions on each alias). Each Securi ty. secl nf 0. r ank was initially set equal to 1 so that the lowest
ranked security still has a value of 1. The lowest ranked security is the one that loses all comparisons with the
other securities. In other words, its weight is less than the weights of all other securities. If a security's weight
is less than all the other security weights, its rank will never be incremented by the rule, so its rank will remain
1. The values of t ot al Wei ght for the Secl nf o objects are all different; therefore, each security ranked
between 1 and 4 with no identical r ank values is expected.

138 Progress Corticon: Rule Modeling: Version 6.3

How to use aliases to represent collections

Note: If there were multiple Securi ty. secl nf o elements (multiple securities) with the same t ot al Wi ght
value for the same day, then the final r ank assigned to these objects is expected to be the same as well.
Further, if there were multiple Securi ty. secl nf o entities sharing the highest relative t ot al Wei ght value
in a given Ruletest, then the highest r ank value possible for that Ruletest would be lower than the number of
securities being ranked, assuming all r ank values are initialized at 1.

Figure 98: Results Testsheet for alternate security ranking model rules

p
E alkernateRank. ers W\
untitled_1 |
[RMiS/alkernateRank, ers
Input
== Security [1] == security [1]
] ticker [16M]] ticker [1BM]
E-¢— secInfo (SecInfol [1] =-¢— secInfo (SecInfo) [1]
""" = busDay [2/9/2025] """ = busDay [2/9/2025]
----- =] rank[1] ----- = rank [4]
o[botalWeight [0,750000] o pobalweight [0,750000]
== Security [2] == Security [2]
] ticker [MSFT] -] ticker [MSFT]
E-¢— secInfo (SecInfol [2] E-¢— secInfo (SecInfo) [2]
""" = busDay [2/9/2025] """ = busDay [2/9/2025]
----- =] rank[1] ----- =] rank[1]
o[botalWeight [0.000000] o pobalweight [0.000000]
== Security [3] == security [3]
- ticker [INTC] -] ticker [INTC]
E-¢— secInfo (SecInfol [3] =-¢— secInfo (SecInfo) [3]
""" = busDay [2/9/2025] """ = busDay [2/9/2025]
----- =] rank[1] ----- = rank [3]
o[botalWeight [0.500000] o bobalweight [0.500000]
== Security [4] == security [4]
] ticker [AMAT]] ticker [AMAT]
E-¢— secInfo (SecInfol [4] =-¢— secInfo (SecInfo) [4]
""" = busDay [2/9/2025] """ = busDay [2/9/2025]
----- =] rank[1] ----- = rank [2]
o[botalWeight [0.250000] o pobalweight [0,250000]
=
Fule Statements | & Rule Messages &3
Severity | Message | Enkity |
Infa If Security 1 [IBM] kotal weight = Security 2 [AMAT] kotal weight, then increment [IBM] rank by 1 Security[1]
Info If Security 1 [AMAT] total weight = Security 2 [M3FT] tokal weight, then increment [AMAT] rank by 1 Secority[4]
Info If Security 1 [IMTC] tokal weight = Security 2 [MSFT] kotal weight, then increment [INTC] rank by 1 Security[3]
Infa If Security 1 [IBM] kotal weight = Security 2 [INTC] bokal weight, then increment [IBM] rank by 1 Security[1]
Info If Security 1 [IMTC] tokal weight = Security 2 [AMAT] tokal weight, then increment [INTC] rank by 1 Secarity[3]
Info If Security 1 [IEM] kotal weight = Security 2 [MSFT] total weight, then increment [IBM] rank by 1 Security[1]
Info If Security 1 [AMAT] total weight <= Security 2 [INTC] total weight, then take no action Security[4]
Info If Security 1 [M3FT] kotal weight == Security 2 [AMAT] tokal weight, then take no action Security[2]
Infa If Security 1 [AMAT] bokal weight <= Security 2 [IEBM] total weight, then take no action Security[4]
Info If Security 1 [IMTC] tokal weight <= Security 2 [IBM] total weight, then take no action Security[3]
Info If Security 1 [MSFT] kotal weight <= Security 2 [IBM] total weight, then take no action Security[2]
Info If Security 1 [M3FT] kotal weight == Security 2 [INTC] total weight, then take no action Security[2]

Progress Corticon: Rule Modeling: Version 6.3 139

Chapter 5: Collections

In this figure, the Ruletest results are as expected. The security with the highest relative t ot al Wi ght value
ends the Ruletest with the highest r ank value after all rule evaluation is complete. The other securities are
also assigned r ank values based on the relative ranking of their t ot al Wi ght values. The individual rule
firings that resulted in these outcomes are highlighted in the message section at the bottom of the results sheet.

It is interesting to note that nowhere in the rules is it stated how many security entities will be evaluated. This
is another example of the ability of the declarative approach to produce the intended outcome without requiring
explicit, procedural instructions.

Sorted aliases

You can create a special kind of alias in the Scope section of a Rulesheet. The technique uses the specialized
Sequence operator - >next against a sorted alias (a special cached sequence) inside a filter expression. The
Rulesheet is set into a Ruleflow that iterates to bind the alias in each successive invocation to the next element
in the sequence.

The following example shows a Rulesheet based on the Car go Vocabulary. The Car go entity and its wei ght
attribute were brought into the scope:

Scope
=1 Cargo [load)]
f==| weight

The operators sor t edBy and sor t edByDesc enable sorting in ascending or descending order of the numeric
or alphabetic values of the attribute in the set of data. Note that an attribute with a Boolean data type is not
valid for this operation.

& Rule Operators &7 - O

. [= General -
. [= Attribute Operators
4 [= Entity/Asscciation Operators

. = Entity

4 = Collection

.-

% -=
- isEmpty
- notEmpty
= exists (expression)
= forfll (expression)
- sortedBy (attribute)
- sortedByDesc (attribute)
= iterate (attribute)
%
—

m

cize

CLIFT

140 Progress Corticon: Rule Modeling: Version 6.3

Sorted aliases

Dragging the sor t edBy operator and dropping it (you cannot type it in) on the attribute wei ght places it in
the scope, yet an error shows:

4 p| weight
m# sortedBy

The error message notes that a sorted alias node requires an alias name. When you enter an alias name, the
scope is complete.

Scope
a4 =] Cargo [load]
4 = weight
-2 sortedBy [sortedlcad]

A filter expression is added to establish that, when you iterate through the list, each pass presents the next
sequential item in the sorted set. You defined this by dragging sor t edBy from the scope to filter line 1, and

then appended the - >next operator. A rule statement based on sorted load that echoes the weight was added
so you can see the results in the tests.

Lqé *Cargo.ecore Q *Sorteddliases.ers ©0 vc, “SortedAliases.ert L *sa.erf E *cad.ers = B8
Scope Conditions 0 1 -
4 (=] Cargo [load] d
a = weight b
a =% sortedBy [sortedLoad] | ;
4 47 Filters R =
. "f’.su:urtechuad-}nert Actions ‘ o~
= weight Post Meszage(s) B4
: A
Filters B
17F | sortedload-» next a [r
2 n i
3 - Overrides
=] Rule Statements &3 L Rule Mezsages =0
Ref |ID Post Alias Text -
1 Info sortedload The weight is [{sortedLoad.weight}].

The Rulesheet is saved and a Ruleflow is created, adding in the Rulesheet. Then, you drag an Iterative
operation to the Rulesheet in the Ruleflow and save it.

Progress Corticon: Rule Modeling: Version 6.3 141

Chapter 5: Collections

|55 Palette [
[z & &
= Connection
Q Ruleshest
Su:urte%%iases ‘i Ruleflow
5 Service Call-out
on Branch
=&/ Subflow
. , () Iterative

A Ruletest with a few Cargo items was created, each with a weight that is expected to sequence numerically
when you run the test. Each iteration posts a message, and that message (the corresponding Rule Statement)
contains the embedded attribute load weight. Because each member of the load collection will trigger the
nonconditional rule, and even though the elements will be processed in no particular order, you expect to see
a set of resulting messages with load weight in order. Running the tests repeatedly outputs the weights in
ascending order every time.

|=| untitled 1| = untitled_2

fMutonal/Tutonal-Done/sa.erf

Input Output
a | Cargo[1] = Cargo[1]
== weight [1111] = weight [1111]
a = Cargo [2] = Cargo [2]
= weight [2] = weight [2]

= Cargo [3]
=] weight [333] = weight [333]

= Rule Statements | & Rule Messages &7

Sewverity Message

Info The weight is [2].
Info The weight is [333].
Info The weight is [1111].

If you change the operator to sor t ByDesc, the results are shown in descending order by weight, as expected.

142 Progress Corticon: Rule Modeling: Version 6.3

Advanced collection sorting syntax

Advanced collection sorting syntax

Collection syntax contains some subtleties worth learning. It is helpful when writing collection expressions to
step through them, left to right, as though you were reading a sentence. This helps you better understand how
the pieces combine to create the full expression. It also helps you to know what else you can safely add to the
expression to increase its utility. Use this approach in order to dissect the following expression:

Col l ectionl -> sortedBy(attributel) -> |ast.attribute2

1. Col l ectionl

This expression returns the collection {e4, e,, €3, e,4, €s5,...€,} where e, is an element (an entity) in
Col | ecti onl. You already know that alias Col | ect i on1 represents the entire collection.

2. Collectionl -> sortedBy(attributel)

This expression returns the collection {e,, e,, €3, &4, €5,...e,} arranged in ascending order based on the
values of at t ri but el (call it the index).

3. Collectionl -> sortedBy(attributel) -> |ast
This expression returns {e,} where e, is the last element in Col | ecti onl when sorted by at t ri but el.

This expression returns a specific entity (element) from Col | ecti onl. It does not return a specific value,
but once you identify a specific entity, you can easily reference the value of any attribute it contains, as in
the following, which returns {e,.attribute2}:

4. Collectionl -> sortedBy(attributel) -> last.attribute2

Entity Context

The complete expression not only returns a specific value, but just as important, it also returns the entity to
which the value belongs. This entity context is important because it allows you to do things to the entity
itself, like assign a value to one of its attributes. For example:

Collectionl -> sortedBy(attributel) -> last.attribute2="xyz’

The preceding expression assigns the value of xyz to at t ri but e2 of the entity whose attri but el is
highest in Col | ect i onl. Contrast this with the following:

Collectionl.attributel -> sortedBy(attributel) -> |ast
This expression returns a single integer value, like 14.

Notice that all you have now is a number, a value. You lost the entity context, so you cannot do anything
to the entity that owns the attribute with value of 14. In many cases, this is just fine. Take for example:

Collectionl.attributel -> sortedBy(attributel) -> last > 10

In preceding expression, it is not important that you know which element has the highest value of
attribut el, all you want to know is if the highest value (whomever it “belongs” to) is greater than 10.

Understanding the subtleties of collection syntax and the concept of entity context is important because it
helps you use the returned entities or values correctly, for example:

Return the lower of the following two values:
e 12

* The age of the oldest child in the family

Progress Corticon: Rule Modeling: Version 6.3 143

Chapter 5: Collections

What is really being compared here? Do you care which child is oldest? Do you need to know his or her
name? No. You simply need to compare the age of that child (whichever one is oldest) with the value of 12.
So, this is the expression that models this logic:

fami ly. age -> sortedByDesc(age) -> first.nmin(12)

The . m n operator is an operator that acts upon numeric data types (Integer or Decimal). And because
fam |y.age -> sortedByDesc(age) -> first returns a number, it is legal and valid to use . mi n
at the end of this expression.

What about this scenario: Name the youngest child Junior.
famly -> sortedByDesc(age) -> |ast.nanme="Junior'

Now return a specific entity — that of the youngest child — and assign to its name a value of Juni or . You
need to keep the entity context in order to make this assignment, and the preceding expression accomplishes
this.

Statement blocks

Sequence operators can easily extract an attribute value from the first, last, or other specific element in a sorted
collection (see - >first,->l ast, or->at (n) for examples). This is especially useful when the attribute's
value is involved in a comparison in a conditional or preconditional rule. Sometimes, however, you want to
identify a particular element in a sequence and flag or tag it for use in subsequent rules. This can be
accomplished using special syntax called statement blocks.

Statement blocks, permitted only in the Action rows of the Rulesheet, use special variables, prefixed by a
question mark character (?) to hold or pin an element so that further action can be taken on it, including tagging
it by assigning a value to one of its attributes. These special holder variables can be declared when needed,
meaning they do not need to be defined anywhere prior to use.

For example, in a sales management system, the performance of sales representatives is analyzed every
quarter, and the highest grossing sales representative is awarded Salesperson of the Quarter. This special
status is then used to automatically increase the representative's commission percentage on sales made in
the following quarter. The generic Vocabulary used in previous examples is used, but with these assumptions:

Vocabulary Term Meaning
Entity2 A salesperson
Entityl.entity2 Collection of salespeople
Entity2.stringl A salesperson's name
Entity2. decimal 1l A salesperson's quarterly sales
Entity2.string2 A salesperson's award
Entity2. deci mal 2 A salesperson's commission percentage

144 Progress Corticon: Rule Modeling: Version 6.3

Statement blocks

Using this Vocabulary, construct the following Rulesheet:

Figure 99: Rulesheet using statement block to identify and reward winner

@ StatementBlocks.ers &3

Scope Conditions 0 1
v (=] Entity1 a Entity2.string2 = 'Salesperson of the Cuarter’ T
){ entity2 (Entity2) [2]
=1 Entity2 Actions <
Post Message(s)
A |Hag = e -» sortedBy(decimall) -»= last;

Filters ftag.stringd = 'Salesperson of the Quarter'

1 ~ B Entity2.decimal2 += 0.05

3 W Cherrides

|Z] Rule Statements &3

Ref |ID Post | Alias | Text

AD The highest grossing salesperson for the quarter is awarded 'Salesperson of the Cuarter’
1 The 'Salesperson of the Quarter' receives an additional 5% commission on sales

Important Notes about Statement Blocks
As expressed in Action row A in the preceding figure, a statement block consists of two separate expressions:

1. The first part assigns an element of a sequence to a special holder variable, prefixed by the ? character.
This variable is unusual because it represents an element, not a value. Here, the highest grossing salesperson
is expressed as the last element of the collection of salespeople (e2), sorted in ascending order according
to quarterly sales (deci mal 1). Once identified by the sequencing operator - >| ast , this salesperson is
momentarily held by the ?t ag variable, which was declared when it was needed.

2. The second part of the statement—the part following the semicolon—assigns a value to an attribute of the
element held by the ?t ag. In the example, a value of ' Sal esperson of the Quarter' isassigned to
the st ri ng2 attribute of the salesperson held by ?t ag. In effect, the highest grossing salesperson with
this award is tagged.

These two parts must be included on the same Action row, separated by a semicolon. If the two parts are
separated in different sections or in different rows of the same section, then the element represented by the ?
variable is lost. In other words, the ?t ag loses its grip on the element identified by the sequencing operator.

Note: Using semicolons: The semicolon is an action statement end character that creates a compound action
statement., Each action statement is executed sequentially. Its use, however, can make it harder to read action
statements in Rulesheets and reports. It is a good practice to use semicolons only when there is no alternative,
as in this example.

Now that the winner has been tagged, you can use the tagged element (awardee) to take additional actions.
In the Conditional rule, the commission percentage of the winner is increased by 5% using the i ncr enent
operator.

Progress Corticon: Rule Modeling: Version 6.3 145

Chapter 5: Collections

The next figure shows a Ruletest Input and Output pane. As expected, the highest grossing salesperson was
awarded Sal esper son of the Quarter honors, and their commission was increased by 5%.

Figure 100: Output panel with winner and adjusted commission in bold

Input Output

v =] Entity1 [1] v =] Entity1 [1]

v ¢— entity2 (Entity2) [1]
=] decimall [100000.000000]
= decimal2 [0.100000]
= ctringl [Joe Smith]

v ¢ entity2 (Entity2) [2]
=] decimall [120000.000000]
= decimal2 [0.100000]
= ctringl [Sanjana Patel]

v ¢— entity2 (Entity2) [3]
= decimall [85000.000000]
= decimal? [0.100000]
= ctringl [Park Tae-min]

v o entity2 (Entity2) [4]
= decimall [115000.000000]
= decimal? [0.100000]
= ctringl [Janet Jones]

v o entity2 (Entity2) [3]
== decimall [9800.000000]
= decimal? [0.100000]
= ctringl [Jean-Marc Duboiz]

v < entity2 (Entity2) [1]
=] decimall [100000.000000]
= decimal2 [0.100000]
= ctring1 [Joe Smith]
v ¢— entity2 (Entity?) [2]
=] decimall [120000.000000]
= decimal2 [0.150000]
= ciring1 [Sanjana Patel]
[=| string2 [Salesperson of the Quarter]
v o entity2 (Entity2) [3]
= decimall [85000.000000]
= decimal2 [0.100000]
=l string1 [Park Tae-min]
v o entity2 (Entity2) [4]
= decimall [115000.000000]
= decimal2 [0.100000]
=] string1 [Janet Jones]
v o entity2 (Entity2) [5]
= decimall [9800.000000]
= decimal2 [0.100000]
=] string1 [Jean-Marc Dubais]

Using sorts to find the first or last in grandchild
collections

The Sort edBy->fi rst and Sort edBy- >l ast constructs work as expected for any first-level collection
regardless of data type, determining the value of the first or last element in a sequence that was derived from
a collection.

When associations are involved, you have to take care that the collection operator is not working at a grandchild
level. You could construct a single collection of multiple children (rather than multiple collections of a single
child) by “bubbling up” the relevant value into the child level, and then sort at that level. Another technique is
to change the scope to treat the root level entity as the collection, and then apply filters so that only the ones
matching the common attribute values across the associations are considered. When you apply

Sort edBy->first or Sort edBy- >l ast, the intended value is the result.

146 Progress Corticon: Rule Modeling: Version 6.3

Singletons

Singletons

Singletons are collection operations that scan a set to extract one arithmetic value: the first, the last, the trend,
the average, or the element at a specified position. This behavior was seen when the sort edAl i as found
the first and last element in an iterative list (as well as the elements in between) in the given order.

To examine this feature, the Ai rcr af t entity and its maxCar goWei ght is brought into the scope as well as
Car go (with the alias | oad) and its attribute wei ght . The nonconditional action you enter is:

"Show me the maximum cargo weight by examining all the cargo in the load, sorting them by weight from small
to large, and returning the smallest one first."

That is entered as:

Ai rcraft. maxCar goWei ght =l oad- >sort edBy(wei ght)->first.wei ght

Scope Conditions] -
=1 Aircraft a
=] maxCargoWeight b
=1 Cargo [load] ;
f=| weight . il
Actions 1 Foa
Post Message(s) =
A Ajrcraft.maxCargoWeight= load- = zortedBy
I:wvai5|ht]-.‘-~1rir:t.1flnaig|}'|tEI ’
B
- C
Filters D
1 “ | E
2 F
3 G r
i b Overrides

When you extend the test used for sorted aliases, you need to add an Ai r cr af t with naxCar goWei ght to
show the result of the test. The result is as expected: the lightest item passed the test.

Progress Corticon: Rule Modeling: Version 6.3 147

Chapter 5: Collections

STutonal/Tutonal-Done/saZ.ers

Input Output

a = Cargo[1] = Cargo [1]

=] weight [1111] &= weight [1111]
a = Cargo[2] = Cargo [2]

= weight [2] =] weight [2]

= Cargo [3]

=] weight [333] =] weight [333]
4 = Aircraft [1] =l Aircraft [1]

B aircraftType =l aircraftType

= rmaxCargoVolume = rmaxCargoVolume

E=| maxCargoWeight =] maxCargoWeight [2.000000]

=] tailNumber = tailMumber

The same result is output when you modify the rule to select the last item when you sort the items by descending

weight.
Figure 101:
Scope Conditions] -
a =] Aircraft a &
=] maxCargoWeight b
a =] Cargo [load] £ — i
Acticns 1 bl
Post Message(s) i
A | Aircraft.rnaxCargoWeight=
load-»sortedByDesciweight]- = last.weight
Filters B
1 Al
2 D -
3 & Chverrides

Now, reverse the test to select the first item when you sort the items by descending weight:

148 Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

Scope Conditions] -
=] Aircraft a
f=| maxCargoWeight b
£ Cargo [load] ;
f=| weight . s
Actions 1 Foa
Post Message(s) =
A |Aircraft.maxCargoWeight=
load-=sorted ByDescliweight)- = firstweight
E
C
Filters D
1 <l E
2 F
3 G il
i 57 Owerrides

The heaviest item is output:

untitled 1 | z= wuntitled_2

fTuterial/Tutornial-Donefsa2.ers
Input Output Expected
El Cargo [1] Hl Cargo[1]
& weight [1111] =] weight [1111]
=l Cargo [2] = Cargo [2]
= weight [2] = weight [2]
H=l Cargo [3] Hl Cargo [3]
= weight [333] =] weight [333]
f= Aircraft [1] = Aircraft [1]
= aircraftType f=l aircraftType
= maxCargoVolume = maxCargoVolume
= maxCargoWeight =] maxCargoWeight [1111.000000]
) tailMurmber = tailMurnker

Note: Singletons do not operate against an iterative Ruleflow as was required by Sorted Aliases. The tests
apply directly to the Rulesheet.

Special collection operators

There are two special collection operators available in Corticon Studio's Operator Vocabulary that allow you
to evaluate collections for specific conditions. These operators are based on two concepts from the predicate
calculus: the universal quantifier and the existential quantifier. These operators return a result about the
collection, rather than about any particular element within it. Although this is a simple idea, it is actually a very
powerful capability. Some decision logic cannot be expressed without these operators.

Progress Corticon: Rule Modeling: Version 6.3 149

Chapter 5: Collections

Universal quantifier

The meaning of the universal quantifier is that a condition enclosed by parentheses is evaluated (its truth value
is determined) for all instances of an entity or collection. This is implemented as the - >f or Al | operator in the
Operator Vocabulary. This operator will be demonstrated with an example created using the Vocabulary from
the security ranking model. Note that these operators act on collections, so all the examples shown will declare
aliases in the Scope section.

Figure 102: Rulesheet with universal quantifier (“for all”’) condition

@ rueo.. 2

[#-[= General
= Aktribuke Operators

[Entity
E-= Collection

----- = isEmpky
""" = nokEmpky

Rule 'l.l'l:n...‘

El[c“b Entity i Association Operators

=0

..... = exisks (expression)

----- = Farall (expression)

----- - sortedBy {attribute)

----- —» sorbedByDesc (attribute)

----- = iterate {attribube)

Scope

In this figure, you see the following condition:

secinfo ->forAll (secinfo.rank >= 3)

Conditions 0
Bl £ security [secky] a |secinfo -= fordll{secinfo.rank ==3) - T F
----- =] raking b
b -€ seclnfo (SecInfo) [secinfo] = ©
d
dl |1l
Filters Actions 4
1 ~ Post Message(s) = =
o A secty.rating High' | 'Low'
3 B
4 C
: Ad
=
|Z] Rule Statements &3 Rule Messages ‘
Ref I Post Alias Text Rule Marme
1 Info secty | A security For which all rank values are greater than or equal to 3
should be assigned a rating of high
2 Info secty | A securiby For which not all rank values are greater than or equal

ko 3 should be assigned a rating of law

The exact meaning of this condition is that for the collection of Secl nf o elements associated with a Security
(represented and abbreviated by the alias secl nf 0), evaluate if the expression in parentheses (seci nf 0. r ank
>= 3)is true for all elements. The result of this condition is Boolean because it can only return a value of true
or false. Depending on the outcome of the evaluation, a value of either Hi gh or Low will be assigned to the

r at i ng attribute of the Secur i t y entity, and the corresponding Rule Statement will be posted as a message

to the user.

150

Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

The following figure shows a Ruletest constructed to test the “for all” condition rules.

Figure 103: Ruletest for testing “for all” condition rules

[. - -
& UniversalQuantifier. ert X

2| untitled_1 |
[RMGE UniversalQuantifier.ers

Input
= & security [1]
----- =] rating
----- M= sechlame
----- B ticker [IBM]
El-4— secInfo (SecInfa) [1]
..... = busDay [11/15/2020]
----- == closeFrice
----- =] rank [4]
----- = rulelweight
----- B ruleziWeight
----- = rotalweight
----- = volume
[El-e— secInfo (SecInfo) [2]
..... = busDay [11)14/2020]
----- = closeFrice
----- = rank [3]
----- =] rule1iweight
----- = rule2weight
----- B tobalweight
----- = alume
El-o— secInfao (SecInfo) [3]
..... = busDay [11/13)2020]
----- == closeFrice
----- =] rank [3]
----- = rulelweight
----- B ruleziWeight
----- = rotalweight
----- = volume

Progress Corticon: Rule Modeling: Version 6.3

151

Chapter 5: Collections

In this Ruletest, a collection of three Secl nf 0 elements associated with a Secur i t y entity is evaluated.
Because the r ank value assigned in each Secl nf o object is at least 3, you should expect that the “for all”
condition will evaluate to t r ue, and a rating value of Hi gh will be assigned to the Securi t y object when the
Ruletest is run through the rules engine. This outcome is confirmed in the Ruletest results, as shown:

Figure 104: Ruletest for “for all” condition rules

(. Lniversalouantifienert. X

=] untitled_1 |
JRME/UniversalQuantifier . ers
Input
= = security [1] E = security [1]
..... =] rating] rating [High]
..... E sechlame E secMame
----- =] ticker [16M] =] ticker [1EM]
=1-¢— secInfo (SecInfo) [1] [=1-¢— secInfo (SecInfo) [1]
----- == busDay [11/15/2020] -2 busDay [11/15/2020]
..... #=| closePrice == closePrice
..... == rark[4] = rank [4]
..... | rule 1Weight o] rule1wieight
..... =] rulezWweight o] ruleZweight
..... = totaleight == tokalweight
..... = volume -] olume
=-¢— secInfo (SecInfo) [2] [=1-¢— secInfo (SecInfo) [2]
----- == busDay [11/14/2020] -8 busDay [11/14{2020]
..... == closePrice - closePrice
..... = rark [3] = rank [3]
..... | rule 1Weight o] rule1wieight
..... =] rulezweight o ruleZweight
..... =] totalweight o] kotaleight
..... = volume - olume
El-4— secInfo (SecInfo) [3] (=14~ secInfo (SecInfo) [3]
----- B=| busDay [11/13/2020] - busDay [11/13(2020]
..... | closePrice - closePrice
..... == rank [3] - pank [3]
..... =] rule 1Weight o] rule1Wieight
..... =] rulezweight o ruleZweight
..... =] totalweight o] kotaleight
..... = volume - olume
=
Rule Statements | B Rule Messages 23
Severity | Message | Enkikyy |
Info & security Ffor which all rank walues are greater than or equal bo 3 should be assigned a rating of high Secority[1]

Existential quantifier

The other special operator available is the existential quantifier. The meaning of the existential quantifier is that
there exists at least one element of a collection for which a given condition evaluates to true. This logic is
implemented in the Rulesheet using the - >exi st s operator in the Operator Vocabulary.

152 Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

You can construct a Rulesheet to determine the r at i ng value fora Secur i t y entity by evaluating a collection
of associated Secl nf o elements with the existential quantifier. In this example, vol une rather than r ank is
used to determine the r at i ng value for the security. The Rulesheet for this example is shown in the following

figure:

Figure 105: Rulesheet with existential quantifier (“exists”) condition

@ rueo.. 2 Rule'l.l'a...‘ =0

Scope

#[= General Conditions 0 1 2
[5: Attribute Operators = EH Security [secky] a |secinfo - =exists(volume > 1000} - T F
El[c“b EntityAssociation Operatars o pating b
[5' Enity i€ seclnfo (SecInfo) [secnfa] | ©
== Collection d
..... % = 4 | ILI e
""" % += Filters Actions 1
Post Messagels) = =

..... % - 1 il
----- - isEmply it

----- = notEmply
Ll Cverrides

secky.rating 'High Yolume' | "Mormal Yalume'

LAY R R N
m

..... = forall (expression)

----- - sortedBy (attribute)

""" = exists (expression)
Rule M |
----- = sortedByDesc (attribute) U= IAEEBEES

|Z] Rule Statements &3

..... = jterate {attribute) Ref 1D Post Alias Text

..... = size 1 Info secky | A security For which there exists a volurme greater than 1000 must be dassified *High Yalurne'

----- =5 sum z Info |secty | A security For which there does not exist a volume greater than 1000 must be dassifed Mormal
Yolume'

----- = =Awn

In this Rulesheet, you see the following condition
seci nfo ->exi sts(secinfo.volume >1000)

Notice again the required use of an alias to represent the collection being examined. The exact meaning of
the condition in this example is that for the collection of Secl nf o elements associated with a Securi t y (again
represented by the seci nf o alias), determine if the expression in parentheses (seci nf 0. vol une > 1000)
holds true for at least one Seci nf o element. Depending on the outcome of the exi st s evaluation, a value
of either H gh Vol une or Nor mal Vol une will be assigned to the r at i ng attribute of the Securi t y object,
and the corresponding Rule Statement will be posted as a message to the user.

Progress Corticon: Rule Modeling: Version 6.3 153

Chapter 5: Collections

The following figure shows a Ruletest constructed to test the exi st s condition rules.

Figure 106: Ruletest for testing (“exists”) condition rules

F. ExistentialQuantifier. et X

| untitled_t |
IRMG[ExistentialQuantifier . ers
Input
= = security [1]
----- == rating
""" = cechame

----- = ticker [1BM]

[=+%— secInfo (SecInfo) [1]

----- = busDay [11/15/2020]
""" B closePrice

""" B rulelWeight

""" B ruleziWeight

----- = tokalweight

----- == yolume [200,000000]
H-o— secInfo (SecInfo) [2]

----- = busDay [11/14/2020]
""" #=| closePrice

----- =] riulelweight

""" = rule2Weight

""" B tobalweight

----- == yolume [1600,000000]
=%~ secInfo (SecInfo) [3]

----- == husDay [11/13/2020]
----- B closePrice

""" B rulelWeight
""" B ruleziWeight
----- = tokalweight
----- == yolume [700,000000]

154

Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

A collection of three Secl nf o elements associated with a single Secur i t y entity will be evaluated. Because
the vol une attribute value assigned in at least one of the Secl nf o objects (secl nf o[2]) is greater than
1000, you should expect that the exi st s Condition will evaluate to true and ar at i ng value of H gh Vol une
will be assigned to our Secur i t y object when the Ruletest is run through the rules engine. This outcome is
confirmed in the Ruletest shown in the following figure:

Figure 107: Ruletest output for (“exists”) condition rules

b, ExistentialQuantifier ert X

=] untitled_1 |
[RMG[ExistentialQuantifier . ers
Input
= & security [1]
"""] rating
""" = cechame

----- == ticker [I6M]

[El-4— secInfo (SecInfo) [1]

----- == husDay [11/15/2020]
----- B closePrice

""" = rulelWeight

----- = rule2weight

""" m=| totalweight

----- == olume [200,000000]
El-¢— secInfo (SecInfo) [2]

----- = busDay [11/14/2020]
""" == ClosePrice

""" B rulelWeight

""" B ruleziWeight

----- = rotalweight

----- == yolume [1600,000000]
[=-4— secInfo (SecInfo) [3]

----- == busDay [11/13/2020]
---- = closePrice

""" = rulelWeight
----- = rule2weight
""" m=| totalweight
----- == alume [700,000000]

Cukput
= =l security [1]
""" #=| rating [High Yolume]
""" = cechame
----- == ticker [IEM]
El-4— secInfo {SecInfo) [1]
- bysDay [11/15/2020]
- closePrice
] park
- ple W eight
-] pulezveight
-] EokalWeight
- wolume [500,000000]
El-%— secInfa {SecInfa) [2]
- busDay [11/14f2020]
- lnsePrice
E rank
- pileWeight
-l eight
- potalweight
- wolume [1600,000000]
=-4— secInfo (SecInfo) [3]
- busDay [11/13f2020]
- lnsePrice
] park
- ple W eight
-] pulezveight
-] EokalWeight
- wolume [700,000000]

E
Rule Statements |D Rule Messages &3

Severity | Message

| Ertits |

Info & security For which there exists a wolume greater than 1000 must be classified 'High Yalume'

Security[1]

Progress Corticon: Rule Modeling: Version 6.3

155

Chapter 5: Collections

Another example using the existential quantifier
Collection operators are powerful parts of the Corticon Rule Language. In some cases, they may be the only
way to implement a particular business rule. For this reason, another example is provided.

Business problem: An auto insurance company has a business process for handling auto claims. Part of this
process involves determining a claim’s validity based on the information submitted on the claim form. For a
claim to be classified as valid, both the driver and vehicle listed on the claim must be covered by the policy
referenced by the claim. Claims that are classified as invalid will be rejected, and will not be processed for
payment.

From this short description, extract the primary business rule statement:

1. Aclaim is valid if the driver and vehicle involved in a claim are both listed on the policy against which the
claim is submitted.

In order to implement the business rule, the following UML Class Diagram is proposed. Note the following
aspects of the diagram:

* A policy can cover one or more drivers
* A policy can cover one or more vehicles
* A policy can have zero or more claims submitted against it.

* The claim entity was denormalized to include dri ver Nane and vehi cl eVin .

Note: Alternatively, the Claim entity could have referenced Dr i ver . name and Vehi cl e. vi n (by adding
associations between Claim and both Driver and Vehicle), respectively, but the denormalized structure is
probably more representative of a real-world scenario.

Figure 108: UML Class Diagram

Yehicle

En . stnng
&bmaodel : String
&bmake : String

L Claim
Policy '&claimlD : String
&policyNumber : String EdriverName : String
&startDate : Date —{ &pvehicleVin : String
&endDate : Date 1 0.7 |&sclaimDate : Date
&validClaim - Boolean
1

=
Driver

'ﬁ'}name . String

Qbsﬁn String

156 Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

This model is realized in Corticon Studio as:

Figure 109: Vocabulary for insurance claims

B pule Yocabulary X ﬂ

=] autoclaim

E Clairm

E Driver

EIE Palicy
----- = nolicyMumber
""" = srartDate
----- == endDate
I'_-'I—€ claim {Clairm)
----- = ClaimDate
----- =] claimID
""" == drivertlame
----- =] alidClaim
----- =] ehiclein
I':'I-€ driver [Driver)

#-E vehicle

Model the following rules in Corticon Studio, as shown:

Progress Corticon: Rule Modeling: Version 6.3 157

Chapter 5: Collections

1. Foraclaim to be valid, the driver’'s name and vehicle ID listed on the claim must also be listed on the claim’s
policy.

2. If either the driver’s name or vehicle ID on the claim is not listed on the policy, then the claim is not valid.

Figure 110: Rulesheet for insurance claims

7% autociaimers. X W

Scope | Conditions 1] 1 z 3
= B Claim [aClaim] a | aClaim,driverMame = aClaim, policy driver.name - T F -
o driverharme b | aClaim.wehiclevin = aClaim, palicy . wehicle, vin - T - F
o] alidClaim &
- ehicledin d
EEI---}- policy Ackions 4
- Post Message(s) = = = |
Flllters _l A aClair, validClaim T F F
- B
E ll Cverrides
fD Rule Skatements @3 Rule Messages
Ref ID Post Alias Teuk
1 Info aClaim & claim is walid if iks driver [{aClaim.driverfame}] ARD Vehicle match the policy against it was submitked
[{aClaim. policy . driver.name}] and [{aClaim. policy, vehicle, vink]
z Warning | aClaim & claim is nok walid if its driver [{aClaim. driverMame}] is nak on the policy against which it was submitted
[{alaim, policy , driver.name}]
3 Warning | aClaim & claim is nok walid if its vehicle [{aClaim, vehiceVint] is not on the policy against which it was submitked
[{alaim, policy , vehicle.win}]

158 Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

This appears very straightforward. But a problem arises when there are multiple drivers or vehicles listed on
the policy. In other words, when the policy contains a collection of drivers or vehicles. The Vocabulary permits
this scenario because of the cardinalities that were assigned to the various associations. This problem is
demonstrated in the following Ruletest:

Figure 111: Ruletest input for insurance claims

W %autuﬂaim.ert &8

tm e 7| B untitied 1 |
= 2 autoClsim [RMG/ autoClaim, ers
=8 i Input
T ;"CEL?ITIaimDate =l E Clairn [1]
""" =] claimiD E driverMame
""" == driveriame E walidClaim
""" =] v alidClaim E wehiclevin
----- = wehicleyin =< palicy [1]

EI<>— driver [1]

=13 policy (Palicy) 5] e [Mary]

= policyMumber B0 driver [2]
- skartDake R
o endDate : “o [mame [Sue]
=-—€ driver (Driver) EIQ_ driver [3]
..... = name : Lo mamne [Ioe]
..... = s2n =-¢— vehicle [1]
I'_-'I-€ vehicle (Yehicle) .= .vin [456-JKL]
..... =] in El-4— wehicle [2]
..... = model = vin [987-RYZ]
..... = make E|<>— vehicle [3]
=] Driver Fo] vin [123-ABC]
@ Policy
-] vehicle

Progress Corticon: Rule Modeling: Version 6.3 159

Chapter 5: Collections

Notice in the Rulestest that there are three drivers and three vehicles listed on (associated with) a single policy.
When you run this Ruletest, you see the results:

Figure 112: Ruletest output for insurance claims

—

P
E autoClaim.ers

= = wehiclevin [123-ABC]

=-¢— policy (Policy) [1]
=-¢— driver (Driver) [1]
L] mamne [Mary]
=-¢— driver (Driver’ [2]
‘o name [Sue]
=-e— driver (Driver) [3]
] name [Jog]
[l-e— vehide (Yehicle) [1]
- vin [456-3KL]
=l-o— vehide (vehicle) [2]
- vin [987-8v2)
El-4— vehide (Yehicle) [3]

] vin [123-8BC]

untitled_1 |
IRMG[aukaClaim, ers
Input Oubput
= & daim[1] = & claim[1]
""" = driverMame [Joe] E drivertame [Joe]
""" =] v alidClaim E validClaim [False]

8] vehiclevin [123-4BC]
[=<— palicy (Policy’ [1]
E|<>— driver (Driver) [1]
= mame [Mary]
=-o— driver (Driver) [2]
Lo name [5ue]
El-o— driver (Driver) [3]
= mame [Joe]
[=-<— wehicle {vehicle) [1]
e vin [456-DKL]
=le— wehicle (vehicle) [2]
e vin[9E7-RvE]
E|<>— vehicle (vehicle) [3]

------ = vin [123-86C]

E
Rule Staktements |i'_'l Rule Messages &3

Severity | Message | Entity |
Info & claim is walid if its driver [Joe] AMD Yehicle match the policy against it was submitted [Joe] and [123-ABC] Claim[1]
Warning A claim is nok walid i ks driver [Joe] is nok on the palicy against which it was submitted [Sue] Clairn[1]
Wearning A claim is nok walid i ks driver [Joe] is nok on the policy against which it was submitbed [Mary] Claim[1]
Warning & claim is not walid if its wehicle [123-8B8C] is not on the policy against which it was submitbed [987-5YZ] Claim[1]
Warning A claim is nok walid iF ks vehicle [123-88C] is nok an the policy against which it was subrmitted [456-k0L) Clairn[1]

As you can see from the Ruletest results, the way Corticon Studio evaluates rules involving comparisons of
multiple collections means that the val i dC ai mattribute may have inconsistent assignments — sometimes
t rue, sometimes f al se (as in this Ruletest). It can be seen from the following table below that, given the
Ruletest data, 4 of 5 possible combinations evaluate to f al se, while only 1 evaluates to t r ue. This conflict
arises because of the nature of the data evaluated, not the rule logic, so Studio’s Conflict Check feature does
not detect it.

Claim. Claim.policy. Claim. Claim.policy. | Rule 1 fires [Rule 2 fires | Rule 3 fires | validClaim
driverName | driver.name | vehicleVin | vehicle.vin
Joe Joe 123-ABC 123-ABC X True
Joe Sue X False
Joe Mary X False

160

Progress Corticon: Rule Modeling: Version 6.3

Special collection operators

Claim. Claim.policy. Claim. Claim.policy. | Rule 1 fires | Rule 2 fires | Rule 3 fires | validClaim
driverName | driver.name | vehicleVin | vehicle.vin
123-ABC 987-XYZ X False
123-ABC 456-JKL X False
The existential quantifier will be used to rewrite these rules:
Figure 113: Rulesheet with rules rewritten using the existential quantifier
Scope Conditions] 1 z
= B claim [] a cpd -= exisks{name = c.drivertlame) F
..... = drivertame b |cpv -= exists{vin = c.vehicleind - F
""" P v alidClaim €
----- P ehiclevin d
EI}- policy ';
----- —€ driver [cpd]
----- -€ wehicle [cpy] ﬁ
Filters Actions 1] |
1 - Post Messageis) | i
z A | covalidClaim F F
] B
4 C
o (]
2] E
7 F
= j Crverrides
=] Rule Statements 23 | Rule Messages
Ref ID Post Alias Text
Al Warning | c & clairn is nak walid if its driver [{c.driverMamel}] is not on the palicy against which it is submitted
&z Warning |c & claim is not walid if its vehicle [{c.wehicle¥in}] is not on the policy against which it is submitted
A3 Info C & claim is walid if its driver [{c.driverfame}] AMD vehicle [{c.vehicleint] match those on the palicy ;

This logic tests for the existence of matching drivers and vehicles within the two collections. If matches exist
within both, then the val i dCl ai mattribute evaluates to true, otherwise val i dCl ai mis false.

Now the same Ruletest data as before is used to test these new rules. The following figure shows the results:

Progress Corticon: Rule Modeling: Version 6.3 161

Chapter 5: Collections

W ExistentialdutoClaim, ers

2| untitled_1 |

[RMG ExistentialdutoClaim, ers
Inpuk
= = daim[1]

/=] driverMame [1oe]

o] s 2lidClainn

- vehicleYin [123-ABC]

E-e— palicy (Policyi [1]
EI<>— driver (Driver) [1]
E name [Mary]
=-o— driver (Driver) [2]
‘=] name [Sus]
[=-¢— driver (Driver) [3]
E name [Jog]
=-e— wehicle (vehide) [1]
el vin [456-3KL]
=-e— wehicle (vehide) [2]
- vin [987-%v2]
[=-¢— wehicle {vehicle) [3]

8 vin [123-86C]

Oukpuk

= = dlaim[1]

= drivertame [Joe]
== validClaim [true]
== ehiclevin [123-ABC]

=-e— policy {Policy) [1]

[=-¢— driver (Driver) [1]
E name [Mary]
=-o— driver (Driver) [2]
‘=] name [Sus]
[=-¢— driver (Driver) [3]
E name [Jog]
=-e— wehicle (vehide) [1]
el vin [456-3KL]
=-e— wehicle (vehide) [2]
- vin [987-%v2]
[=-¢— wehicle {vehicle) [3]
8 vin [123-86C]

E
Rule Statements |D Rule Messages &3

Severity | Message

Info & claim is walid if iks driver [Jog] AND vehicle [123-A6C] match those on the palicy against which it is submitked Claim[1]

Notice that only one rule fired, and that val i dC ai mwas assigned the value of true. This implementation
achieves the intended result.

Aggregations that optimize EDC database access

A subset of collection operators are known as aggregation operators because they evaluate a collection to
compute one value. These aggregation operators are as highlighted:

162 Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Collections

& Rule Operators &2 = 0O

. = General -
. [= Attribute Operators
4 [= Entity/Association Operators
. (= Entity
4 = Collection
-
G -
= isEmpty
- notEmpty
- exists (expression)
= forAll (expression)
sortedBy (attribute)
sortedByDesc (attribute)
iterate (attribute)

m

_}

%

%

- size
= Tum
= avyg
%

%,

&

When these aggregations are applied through the Enterprise Data Connector in a Rulesheet set to Extend to
Database, the performance effect against large tables can be minimized by performing non-conditional actions
that force the calculations onto the database. For an example of this, see Optimize aggregations that extend
to database on page 252

TestYourself questions for Collections

Note: Try this test, and then go to TestYourself answers for Collections on page 354 to see how you did.

Children of a Parent entity are also known as of a collection.

True or False. All collections must have a parent entity.

True or False. Root-level entities can form a collection.

True or False. A collection operator must operate on a collection alias.

List three Collection operators and describe what they do.

Which reference contains usage details and examples for every collection operator?

Write a Rule Statement that is equivalent to the syntax Or der . total = itens. price->sum

In the syntax in Question 7, which term is the collection alias?

© 0 N p DN

Ifi t ens is an alias representing the Li nel t ementities associated with an Or der entity, then what would
you expect the cardinality of this association to be?

Progress Corticon: Rule Modeling: Version 6.3 163

Chapter 5: Collections

10. Is Order. i neltem pri ce- >suman acceptable replacement for the syntax in Question 7?7 Why or why

not?

1. If you are a Vocabulary designer and want to prevent rule authors from building rules with Li nel t em or der
terms, what can you do to prevent it?

12 When collection operators are not used in a Rulesheet, aliases are (circle all that apply)

Optional

Mandatory

Colorful

Convenient

13. If a nonconditional rule states Li nel tem pri ce

100, and my Input Testsheet contains 7 Li nel t em

entities, then a collection of data is processed by this rule. Is a collection alias required? Why or why not?

14. Which collection operator is known as the universal quantifier?

15. Which collection operator is known as the existential quantifier?

For questions 16-18, refer to the following Vocabulary

164

Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Collections

(2] Rule Viocabulary &3 =7 ElJ
=-E1 ovp

P =] starRating
: —€ roles (Role)
@ Award

#-E& Distributor
&= ovp

#-=l DVDExtraz
El@ Movvie

----- == afi100

----- =] director

]

----- = yearReleazed
=-—€ dvD (DVD)

----- =] priceTier

----- B quantityAvailable
""" = releaseDate

El-=— extras (DVDExtras)
""" = altEnding

""" B commentary

""" = deletedScenes
""" = extendedScenes
""" = wideScreen
-3 supplier (Distributor)
""" B edition

""" | impart

""" m=| packaging
#-—€ goldenGlobe (Award)
—€ oscar (Award)

—€ roles (Role)

- Role

16. Write expressions for each of the following phrases:

a. If an actor has had more than 3 roles
b. If a movie has not been released on DVD
c. If a movie has at least one DVD with deleted scenes
d. If a movie won at least one Golden Globe
e. If the movie had more than 15 actors
If there are at least 100 copies available of a movie
g. If there are less than 2 copies available of a movie
h. If the DVD can be obtained from more than 1 supplier

Progress Corticon: Rule Modeling: Version 6.3 165

Chapter 5: Collections

17. Which entities could be grandchildren of Movie?

18. Which entites could be children of Role?

19. Describe the difference between - >f or Al | and - >exi st s operators.

20. Describe the difference between - >not Enpt y and - >i sEnpt y operators.

21. Why are aliases required to represent collections?

166 Progress Corticon: Rule Modeling: Version 6.3

6

Rules containing calculations and equations

Rules that contain equations and calculations are no different than any other type of rule. Calculation-containing
rules can be expressed in any of the sections of the Rulesheet.

Terminology that will be used throughout this section

In the simple expression A = B, Ais the left-hand side (LHS) of the expression, and B is the right-hand side
(RHS). The equals sign is an operator, and is included in the Operator Vocabulary in Corticon Studio. But,
even such a simple expression has its complications. For example, does this expression compare the value
of Ato Bin order to take some action, or does it instead assign the value of B to A ? In other words, is the
equals operator performing a comparison or an assignment? This is a common problem in programming
languages, where a common solution is to use two different operators to distinguish between the two meanings:
the symbol == might signify a comparison operation, whereas : = might signify an assignment.

In Corticon Studio, special syntax is unnecessary because the Rulesheet helps to clarify the logical intent of
the rules. For example, typing A=B into a Rulesheet's Condition row (and pressing Enter) automatically causes
the Values set { T, F} to appear in the rule column cell drop-down lists. This indicates that the rule modeler
has written a comparison expression, and Studio expects a value of t r ue or f al se to result from the
comparison. A=B, in other words, is treated as a test: is A equal to B?

However, when A=B is entered into an Action or Nonconditional row (Actions rows in Column 0), it becomes
an assignment. In an assignment, the RHS of the equation is evaluated and its value is assigned to the LHS
of the equation. In this case, the value of Bis assigned to A. As with other actions, you can activate or deactivate
this action for any column in the decision table (numbered columns in the Rulesheet) by checking the box that
automatically appears when the Action's cell is clicked.

In the Rule Language Guide, the equals operator (=) is described separately in both its assignment and
comparison contexts.

Progress Corticon: Rule Modeling: Version 6.3 167

Chapter 6: Rules containing calculations and equations

Note: A Boolean attribute does not reset when non-Boolean input is provided for a non-conditional
rule

While this is the expected behavior in the Corticon language, it can cause unexpected results. On input of a
Boolean attribute, if the value of the elementis t r ue or 1, Corticon interprets that as a t r ue Boolean value,
otherwise it defaults to a f al se Boolean value. Attributes in the input document are not modified unless the
value is changed in the rule; that is, setting a t r ue Boolean attribute to the value of t r ue does not modify the
element.

You can have reliable behavior when you use following workaround. To guarantee a modification in the data,
you need to guarantee that the rules change the value of the attribute. For example, instead of action...

Entity_1.bool eanAttrl = T
...first set the value of the attribute to null, and then set it to true:

nul |
T

Entity_1. bool eanAttr1l
Entity_1. bool eanAttr1l

For details, see the following topics:

* Operator precedence and order of evaluation
¢ Data type compatibility and casting

* Supported uses of calculation expressions

* Unsupported uses of calculation expressions

* TestYourself questions for Rules containing calculations and equations

Operator precedence and order of evaluation

Operator precedence is the order in which Corticon Studio evaluates multiple operators in an equation. Operator
precedence is described in the following table (also in the Rule Language Guide.) This table specifies for
example, that 2* 3+4 evaluates to 10 and not 14 because the multiplication operator * has a higher precedence
than the addition operator +. It is a good practice, however, to include clarifying parentheses even when Corticon
Studio does not require it. This equation would be better expressed as (2* 3) +4. Note the addition of
parentheses does not change the result. When expressed as 2* (3+4) , however, the result is 14.

168 Progress Corticon: Rule Modeling: Version 6.3

Operator precedence and order of evaluation

The precedence of operators affects the grouping and evaluation of expressions. Expressions with
higher-precedence operators are evaluated first. When several operators have equal precedence, they are
evaluated from left to right. The following table summarizes Corticon's Rule Operator precedence and their
order of evaluation .

Operator Operator Operator Name Example
precedence
1 () Parenthetic expression (5.5/10)
2 - Unary negative -10
not Boolean test not 10
3 * Arithmetic: Multiplication 55*10
/ Arithmetic: Division 55/10
o Arithmetic: Exponentiation (Powers and Roots) 5 ** 9
25**0.5

125 ** (1.0/3.0)

4 + Arithmetic: Addition 55+10
- Arithmetic: Subtraction 10.0-5.5
5 < Relational: Less Than 55<10
<= Relational: Less Than Or Equal To 55<=55
> Relational: Greater Than 10>5.5
>= Relational: Greater Than Or Equal To 10>=10
= Relational: Equal 5.5=5.5
<> Relational: Not Equal 55<>10
6 (expression and |Logical: AND (ent1.dec1 > 5.5 and
expression) ent1.dec1 < 10)
(expression or |Logical: OR (ent1.dec1 > 5.5 or
expression) ent1.dec1 < 10)

Note: Even though expressions within parentheses that are separated by logical AND/OR operators are valid,
the component expressions are not evaluated individually when testing for completeness, and might cause
unintended side effects during rule execution. The best practice within a Corticon Rulesheet is to represent
AND conditions as separate condition rows and OR conditions as separate rules -- doing so allows you to get
the full benefit of Corticon’s logical analysis.

Note: It is recommended that you place arithmetic exponentiation expressions in parentheses.

Progress Corticon: Rule Modeling: Version 6.3 169

Chapter 6: Rules containing calculations and equations

Data type compatibility and casting

An important prerequisite of any comparison or assignment operation is data type compatibility. In other words,
the data type of the equation's LHS (the data type of A) must be compatible with whatever data type results
from the evaluation of the equation's RHS (the data type of B). For example, if both attributes A and B are
Decimal types, then there will be no problem assigning the Decimal value of attribute B to attribute A.

Similarly, a comparison between the LHS and RHS does not make sense unless both refer to the same kinds
of data. How does one compare or ange (a String)toJuly 4, 2014 12: 00: 00 (a DateTime)? Or f al se
(a Boolean) to 247. 82 (a Decimal)?

In general, the data type of the LHS must match the data type of the RHS before a comparison or assignment
can be made. (The exception to this rule is the comparison or assignment of an Integer to a Decimal. A Decimal
can safely contain the value of an Integer without using any special casting operations.) Expressions that result
in inappropriate data type comparison or assignment should turn red in Studio.

In the examples that follow, the generic Vocabulary from the Rule Language Guide will be used because the
generic attribute names indicate their data types:

Figure 114: Generic Vocabulary used in the Rule Language Guide

Lb RMG Master.ecore i3

w [RMG Master
w = Entity1
==| booleand
= hoolean2
= datel
=| date?
=] dateOnlyl
=] dateOnly2
= dateTimel
==| dateTime?
= decimall
= decimal?
= integer?
= integer
= ctring
= string2
= timeOnly
= timeOnly2
= Entity2
] Entity?
£ Entityd

170

Progress Corticon: Rule Modeling: Version 6.3

Data type compatibility and casting

The following figure shows a set of Action rows that illustrate the importance of data type compatibility in
assignment expressions:

Figure 115: Data type mismatches in assignment expressions

E ActionsMotMatching.ers &3

Conditions 0 1
a
b
Actions €
Post Message(s)
A | Entityl.boclean] = Entity1.boolean2
B | Entityl.dateTirmel = Entity1.string]
C |Entityl.string1 = Entity1.dateTimel
D |Entityl.decimall = Entityl.integer]
E |Entityl.boolean] = Entityl.decimall
Overrides
g Problems &3
3 errors, 0 warnings, 0 others
Descripticon Resource

~ 3 Errors (7 items)
@ Data type mismatch: Expecting type [Boolean], Actual type [Decimal]. ActionsMotMatching.ers
3 Data type mismatch: Expecting type [DateTime], Actual type [String]. ActionsMotMatching.ers
3 Data type mizsmatch: Expecting type [String], Actual type [DateTime]. ActionsMotMatching.ers

Let's examine each of the Action rows to understand why each is valid or invalid.

A—This expression is valid because the data types of the LHS and RHS sides of the equation are compatible.
They are both Boolean.

B—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a DateTime and the RHS resolves to a String.

C—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a String and the RHS resolves to a DateTime.

D—This expression is valid because the data types of the LHS and RHS sides of the equation are compatible
even though they are different! This is an example of the one exception to Corticon's general rule regarding
data type compatibility: Decimals can hold Integer values.

E—This expression is invalid and turns red because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a Boolean, and the RHS resolves to a Decimal.

Note that the Problems window contains explanations for the red text shown in the Rulesheet.

Progress Corticon: Rule Modeling: Version 6.3 171

Chapter 6: Rules containing calculations and equations

The following figure shows a set of Conditional expressions that illustrate the importance of data type compatibility
in comparisons:

Figure 116: Datatype mismatches in comparision expressions

E ConditionsMotMatching.ers &3
Conditions 0 1

b | Entityl.stringl = Entity1.dateTime
¢ | Entityl.booleanl = Entityl.decimall
d Entityl.decimall = Entityl.integer
e Entityl.integerd <= Entityl.decimall
Actions <
Post Message(s)
A
=
Overrides

@i Problems &3
& errors, 3 warnings, 0 others
Description Resource

» 3 Errors (B items)
3 Data type mismatch: Expecting type [Boolean], Actual type [Decimal]. ConditionsMaotMatching.ers
3 Data type mismatch: Expecting type [String], Actual type [DateTime]. ConditionsMotMatching.ers

Let's examine each of these conditional expressions to understand why each is valid or invalid:

a—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. They are both Strings. Note that Corticon Studio confirms the validity of the expression by recognizing
it as a comparison and automatically entering the values set { T, F} in the Values column.

b—This comparison expression is invalid because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a String, and the RHS resolves to a DateTime. Note that, in addition to
the red text, Corticon Studio emphasizes the problem by not entering the values set { T, F} in the Values
column.

c—This comparison expression is invalid because the data types of the LHS and RHS sides of the equation
are incompatible. The LHS resolves to a Boolean, and the RHS resolves to a Decimal.

d—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. This is another example of the one exception to Corticon's general rule regarding data type
compatibility: Decimals can be compared to Integer values.

e—This comparison expression is valid because the data types of the LHS and RHS sides of the equation are
compatible. Like d, this also illustrates the exception to Corticon's general rule regarding data type compatibility:
Decimals can be compared to Integer values. Unlike an assignment, however, whether the Integer and Decimal
types occupy the LHS or RHS of a comparison is unimportant.

172 Progress Corticon: Rule Modeling: Version 6.3

Data type compatibility and casting

Data type of an expression

It is important to emphasize that the idea of a data type applies not only to specific attributes in the Vocabulary,
but to entire expressions. The previous examples were simple, and the data types of the LHS or the RHS of
an equation correspond to the data types of those single attributes. But, the data type to which an expression
resolves could be more complicated.

Figure 117: Examples of expression datatypes

E@ DataTypeQfExpression.ers &3

Conditions 0
a
b

Actions <

Post Message(s)
A elintegerl = el.dateTimel.dayOfWeek
B elinteger? = el.stringl.size
C |elbooleanl = 2 -= isEmpty
D |el.boolean? = e2 -= exists{dateTimel = today]
E eldecimall = ediinteger -> sum

Overrides

Let's examine each assignment to understand what is happening:

A—The RHS of this equation resolves to an Integer data type because the . day Of Week operator “extracts”
the day of the week from a DateTime value (in this case, the value held by attribute dat e1) and returns it as
an Integer between 1 and 7. Because the LHS also has an Integer data type, the assignment operation is valid.

B—The RHS of this equation resolves to an Integer because the . si ze operator counts the number of characters
in a String (in this case the String held by attribute st ri ngl) and returns this value as an Integer. Because
the LHS also has an Integer data type, the assignment operation is valid.

C—The RHS of this equation resolves to a Boolean because the - >i sEnpt y collection operator examines a
collection (in this case the collection of Ent i t y2 children associated with parent Ent i t y1, represented by
collection alias e2) and returns t r ue if the collection is empty (has no elements) or f al se if it is not. Because
the LHS also has a Boolean data type, the assignment operation is valid.

D—The RHS of this equation resolves to a Boolean because the - >exi st s collection operator examines a
collection (in this case, e2 again) and returns t r ue if the expression in parentheses is satisfied at least once,
and f al se ifitisn't. Since the LHS also has a Boolean data type, the assignment operation is valid.

E—the RHS of this equation resolves to an Integer because the - >sumcollection operator adds up the values
of all occurrences of an attribute (in this case, i nt eger 2) in a collection (in this case, €2 again). Since the
LHS has a Decimal data type, the assignment operation is valid. This is the lone case where type casting
occurs automatically.

Note: The. dayO Week operator and others used in these examples are described fully in the Rule Language
Guide.

Progress Corticon: Rule Modeling: Version 6.3 173

Chapter 6: Rules containing calculations and equations

Defeating the parser

The part of Corticon Studio that checks for data type mismatches (along with all other syntactical problems) is
the Parser. The Parser ensures that whatever is expressed in a Rulesheet can be correctly translated and
compiled into code executable by Corticon Studio's Ruletest as well as by the Decision Service. Because this
is a critical function, much effort was put into the Parser's accuracy and efficiency. But rule modelers should
understand that the Parser is not perfect, and cannot anticipate all possible combinations of the rule language.
It is still possible to “slip one past” the Parser. Here is an example:

Figure 118: LHS and RHS resolve to integers

@ DefeatingTheParser.ers &3

Conditions]
a
b

Actions L4

Post Message(s)
A | Entityl.integer] = (Entityl.integer2 * 2) + 1
B

Overrides

In the preceding figure, there is an assignment expression where both LHS and RHS return Integers under all
circumstances. But making a minor change to the RHS throws this result into confusion:

Figure 119: Will the RHS still resolve to an integer?

Eg DefeatingTheParser.ers 532

Conditions 0
a
b

Actions <

Post Message(s)
A Entityl.integer] = ((Entityl.integer2 * 2] + 11/ 2
B

Cwverrides

The minor change of adding a division step to the RHS expression has a major effect on the data type of the
RHS. Prior to modification, the RHS returns an Integer, but an odd Integer! When an odd Integer is divided by
2, a Decimal always results. The Parser is smart, but not smart enough to catch this problem.

When the rule is executed, what happens? How does the Decision Service react when the rule instructs it to
force a Decimal value into an attribute of type Integer? The server responds by truncating the Decimal value.
For example, if i nt eger 2 has the value of 2, then the RHS returns the Decimal value of 2. 5. This value is
truncated to 2 and then assigned to i nt eger 1 in the LHS.

Looking at this rule in isolation, it is not difficult to see the problem. But, in a complex Rulesheet, it may be

difficult to uncover this sort of problem. Your only clue to its existence may be numerical test results that do
not match the expected values. To be safe, iut is a best practice to ensure the LHS of numeric calculations
has a Decimal data type so no data is inadvertently lost through truncation.

174

Progress Corticon: Rule Modeling: Version 6.3

Data type compatibility and casting

Manipulating data types with casting operators

A special set of operators is provided in the Corticon Studio's Operator Vocabulary that allows the rule modeler
to control the data types of attributes and expressions. These casting operators are described below:

Table 6: Special casting operators

Casting operator Applies to data of type... Produces data of type...
.tol nteger Decimal, String Integer
. t oDeci nal Integer, String Decimal
.toString Integer, Decimal, DateTime, Date, String
Time
.toDat eTi me String, Date, Time DateTime
.toDat e DateTime Date
.toTime DateTime Time

Returning to Datatype Mismatches in Comparision Expressions, we use these casting operators to correct
some of the previous problems:

Figure 120: Using casting operators

E CastingOperators.ers &3

Conditions
a
b

Actions

Post Message(s)
A | Entityl.boclean = Entityl.boolean2
B Entityl.dateTimel = Entityl.string1.teDateTime
C | Entityl.string1 = Entity1.dateTimel.to5tring
D Entityl.decirmall = Entityl.integerl
E | Entityl.booleanT = Entity1.decimal1

Owerrides

Casting operators were used in actions rules B and C to make the data types of the LHS and RHS match.

Notice, however, that no casting operator exists to cast a Decimal into a Boolean data type for action E, hence
the error.

Progress Corticon: Rule Modeling: Version 6.3 175

Chapter 6: Rules containing calculations and equations

Supported uses of calculation expressions

You can do comparisons and assignments in a few different ways:
* Calculation as a comparison in a precondition on page 177

* Calculation as an assignment in a noncondition on page 178

* Calculation as a comparison in a condition on page 178

* Calculation as an assignment in an action on page 180

To make the examples more interesting and allow for a bit more complexity in the rules, the basic Tutorial
Vocabulary (Car go. ecor e) was extended to include a few more attributes. The extended Vocabulary is shown

in the following figure:

Figure 121: Basic Tutorial Vocabulary Extended

(2] Rule Vocabulary &3 = Y = O
~ [Z] RMG
= Aircraft
£ Cargo
w = FlightPlan
= approved
= flightNumber
= flightRange
= fuel
= planWeight
W }— aircraft (Aircraft)
Bl aircraftType
= emptyWeight
= grossWeight
= maxCargoVolume
= maxCargoWeight
=| maxFuel
== tailMumber
~ —€ cargo (Cargo)
= footprint
=| manifestMumber
= packaging
= volume
=] weight

The new attributes are described in the following table:

176

Progress Corticon: Rule Modeling: Version 6.3

Supported uses of calculation expressions

Table 7: New attributes added to the Basic Tutorial Vocabulary

Attribute Data type Description

Aircraft. enmptyWei ght Decimal The weight of an aircraft with no fuel
or cargo onboard (kilograms.)

Ai rcraft.grossWi ght Decimal The maximum amount of weight an
aircraft can safely lift, equal to the
sum of cargo and fuel weights
(kilograms.)

Ai rcraft. nmaxf uel Decimal The maximum amount of fuel an
aircraft can carry (liters.)

Car go. f oot pri nt Decimal The floor space required for this
cargo. (square meters.)

Fl i ght Pl an. appr oved Boolean Indicates whether the flight plan is
approved for operation.

FI i ght Pl an. pl anWi ght Decimal The total amount of all aircraft and
cargo weights for this flight plan
(kilograms.)

Fl i ght Pl an. fIi ght Range Decimal The distance the aircraft is expected
to fly (kilometers.)

FI i ght Pl an. f uel Decimal The amount of fuel loaded on the
aircraft assigned to this flight plan
(liters.)

Calculation as a comparison in a precondition

In the following figure, a numeric calculation is used as a comparison in the filters section of the Rulesheet:

@ PreconditionCalculationExpression.ers &3
Scope
w [=] FlightPlan

<= Filters

—€ cargo (Carge) [load)

Filters

17 | (load.weight -= sum) / (lead footprint -= sum) = 5 A
2

The LHS of the expression calculates the average pressure exerted by the total cargo load on the floor of the
aircraft (sum of the cargo weights divided by the sum of the cargo containers' footprints). This result is compared
to the RHS, which is the literal value 5. You might expect to see this type of calculation in a set of rules that
deals with special cargos where a lot of weight is concentrated in a small area. This might, for example, require
the use of special aircraft with sturdy, reinforced cargo bay floors. Such a Filter expression might be the first
step in handling cargos that satisfy this special criterion.

Progress Corticon: Rule Modeling: Version 6.3 177

Chapter 6: Rules containing calculations and equations

Calculation as an assignment in a noncondition

The example shown in the following figure uses a calculation in the RHS of the assignment to derive the total
weight carried by an Aircraft on the FlightPlan, where the total weight equals the weight of the fuel plus the
weight of all Cargos onboard plus the empty weight of the Aircraft itself.

Figure 122: A calculation in a nonconditional expression

@ MonconditionalCalculationExpression.ers £3

Scope Conditions 0
« [=] FlightPlan [plan] a
= approved
=] fuel £
E=| planWeight Actions <
3— aircraft (Aircraft) [plang] Post Message(s)
A | plan.planWeight = plan.fuel * 0.812 +
< cargo (Cargo) [load] Enadr.aweight i surﬁ] + plane.emptyWeight
Filters B
1 ~ L€
2 v Owverrides

The portion that converts a fuel load measured in liters—the unit of measure that airlines purchase and load

fuel—into a weight measured in kilograms, the unit of measure used for the weight of the cargo as well as the
aircraft and crew:

pl an.fuel * 0.812

Note that this conversion is conservative because Jet A1 fuel expands as it warms so this figure is at the cool
end of its range. This portion is then added to:

| oad. wei ght -> sum

which is equal to the sum of all Cargo weights loaded onto the aircraft associated with this flight plan. The final
sum of the fuel, cargo, and aircraft weights is assigned to the flight plan's pl an\Wei ght . Note that parentheses

are not required. The calculation will produce the same result without them. The parentheses were added to
improve clarity.

Calculation as a comparison in a condition

After pl anWi ght is derived by the nonconditional calculation in the following figure, it can immediately be
used elsewhere in this or subsequent Rulesheets.

Note: Subsequent Rulesheets means Rulesheets executed later in a Ruleflow. The concept of a Ruleflow is
discussed in the Quick Reference Guide.

178 Progress Corticon: Rule Modeling: Version 6.3

Supported uses of calculation expressions

An example of such usage appears in the following figure:

Figure 123: pl anWei ght Derived and used in same Rulesheet

@ PlanWeightDenived.ers &3
Scope Conditions 1
v [=] FlightPlan [plan] a plan.planWeight > plane.grossWeight T
= approved b
=] fuel £
E=| planWeight Actions <
3— aircraft (Aircraft) [plang] Post Message(s)
cargo (Cargo) [load] A | plan.planWeight = plan.fuel * 0.13368 * 504 + Z
< crg J (loadweight -> sum) + plane.emptyWeight
Filters B plan.approved F
1 Py B
] W Cherrides

In Condition row a, pl anWei ght is compared to the aircraft's gr ossWei ght to make sure that the aircraft is
not overloaded. An overloaded aircraft must not be allowed to fly, so the appr oved attribute is assigned a
value of f al se.

This has the advantage of being both clear and easy to reuse—the term pl an\Wéi ght , once derived, can be
used anywhere to represent the data produced by the calculation. It is also much simpler to use a single attribute
in a rule expression than it is a long, complicated equation.

But, this does not mean that the equation cannot be modeled in a conditional expression, if preferred. The
example shown in the following figure places the calculation in the LHS of the Conditional comparison to derive
pl anWei ght and compare it to gr ossWi ght all in the same expression.

Figure 124: Calculation in a conditional expression

@ CalculationAsAConditionalExpression.ers §3

Scope Conditions 1
v =] FlightPlan [plan] a plan.planWeight = plan.fuel * 0.13368 * 30.4 + T
= approved (load.weight -> sum) + plane.emptyWeight
=] fuel :

E=| planWeight

)— aircraft (Aircraft) [plane] Qchione <
Post Message(s)
—€ cargo (Carge) [load) A | plan.approved F
B
Filters C
1 M]
2 W Owerrides

This approach might be preferable if the results of the calculation were not expected to be reused, or if adding
an attribute like pl an\W\i ght to the Vocabulary were not possible. Often, attributes like pl an\Wei ght are very
convenient intermediaries to carry calculated values that will be used in other rules in a Rulesheet. In cases
where such attributes are conveniences, and are not used by external applications consuming a Rulesheet,
they can be designated as transient attributes in the Vocabulary, which causes their icons to change from
blue/yellow to orange/yellow.

Progress Corticon: Rule Modeling: Version 6.3 179

Chapter 6: Rules containing calculations and equations

Calculation as an assignment in an action

The following figure shows two rules that each make an assignment to naxFuel , depending on the type of
aircraft:

Figure 125: A calculation in an action expression

@ CalculationAsAndssignment.ers &3
Scope Conditions 1 2
~ [=] FlightPlan [plan] a | planeaircraftType 4T '‘DC-10
}— aircraft (Aircraft) [plane]
—€ cargo (Cargo) [load] Actions €
Post Message(s)
A | plane.maxFuel = plane.grossWeight -
plane.maxCargoWeight -
Filters plane.emptyWeight
1 ~ B planemaxFuel = 1000000
2 W Cwerrides

In rule 1, the naxFuel load for 747s is derived by subtracting maxCar goWei ght and enpt yWei ght from
gr ossWei ght . In rule 2, maxFuel for DC-10s is assigned the literal value 100000.

Unsupported uses of calculation expressions

Some calculation expressions you might want to try do not provide expected or reliable results.

Calculations in value sets and column cells—The Conditional expression shown below is not supported by
Studio, even though it does not turn red. Some simpler equations may actually work correctly when inserted
in the Values cell or a rule column cell, but it is a dangerous habit to get into because more complex equations
generally do not work. It is best to express equations as shown in the previous sections.

Figure 126: Calculation in a Values Cell and Column

@ Calculationin&Valueset.ers &3

Scope Conditions 1

~ =] FlightPlan [plan] plan.planWeight plane.emptyWeight + plan.fuel + load.weight
=] fuel
E=| planWeight
)— aircraft (Aircraft) [plane]

Actions <
cargo (Carge) [load)
=€ cargo (Carg Post Message(s)

[= TN T = ol -]

Filters A
1 ~ E
2

Overrides

180 Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rules containing calculations and equations

Calculations in rule statements—Even though it is possible to embed attributes from the Vocabulary inside
Rule Statements, it is not possible to embed equations or calculations in them. Operators and equation syntax
not enclosed in braces{ . . } are treated like all other characters in the Rule Statement: Nothing will be calculated.
If the Rule Statement shown in the following figure is posted by an action in rule 1, then the message will be
displayed exactly as shown; it will not calculate a result of any kind.

Figure 127: Calculation in a Rule Statement

[Z] Rule Statements &3

Ref |ID Post Alias Text
1 2¥3+4

Likewise, including equation syntax within curly brackets along with other Vocabulary terms is also not permitted.
Doing so can cause your text to turn red, as shown:

Figure 128: Embedding a calculation in a rule statement

[Rule Statements 3

Ref 1D Post Alias | Text
1 The value of maxFuel squared is {plane.maxFuel ** 2}

|Imrali|:| token: [**].

However, even if the syntax does not turn red, you should not perform calculations in Rule Statements—it may
cause unexpected behavior. When red, the tool tip should give you some guidance as to why the text is invalid.
In this case, the exponent operator (* *) is not allowed in an embedded expression.

TestYourself questions for Rules containing
calculations and equations

Note: Try this test, and then go to TestYourself answers for Rules containing calculations and equations on
page 355 to correct yourself.

1. What are the two possible meanings of the equals operator =? In which sections of the Rulesheet is each
of these meanings applicable?

2. What is the result of each of the following equations?
10+20/5-4 ___

2*4+5 ___

10/2*6-8 ___

2**3*(1+2) ___

5*2+5%2

® 2 0 T W

3. Is the following assignments expression valid? Why or why not? Entityl.integerl =
Entityl. decinal 1

4. Whatis the data type of each of the following expressions based on the scope shown in the following figure?

Progress Corticon: Rule Modeling: Version 6.3 181

Chapter 6: Rules containing calculations and equations

-
E& entity 1.ecore

(@ *entity 1_untiled_1.ers &3

Scope

= Entity 1 [e1]:

el.dateTimel.year __
e1.string1.toUpper ___

e2 -> forAll (integer1 =10) ____
e2.decimall ->avg ___
e1.boolean1

el.decimall > el.decimal2 ___

e2.string2.contains(‘abc’) ____

. Write “valid” or “invalid” for each of the following assignments

e1.decimall = e2.integer1

e2.decimal2 = e2.string2 ____

el.integer1 = e2.dateTime1.day
eZ.integer1 =e2 ->size __

el1.boolean2 = e2 -> exists (string1 = ‘abc’)
e2.boolean2 = e1.string1.toBoolean

e1.boolean2 = e2 -> isEmpty

to work as expected.

6. The part of Corticon Studio that checks for syntactical problems is called the

. True or False. If an expression typed in Corticon Studio does not turn red, then the expression is guaranteed

Referring to the following illustration, answer questions 8 through 10:

182

Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rules containing calculations and equations

g pvDa.ecore E¢ *MovieScope.ers 51
Scope

E-E Movie [film]
[-47 Filters
:I yearReleased
=-—€ dvD (VD) [aDVD]

------ =| quantityavailable

Filters

177 today.year - film.yearReleased > 10 ﬂ

A= BT R R)

=]

Tio =« o n oo

mo9 0 m e

Conditions 0 1 2
aDVD. quantityAvailable -= sum [aDVD-=size - <= 50000 = 50000
Actions 4 | I

Post Message(s) G i

Overrides

8. What does Filters row 1 test?

9. What does Conditions row “a” test? Is there a simpler way to accomplish this same thing using a different
operator available in the Corticon Rule Language?

10. Write a Rule Statement for rule column 1. (Assume that the only action required for this rule is to post a

Warning message as shown.)

11. True or False. The following sections of the Rulesheet accept equations and calculations:

* Scope

* Rule Statements
* Condition rows

* Action rows

e ColumnO

* Condition cells

¢ Action cells

* Filters

Progress Corticon: Rule Modeling: Version 6.3

183

Chapter 6: Rules containing calculations and equations

184 Progress Corticon: Rule Modeling: Version 6.3

7

Rule dependency in chaining and looping

This section explores how Corticon determines the sequencing of rules, and looping, which involves controls
you can set over the revisiting, re-evaluating, and possible re-firing of rules.

What is rule dependency?

Dependencies between rules exist when a conditional expression of one rule evaluates data produced by the
action of another rule. The second rule is said to be dependent on the first.

For details, see the following topics:

Forward chaining

Rulesheet processing modes of looping

Looping controls in Corticon Studio

Looping examples

How to use conditions as a processing threshold

TestYourself questions for Rule dependency chaining and looping

Forward chaining

The first step in learning to use looping is to understand how it differs from the normal inferencing behavior of
executing rules, whether executed by Corticon Studio or Corticon Server. When a Ruleflow is compiled into a
Decision Service, a dependency network for the rules is automatically generated. Corticon uses this network
to determine the order in which rules fire at run time. For example, in the following simple rules, the proper
dependency networkis 1>2> 3 > 4.

Progress Corticon: Rule Modeling: Version 6.3

185

Chapter 7: Rule dependency in chaining and looping

1. Ifvalue = A, then set value=B
2. If value =B, then set value=C

3. Ifvalue =C, then set value=D

4. If value =D, then set value=B

This is not to say that all three rules will always fire for a given test—clearly, a test with B as the initial value
will only cause rules 2, 3, and 4 to fire. But, the dependency network ensures that rule 1 is always evaluated
before rule 2, and rule 2 is always evaluated before rule 3, and so on. This mode of Rulesheet execution is
called optimized inferencing, meaning that the rules execute in the optimal sequence determined by the
dependency network generated by the compiler. Optimized inferencing is the default mode of rule processing
for all Rulesheets.

Optimized inferencing processing is a powerful capability that enables the rule modeler to break up complex
logic into a series of smaller, less complex rules. Once broken up into smaller or simpler rules, the logic is
executed in the proper sequence automatically, based on the dependencies determined by the compiler.

An important characteristic of optimized inferencing processing: the flow of rule execution is single-pass,
meaning a rule in the sequence is evaluated once and never revisited, even if the data values (or data state)
evaluated by its Conditions change over the course of rule execution. In the preceding example, this effectively
means that rule execution ceases after rule 4. Even if rule 4 fires (with resulting value = B), the second rule
will not be revisited, re-evaluated, or re-fired even though its condition (if value = B) would be satisfied by the
current value (state). You can force rule 2 to be re-evaluated only if a one of Corticon Studio's looping processing
modes is enabled for the Rulesheet. Remember, just because sequential processing occurs automatically does
not mean looping occurs too. Looping and its enablement are discussed next.

186 Progress Corticon: Rule Modeling: Version 6.3

Rulesheet processing modes of looping

Rulesheet processing modes of looping

Occasionally, you need rules to be re-evaluated and re-fired (if satisfied). This scenario requires the Corticon
rule engine to make multiple passes through the same Rulesheet. This behavior is called advanced inferencing,
and to enable it in Rulesheet execution, you must set Rulesheet processing mode to Advanced Inferencing
by selecting Rulesheet > Processing Mode > Advanced Inferencing from the Studio menubar, as shown:

Figure 129: Selecting Advanced Inferencing processing mode for a Rulesheet

Rulesheet Window Help
Legical Analysis >

G MBRI L Se

*
|E| B8 *iSample _riskers 53

Rule Column(s)

[Advanced View <~ () Konditions 0 | 1 2 3 | 4
Vo Show Vocabulary Details < | applicant.smoker T - F -
[4 Show Matural Language b appllcant.age >30 | <=30 -
: } c femnaleApplicant.bre... - - - T
Filters > d femalefpolicant.bre... - - - -
Processing Mode > Optimized Inferencing | - -
Localize... ~ Advanced Inferencing = =
Report... Advanced Inferencing with Self-Triggering I
Zf§f Compare Rulesheets... pOSt_MESSE_gE(_Sj '_' '_' ca [
. A applicantlife_risk_ra... High | Medium | Low
B applicant.health_ris... Fair
z
Overndes 2

5] 7 2 9
_ 3 -
T - F -
- T - F
- T F
e EA G4 EA
Poor | Fair | Poor Good Good
4]

We emphasize it here with an orange highlight to the immediate left of the Conditions header.

If the rule engine is permitted to loop through the rules, the following events occur:

Given a value of A as the initial data, the condition in rule 1 will be satisfied and the rule will fireirclsetting the
value to B. The second rule's condition is then satisfied, so the value will advance (or be reset) to C, and so
on, until the value is once again B after the fourth rule fires. Up to this point, the rule engine is exhibiting standard,

optimized inferencing behavior.

Progress Corticon: Rule Modeling: Version 6.3

187

Chapter 7: Rule dependency in chaining and looping

Here is the new part: the value (state) changed since the second rule last fired, so the rule engine will re-evaluate
the condition, and, finding it satisfied, will fire the second rule again, advancing the value to C. The third rule
will also be re-evaluated and re-fired, advancing the value to D, and so on. This sequence is illustrated in the
following figure.

Figure 130: Loop lterations

step # Input value Rule fired ok LBEP
value Iteration

1 A 1 B

2 B 2 C

3 C 3 D

4 D 4 B

5 B 2 C 1

6 C 3 D

7 D 4 B

8 B 2 C 2

9 C 3 D
10 D 4 B

Here is the key to understanding looping: when a looping processing mode is enabled, rules are continually
re-evaluated and re-fired in a sequence determined by their dependency network as long as the data state
changed since their last firing. Once the data state no longer changes, looping ceases.

Notice that the last column of the table indicates the number of loop iterations. The first loop does not begin
until rule 2 fires for the second time. The first time through the rules (steps 1-4) does not count as the first loop
iteration because the loop does not actually start until step 5.

Types of loops

Infinite loops

In the illustration in the "Rulesheet processing modes of looping" topic, looping between rules 2, 3, and 4
continues indefinitely because there is nothing to stop the cycle. Some loops, especially those inadvertently
introduced, are not self-terminating. Because these loops will not end by themselves, they are called infinite
loops. Infinite loops can be especially vexing to a rule modeler because it is not always apparent when a
Rulesheet has entered one. A good indication, however, is that rule execution takes longer than expected to
complete. A special control is provided to prevent infinite loops. This control is described in the Terminating
infinite loops topic.

Trivial loops

Single-rule loops, or loops caused by rules that depend logically on themselves, are also known as trivial loops,
a special kind of loop because they consist of a single rule that successively revisits, or triggers, itself.

188 Progress Corticon: Rule Modeling: Version 6.3

Rulesheet processing modes of looping

To enable the self-triggering mode of looping, select Rulesheet > Processing Modes > Advanced Inferencing
with Self-Triggering from the Corticon Studio menubar, as shown:

Figure 131: Selecting Advanced Inferencing with Self-Triggering processing mode for a Rulesheet

Rulesheet Window Help

Logical Analysis > e | W E3| | 2% G‘@l
Rule Column(s) ¥
|E| B "iSample_risk.ers 22
[Advanced View < 1 () Conditions 0| 1 2 3 45] 6| 7 8 9
Vs Show Vocabulary Details "z | applicant.smoker T - F -
(4 Show Natural Language b appllcant.age =30 | =<=30 -
:) c femaleApplicant.bre... - - T - F
Filters > d femalefpolicant.bre... - T - F
Processing Mode > Optimized Inferencing - T - F
Localize... Advanced Inferencing : T F
Report... + Advanced Inferencing with 5elf-Triggering 'I
f Compare Rulesheets... Post_Messa_ge(_s) '—‘ '—‘ i Bd | &1 | B4 | B4 [l il
~ A applicantlife_risk_ra... High | Medium | Low
B applicant.health_ris... Fair | Poor | Fair | Poor | Good | Good
=
Overnides 2 4]

Notice the icon to the left of the Conditions header. It contains an additional tiny arrow, which indicates

self-triggering is active.
Here is an example of a loop created by a self-triggering rule:

Figure 132: Example of an infinite single-rule loop

E InfiniteSingleLoop.ers &3
{3 Conditions 1
a Cargo.weight >=10 T
b
Actions 4
Post Message(s)
A Cargo.weight += 1
E
Overrides

When Car go. wei ght has a value equal to or greater than 0, then rule 1 fires and the value of Car go. wei ght
is incremented by 1. Data state has now changed—in other words, the value of at least one of the attibutes

has changed. In this case, it is the value of Car go. wei ght .

Because rule 1 executing that caused the data state change, and because self-triggering is enabled, the same
rule 1 will be re-evaluated. Now, if the value of Car go. wei ght satisfies the rule initially, it will do so again, so
the rule fires again, and self-triggers again. And so on, and so on. This is also an example of an infinite loop,
because no logic exists in this rule to prevent it from continuing to loop and fire.

Progress Corticon: Rule Modeling: Version 6.3

189

Chapter 7: Rule dependency in chaining and looping

An exception to self-triggering
Self-triggering logic can also be modeled in Column 0 of the Rulesheet, as shown:

Figure 133: Example of an infinite loop created by a self-triggering rule

@ SingleloophAsMNonconditional.ers 3
{3 Conditions 0
a
b
Actions <
Post Message(s)
A Cargoweight += 1
E
Owerrides

This figure is also a good example of why it might be appropriate to disable self-triggering processing. You
only want the wei ght to increment once, not enter into an infinite loop, which it would otherwise do,
unconditionally. This is a special case where you intentionally prevented this rule from iterating, even though
self-triggering is enabled. This rule will execute only once, regardless of the loop processing mode.

Another example of a loop caused by self-triggering rule, but one which is not infinite, is shown in the following
figure. The behavior described only occurs when Rulesheet processing mode is set to Advanced Inferencing
with Self-Triggering.

Figure 134: Example of a finite single-rule loop

Eg FiniteSingleRuleloop.ers &3
.y | Conditions 1
a | Cargoweight 0..20
b
Actions <
Post Message(s)
& Cargo.weight += 1
B
Overrides

In the preceding figure, the rule continues to fire until Car go. wei ght reaches a value of 21, whereupon it
fails to satisfy the condition, and firing ceases. The loop terminates with Car go. wei ght containing a final
value of 21.

It is important to note that in all three examples, an initial Car go. wei ght value of O or higher was necessary
to activate the loop. A negative (or null) value, for example, would not have satisfied the rule's condition and
the loop would not have begun.

Multi-rule loops

As the name suggests, multi-rule loops exist when two or more rules are mutually dependent. As with single-rule
loops, the Rulesheet containing the looping rules must be configured to process them. This is accomplished
as before. Choose Rulesheet > Processing Mode > Advanced Inferencing from the Studio menubar, as
shown previously in Selecting advanced inferencing processing mode for a Rulesheet.

190

Progress Corticon: Rule Modeling: Version 6.3

Rulesheet processing modes of looping

Here is an example of a multi-rule logical loop:

Figure 135: Example of a finite multi-rule loop

E@ MultiLoopRule.ers 53 = O
{7y Conditions 0 1 2 3 ~
a Cargooweight 1.10 - =10
b | Cargowolume > 0 - T -
Actions < > oA
Post Message(s) EA EA EA
A | Cargowvolume = Cargo.aweight * 2
E | Cargoweight += 1
C
= W
Overrides
|Z] Rule Statements 3 = 0
Ref | ID Post Alias Text Rule M ~
1 Info Cargo If weight is between 0 and 10 [{Cargo.weight}] then volume
is twice weight [={Cargo.volume}]
2 Warning | Cargo As long as volume is greater than 0, increment weight by 1
[now{Cargo.weight}]
3 Viclation | Cargo weight has exceeded the threshold, so the loop terminates y

In the figure, rule 2 is dependent upon rule 1, and rule 1 is dependent upon rule 2. Rule 3 was also added,
which does not participate in the 1—2 loop, but generates a Vi ol at i on message when the 1—2 loop finally
terminates. Note, rule 3 does not cause the 1—2 loop to terminate, it just announces that the loop has terminated.
Now you will see how they behave. In Ruletest for the multi-rule Rulesheet, you see a simple Ruletest.

Figure 136: Ruletest for the multi-rule Rulesheet

% MultiLoop.ert 53

untitled_1
l'RulesTuterial/MultiLoopRule.ers

Input
w = Cargo [1]
= weight [1]

Progress Corticon: Rule Modeling: Version 6.3 191

Chapter 7: Rule dependency in chaining and looping

Car go. wei ght has a starting value to get the loop going. According to the condition in rule 1, this value must

be between 1 and 10 (inclusive).

Figure 137: Ruletest for the multi-rule Rulesheet

‘RulesTutorial/MultiLoopRule.ers Differences: 0
Input Output Expected
~ = Cargo[1] ~ =] Cargo [1]
= weight [1] = volume [20]
=] weight [11]

5] Rule Statements [Rule Messages 2 (& Comments [_] Properties

Severity Message Entity
Info If weight is between 0 and 10 [1] then volume is twice weight [=2] Cargo[1]
Warning Az long as velume is greater than 0, increment weight by 1 [now?] Cargoe[1]
Info If weight is between 0 and 10 [2] then volume is twice weight [=4] Cargo[1]
Warning As long as volume is greater than 0, increment weight by 1 [now3] Carge[1]
Info If weight is between 0 and 10 [3] then volume is twice weight [=£] Cargoe[1]
Warning As long as voelume is greater than 0, increment weight by 1 [now4] Cargo[1]
Info If weight is between 0 and 10 [4] then volume is twice weight [=8] Carge[1]
Warning Az long as velume is greater than 0, increment weight by 1 [now3] Cargo[1]
Info If weight is between 0 and 10 [3] then velume is twice weight [=10] Cargo[1]
Warning As long as volume is greater than 0, increment weight by 1 [nowE] Carge[1]
Info If weight is between 0 and 10 [6] then volume is twice weight [=12] Cargo[1]
Warning As long as volume is greater than O, increment weight by 1 [now7] Cargo(1]
Info If weight is between 0 and 10 [7] then velume is twice weight [=14] Carge[1]
Warning Az long as velume is greater than 0, increment weight by 1 [nowd] Cargo[1]
Info If weight is between 0 and 10 [8] then velume is twice weight [=16] Cargo(1]
Warning As long as volume is greater than 0, increment weight by 1 [nowd] Cargo[1]
Info If weight is between 0 and 10 [9] then volume is twice weight [=18] Cargo[1]
Warning As long as volume is greater than @, increment weight by 1 [now10] Carge[1]
Info If weight is between 0 and 10 [10] then volume is twice weight [=20] Cargo[1]
Warning As long as velume is greater than 0, increrment weight by 1 [now11] Carge[1]
Violaticn weight has exceeded the thresheld, so the loop terminates Cargo[1]

When intentionally building looping rules, it is often helpful to post messages with embedded attribute values
(as shown in the Rule Statements section of Figure 135: Example of a finite multi-rule loop on page 191) so we
can trace the loop's operation and verify it is behaving as expected. It should be clear to the reader that the
Ruletest shown in Ruletest for the Multi-rule Rulesheet contains the expected results.

Looping controls in Corticon Studio

To handle the various aspects of rule looping, Corticon Studio provides several mechanisms for identifying and

controlling looping behavior.

192

Progress Corticon: Rule Modeling: Version 6.3

Looping controls in Corticon Studio

Although you have only seen simple examples so far, looping rules can get much more complicated. Sometimes,
rules have mutual dependencies by accident—you did not intend to include loops when we built the Rulesheet.
Itis for this reason that all loop processing is disabled by default (in other words, the default Rulesheet processing
mode is optimized inferencing, which does not permit revisiting rules that were already evaluated.) You must
manually enable your preferred loop processing mode to cause the loops to execute. This is the strongest,

most foolproof mechanism for preventing unexpected looping behavior: simply keep loop processing disabled.

How to identify loops

Assuming that you have not intentionally incorporated looping logic in your Rulesheet, you need a way to
discover if unintentional loops occur in your rules.

The loop detection tool

To help identify inadvertent loops, Corticon Studio provides a Check for Logical Loops tool in the Corticon
Studio toolbar. The tool contains a powerful algorithm that analyzes dependencies between rules on the same
Rulesheet, and reports discovered loops to the rule modeler. For the Loop Detector to notice mutual
dependencies, a Rulesheet must have looping enabled using one of the choices described earlier.

Clicking the Check for Logical Loops icon displays a window that describes the mutual dependencies found
on the Rulesheet. To illustrate loop detection, a few of the same examples will be used.

Figure 138: Example of an infinite single-rule loop

Eg InfiniteSingleLoop.ers 52
{1 Conditions 1
a |Cargoweight>=0 T
b
Actions <
Post Message(s)
A Cargo.weight += 1
E
Overrides

Progress Corticon: Rule Modeling: Version 6.3

193

Chapter 7: Rule dependency in chaining and looping

When applied to a Rulesheet containing just the single-rule loop shown in this figure, the Check for Logical
Loops tool displays the following window:

Figure 139: Checking for logical loops in a Rulesheet

Window Help

Logical Analysis

Rule Columnis)

M Advanced View

Vs Show Vocabulary Details

I_d Show Matural Language
Filters
Processing Mode
Localize..

Report

Execution Sequence Diagram

Logical Dependency Graph
Clear Analysis Results
Check for Logical Loops
Check for Completeness
Check for Conflicts

Enable Conflict Filter
Previcus Conflict

Mext Conflict

First Conflict
Last Conflict

Figure 140: A single-rule loop detected by the Check for Logical Loops tool

@ Logical Loops

=2

Fule 1:

THEM

Logical Loops

Loop 1:
Fule1-=
Fule 1 -=

Self-Triggering Rules

IF Cargo.weight == 10

Fule 1

Logical loops were detected involving the Following rules: -

Cargo.weight = Cargo.weight + 1

Copy l [4

194

Progress Corticon: Rule Modeling: Version 6.3

Looping controls in Corticon Studio

The Check for Logical Loops tool first lists rules where mutual dependencies exist. Then, it lists the distinct,
independent loops in which those rules participate, and finally it lists where self-triggering rules exist (if any). In
this simple single-rule loop example, only one rule contains a mutual dependency, and only one loop exists in
the Rulesheet.

Note: The Check for Logical Loops tool does not automatically fix anything, it just points out that your rules
have loops, and gives you an opportunity to remove or modify the offending logic.

How to remove loops

If the Check for Logical Loops tool detects loops, you can take one of several corrective actions:

* If no loops are what you want, then click Rulesheet > Processing Mode and de-select whichever of the
two looping options is currently selected. When done, the Check for Logical Loops tool will no longer
detect loops and the software will no longer process them.

* If loops are what you want, then take measures to ensure that none of the loops can be infinite. Normally,
this means adding conditional logic to one of the looping rules to make sure that the rule can't be satisfied
indefinitely. This is similar to the bounding of Condition 1 in Example of a finite multi-rule loop using a Values
set of 0. . 20. When Car go. wei ght reaches 21, the rule's condition will no longer be satisfied and the
loop terminates.

* If some loops are good and some are not, then remove the inter-dependencies in the unwanted loops and
ensure that the selected loops are not infinite.

How to terminate infinite loops

By definition, infinite loops will not terminate by themselves. Therefore, Corticon provides a safety valve that

caps the number of iterations allowed before the system automatically terminates a loop. The default setting

is 100, meaning that a loop is allowed to iterate up to 100 times normally. After the number of loops exceeds

the max| oops setting, then the system automatically terminates the loop and generates a Vi ol at i on error
message. This means that the final number of loop iterations will be 101: 100 normal iterations plus the final

iteration that causes the Vi ol at i on message to appear and the loop to terminate. The following figure shows
a Vi ol ati on message:

Figure 141: Maxloop Exceeded Violation Message

E Rule Messages &3

Severity Message

Vielation Maximum number of processing iterations has been exceeded in rulesheet MyRule. Please increase this limit in your system configuration.

If you are comfortable writing looping rules, and want the software to be able to loop more than 100 times, be
sure to reset this property to a higher value. Keep in mind that the more iterations the system performs, the
longer rule execution may take. If the Rulesheets you intend to deploy require high iteration counts, set the
value that determines what constitutes an endless loop. For Decision Services that have Rulesheets with a
Processing mode that allows looping , it is important to limit the loop count and prevent endless loops.

In the br ms. properti es file, add the following property with your preferred maximum number of iterations
allowed for any loop:

comcorticon.reactor.rul ebuil der. maxl oops=100

Progress Corticon: Rule Modeling: Version 6.3 195

Chapter 7: Rule dependency in chaining and looping

Looping examples

The following examples show how looping can be useful in your models.

Determine the next working day when given a date

Problem
For any given date, determine the next working day. Take into consideration weekends and holidays.

Solution

Implemented correctly in Corticon Studio, these rules should start with a given input date, and increment as
necessary until the next workday is identified (workday is defined here as any day not Saturday, Sunday, or a
national holiday). A simple Vocabulary that supports these rules is shown in Example of a finite single-rule
loop.

Figure 142: Sample Vocabulary for holiday rules

CIPT=r . .- - ©
= [.:,..I calendar
EIE aDay

----- ®=| currentDate

b = eckworkDay
== Holiday
----- == alendarDate

196

Progress Corticon: Rule Modeling: Version 6.3

Looping examples

Next, the rules are implemented in the Rulesheet shown in the following figure:

Figure 143: Sample Rulesheet for determining next workday

(7 rexinayzers X W

oy Conditions 1] 2 3 4 5
a abay.nextWorkDay = Holiday.calendarDate - T F - - -
b aDay.nextWorkDaw,dayOfweek - - - 1 7 okther
C
actions 4 I
Post Messageis) = = = = = =
& |aDay.nextwWarkDay = aDay,currentDate, addDays(1)
B | aDay.nextWorkDay = aDay.nextWorkDay, addDays(1)
C aDavy.nextworkDay = aDay.nextWorkDay, addDays(2)
O

Cwerrides

-
=] Rule Statements 23

Ref | Post Alias
0 Info alay
1 Warning | aDavy
z Info alay
] Warning | aDavy
4 Warning | aDavy
5 Info alay

Fule Messages

Texk

Today is [{aDay . currentDate}] and the next day is [{aDay, nextWorkDay]

The next day falls on a holiday, so increment to the next day [{alay. nextorkDaw]
The next day does not Fall on a holiday, so do not increment

The next day falls on a Sunday, soincrement to the next day ko [{abay, nextWorkDay]
The nexk day Falls on a Saturday, soincrement bwo days ko [{abay, nextWorkDay -]

The next day does not Fall on a Saturday or Sunday, so do nak increment

To step through this Rulesheet:

1. Notice that the Scope section is not used. A very simple Vocabulary is used with short entity names and
no associations, so aliases are not necessary. Furthermore, none of the rules use collection operations, so

aliases representing

N

current Dat e plus

collections are not required either.

. The first rule executed is the nonconditional equation (in column 0) setting next Wor kDay equal to

one day.

3. Rule 1 (in column 1) checks to see if the DateTime of the next Wr kDay matches any of the holidays defined

in one or more Hol i
and posts a warning

day entities. If it does, then the Action row B increments next Wr kDay by one day
message.

4. Rule 3 checks to see if the next Wor kDay falls on a Sunday. Notice that this rule uses the . day Of Week
operator, which is described in full detail in the Rule Language Guide. If the day of the week is Sunday (in

other words, . dayf

Week returns a value of 1), then the Action increments next Wr kDay by one day and

posts a warning message.

5. Rule 4 checks to see if the next Wr kDay falls on a Saturday. If the day of the week is Saturday (in other
words, . dayOf Week returns a value of 7), then the Action row C increments next Wor kDay by two days

and posts a warning

message. By incrementing 2 days, an extra iteration is skipped because we know

Sunday is also a non-workday.

Do not forget to check for conflicts: they exist in this Rulesheet. Assume that a holiday never falls on a weekend.

Note: Resolution of the conflicts is straightforward, so that is not addressed in detail here. One conflict — that

betweenrules 1 and 4 - i
Logical Analysis chapte

s left unresolved because the assumption is that a holiday never falls on a weekend. See
r more a complete discussion of conflict and other logical problems.

Progress Corticon: Rule Modeling:

Version 6.3 197

Chapter 7: Rule dependency in chaining and looping

A modified Rulesheet displays the overrides added to resolve the conflicts in the following figure:

Figure 144: Holiday rules with ambiguities resolved by overrides

(e

a
b
c

O m m F

(5 nexinavzcrs. % N

Conditions 0 2 3 4 5
abay. nextworkDay = Holidaw. calendarDate - T F - - -
abay . nexbworkDay . dayOPtesk - - - 1 7 okther
actions 4 I
Post Messageis) = = = = =
abay, nexkworkDay = aDay.currentDate, addDays(1)
abay, nexkworkDay = aDay. nextWorkDay, addDays(1)
abay.nextworkDay = aDay. nextWorkDay, addDays(2)

Orverrides 5 2 2

Ref

Ly I O P S

-
=] Rule Statements 23

Post: Alias
Info alay
Warning | aDavy
Info alay

Warning | aDavy
Warning | aDavy
Info alay

Fule Messages

Texk

Today is [{aDay . currentDate}] and the next day is [{aDay, nextWorkDay]

The next day falls on a holiday, so increment to the next day [{alay. nextorkDaw]
The next day does not Fall on a holiday, so do not increment

The next day falls on a Sunday, soincrement to the next day ko [{abay, nextWorkDay]
The nexk day Falls on a Saturday, soincrement bwo days ko [{abay, nextWorkDay -]

The next day does not Fall on a Saturday or Sunday, so do nak increment

198

Progress Corticon: Rule Modeling: Version 6.3

Looping examples

Using the same rules as before, click the Logical Loop Checker ﬁ icon in the Corticon Studio toolbar. The
following window opens:

Figure 145: Results of Logical Loop Check
. e Logical Loops L_Ehr

Logical loops were detected invalving the Following rules: »

Rul= 1:
IF aDay.nextWarkDay = Holiday, calendarDate
THEN
aDay.nextWworkDay = aDav.nextWarkDay . addDays {1)

Rule 3:
IF aDay.nextWorkDay . dayOfweek = 1
THEM
abay, nextWarkDay = aDay. nextWarkDay.addDays (1)

Rule 4:
IF aDay.nextWorkDay,dayOfweek = 7
THEN
abay.nextworkDay = aDay.nextWorkDay . addDays { 2)

Logical Loops

Self-Triggering Rules

Rul= 1
Rule 3
Rule 4 -

F [

| Copy | [oK]

This window first identifies which rules are involved in loops. The window also outlines the specific attribute
interactions that create the loops.

Progress Corticon: Rule Modeling: Version 6.3 199

Chapter 7: Rule dependency in chaining and looping

Now that you understand the looping logic in your Rulesheet, create a Ruletest to verify that the loops operate
as intended and produce the correct business results.

Figure 146: Ruletest for holiday rules
Bo.neutpay. et x|
untitled_t |

IRME/nextDay.ers
Input

=-E pay [1]

| currentDate [7)3/2025)
- metworkDay

== Haliday [1]

i calendarDate [7/4)2025]

------ == name [Independence Day]

Given that July 4", 2025 falls on a Friday, you expect next Wor kDay to contain a final value of July 7", 2025,
a Monday, when the loops terminate. When the Ruletest runs, you see the following:

Figure 147: Ruletest output for holiday rules

p
@ nextDavz. ers ffm\
untitled_1 |
IRMG/nextDavz. ers
Input Oukput
E|§ abay [1] Elg abDay [1]
B currentDate [7/3/2025] B currentDate [7/3/2025]
Elg Holiday [1] EIE Holiday [1]
E calendarDake [7/4)2025] E calendarDate [74)/2025]
‘- name [Independence Day] “ | name [Independence Day]
=
Rule Staterments |r_‘l Rule Messages &4
Severity | Message | Enkiky |
Info Today is [7/3/2025] and the next day is [714/2025) abay[1]
Warning The next day Falls on a holiday, soincrement to the next day [7/5/2025) aDay[1]
Watning The next dav Falls on a Saturdaw, soincrement bwo daws ko [7)7)2025] abav[1]
Info The next dav does not Fall on a holiday, so do not increment abay[1]
Info The next day does not Fall on a Saturday or Sunday, so do not increrment abayv[1]

As you can see, the result is a three-day weekend!

Remove duplicated children in an association

Problem

For a Cust onmer - >Addr ess association (one-to-many), each address must be unique.

200 Progress Corticon: Rule Modeling: Version 6.3

Looping examples

Solution

Compare every address associated with a customer with every other address associated with that customer,
and -- when a match is found -- remove (or mark) one of the addresses.

The following example compares all pairs of addresses that meet a filter condition. That process occurs in no
specific order so you might notice that one run starts with address 4 and address 2 (i d=1 < i d=4), yet the
next time it runs, it might start with address 3 and address 1 (i d=2 < i d=3), so the results might seem
different. However, all that is required is that only one of each unique address survives.

To ensure that the filtering process is controlled, you need unique identifier attribute values to distinguish the
instances. If the address already has an attribute that is a unique identifier, then you could use that in the filter;
otherwise, you need to create a transient, integer attribute, i d, in the Addr ess entity in the Vocabulary:

a [Z] testRemove Property Mame Property Value
a = Address Attribute Mame id
= city Data Type Integer
= comment Mandatory Mo
= id Mode Transient
=] ctreet

4 =] Customer
—(address (Address)

Using the created identifier attribute, create a Rulesheet to identify each unique address. It uses two aliases
to run through the addresses associated with a given customer. The actions initialize the i d, and then add an
incremented i d value to each associated Addr ess in memory:

Scope Conditions] -
4 = Customer E
. —(address (Address) [all] c
. —(address (Address) [any] d
R -
Actions 1 Foa
Filters Post Message(s)
1 « A any.id]
2 B any.id =allid->max+1
3 C
4 n =
c = Overrides

After each address has a unique identity, the second Rulesheet does the removal action. It iterates through
the associations to identify whether an association has a match, and, if it does, to remove the matching
association from memory, as shown:

Progress Corticon: Rule Modeling: Version 6.3 201

Chapter 7: Rule dependency in chaining and looping

-,adF|Iter5.
. —(address (Address) [al]
s —(address (Address) [a2]

4 1 b
Filters
157 |al.id < a2.id -
2
3
4
5
6
7
]

testnique

Input
4 = Custormner [1]

4 o— address (Address) [1]
= city [cityl]
[=| street [streetl]

4 o— address (Address) [2]
= city [cityl]
j==| ctreet [streetl]

4 o— address (Address) [3]
=] city [city2]
j==| ctreet [street?]

4 ¢— address (Address) [4]
= city [cityl]
= ctreet [streetl]

C =l V= I R = T i B = =)

TGmim 3, m I

Conditions

al.street = a2.street
al.city = al.city

Actions
Post Message(s)
az.remove

Ohwerrides

A Ruleflow puts the two Rulesheets into sequence, as shown:

testRemove

Output
4 = Customer [1]
4 o— address (Address) [3]
=] city [city2]
B id [4]
j==| ctreet [street?]
4 ¢— address (Address) [4]
=] city [cityl]
B id [1]
=| street [streetl]

m

m|

A Ruletest that uses this Ruleflow as the test subject shows the "survivors" in its output:

After this processing is done, subsequent Rulesheets in the Ruleflow see only unduplicated addresses for each
customer.

Note: Rule Statements were not requested for this process. Because the duplicates are being removed during
the execution of the rule, each removed address was dropped from memory, and no longer has a meaningful
reference when the statement message is generated.

202

Progress Corticon: Rule Modeling: Version 6.3

Looping examples

Flagging duplicate children

You might want to identify the duplicated records rather than delete them. To do so, just uncheck (or delete)
the . r enove action, and add an appropriate . conment value to the address. This examples uses, ' Dupl i cat e',

as shown:

Scope

b +pl Filters
. =€ address (Address) [al]
s —(address (Address) [a2]

Filters

15F al.id = ad.id -

2

ER e R = R, R R

Conditions 1
a
b | al.street = aZ.street T
c | al.city = aZ.city T
d
e
.F
g
h
Actions L
Post Message(s)
A | aZ.remove
B |aZ.comment ‘Duplicate’
C
]
E
F
G

Chverrides

m|

1

m| »

When the same Ruletest runs, this time shows all the input records, with duplicated records displaying their

comment values:

Imput

== Customer [1]

E|<>— address (Address) [1]
----- = city [aity1]
----- =] street [streeti]
[=}-4— address {Address) [2]
""" =] city [city1]
----- =] ctrest [streeti]
[=I-%— address (Address) [3]
----- =] city [city2]
----- =] street [street?]
[=}4¢— address (Address) [4]
----- = city [eity1]
----- =] street [streeti]

Output

E|§ Customer [1]

E=l-o—

address (Address) [1]
= city [eity1]
| comment [Duplicate]

address (Address) [2]
= city [eity1]
| comment [Duplicate]

address (Address) [4]
= city [eity1]

Progress Corticon: Rule Modeling: Version 6.3

203

Chapter 7: Rule dependency in chaining and looping

Note: Again, Rule Statements were not used. There are three duplicates: address 4 and address 1, address
4 and address 2, address 1 and address 2, so three messages (referencing 1, 4, and 4) would be generated
because all of the addresses are still in memory. Two get marked as duplicates, and one survives. In a
subsequent Rulesheet, you could delete all addresses that were flagged as ' Dupl i cat e’ .

How to use conditions as a processing threshold

Looping, which involves revisiting, re-evaluating, and possible re-firing rules, and requires you to enable one
of the looping modes, must be distinguished from another behavior that may appear to be similar.

You probably noticed Corticon's inherent ability to process multiple test scenarios at once. For example, a rule
written using the Vocabulary term Car go. wei ght is evaluated (and potentially fired) for every instance of
Car go encountered during execution. If a Ruletest contains four Car go entities, then the rule engine tests the
rule's conditions with each of them. If any of the Car go entities satisfy the rule's conditions, then the rule
fires. This could mean that the rule fires once, twice, or up to four times, depending on the actual data values
of each Car go. From the prior discussion of scope, a rule will evaluates all data that shares the same scope
as the rule itself.

This iterative behavior is a natural part of the Corticon rule engine design. There is nothing that you need to
do to enable it. Note that this behavior is different from the modes of looping because the Car go. wei ght rule
is not re-evaluated for a given piece of data. Rule execution is still single-pass. It is just that it makes a single
pass through each of the four Car go entities.

The advantage of this natural iteration is that you do not need to force it. The rule engine automatically processes
all data that shares the same scope as the rule. If the Ruletest contains four Cargos, the rule will be evaluated
four times. If the Ruletest contains 4000 Cargos, the rule is evaluated 4000 times. You do not write the rule
differently in Corticon Studio.

But, this advantage can also be a disadvantage. What if you want rule execution to stop partway through its
evaluation of a given set of entity data (a binding). What if, after finding a Car go that satisfies the rule among
the set (binding) of Car go entities, you want to stop evaluation mid-stream? In normal operations, this is not
possible.

Here is a simple example.

Figure 148: Rulesheet and Ruletest, no threshold condition, CaPT disabled

Conditions 0 1 Input Output
: Thing,aSize = small =51 Thing[1] == Thing [1]
c = aSize [huge] i == aSize [huge]
d =& Thing [2] =-=] Thing [2]
e i =| 5Size [small] i = 5Size [small]
f =& Thing [3] ==| selected [true]
s“'::: == 1| =] aSize [smal] =] Thing [3]
'ost Message(s £ ol ac
A Thing.selected T] =] asize [small

= selected [true]

In the preceding example, no threshold condition, CaPT disabled, you see a simple rule that sets
thing.selected = trueforallthing.aSize = 'smal|'. Notice in the adjacent Ruletest, that each

small Thi ng is selected. Thi ng[2] and Thi ng[3] are both small, so they are both selected by the rule. The
rule evaluated all three Things, but finding only two that satisfy the rule's condition, only fires twice. This iteration
happened automatically.

204

Progress Corticon: Rule Modeling: Version 6.3

How to use conditions as a processing threshold

What if you wanted rule execution to stop after finding the first Thi ng that satisfies the rule? In other words,
allow the rule engine to fire for Thi ng[2] but stop processing before firing for Thi ng[3] . Is that possible?
You might think the following Rulesheet accomplishes this goal.

Figure 149: Rulesheet and Ruletest, threshold condition added, CaPT disabled

Conditions 0 1

Input Qutput
a Thing.selected - F =) = .
b Thing.aSize - ‘small’ =+ Thing[1] —] Thing [1]
c =| aSize [huge] =] aSize [huge]
d =& Thing [2] .= selected [false]
e i = aSize [small] =-=] Thing [2]
f : == Thing [3] = aSize [small]
sﬂ'::ls e | =] aSize: [small] == selected [true]
ost Message(s, = G]
it == Th 3
A Thing.selected = false [¥] = ﬂmg[1 i
B Thing.selected T aSize [small]

== selected [true]

The example in this figure includes two changes: Thi ng. sel ect ed is defaulted to f al se in the Nonconditional
rule (Action row AO), and a second Condition row checks for Thi ng. sel ected = f al se as part of rule 1.
This is called a threshold condition.

You might think that when Thi ng[2] fires the rule, its value of selected (re-set to t r ue) would be sufficient
to stop further evaluation and execution of Thi ng[3] . But, as you see in the adjacent Ruletest, this is not the
case. Thereason is that Thi ng[3] is an separate entity within the binding, and is entitled to its own evaluation
of rule 1 regardless of what happended with Thi ng[2] . The addition of the threshold condition accomplished
nothing.

A special feature in Corticon Studio, called Use Condition as Processing Threshold (abbreviated as CaPT),
allows you to interrupt processing of the binding. You activate this option by selecting the rule column involved,
and then from the Corticon Studio menu bar, choose Rulesheet > Rule Columns(s) > Use Condition as
Processing Threshold.

When selected, CaPT causes the rule column header to display in bold type, as shown, circled in orange:
Figure 150: Rulesheet and Ruletest, threshold condition added, CaPT enabled

Conditions 0 1 Input Output
a Thing.selected - E - . - .
b Thing.aSize ‘small =+ Thing [1] =1 Thing [1]
c =| asize [huge] =| aSize [huge]
d =& Thing [2] _ = selected [false]
e ; =] aSize [small] =-=] Thing [2]
f =] Thing [3] == aSize [small]
3“'::'5 — | = zSize [small] == selected [true]
osk Message(s =) oy |]
et =1-=] Thi 3
A | Thing.selected = false E = !lm?i B3] I
Thing. selected T aSize [small]

== selected [false]

When CaPT is activated, it breaks out of the automatic binding iteration whenever an instance in the binding
fails to satisfy the threshold condition. In this case, Thi ng[2] , having just fired rule 1, no longer satisfies the
threshold condition, and causes rule execution to stop before evaluating Thi ng[3] . If you re-ran this Ruletest,
you might see Thi ng[3] evaluated first, in which case rule execution stops before evaluating Thi ng[2] .

Within a binding, sequence of evaluation of elements is random and may change from execution to execution.
There is nothing about the binding that enforces an order or sequence among the bound elements.

Progress Corticon: Rule Modeling: Version 6.3 205

Chapter 7: Rule dependency in chaining and looping

TestYourself questions for Rule dependency chaining
and looping

Note: Try this test, and then go to TestYourself answers for Rule dependency and inferencing on page 356 to
correct yourself.

What is the main difference between inferencing and looping?
A loop that does not end by itself is known as an loop.

A loop that depends logically on itself is known as a single-rule or loop.

Eal

True or False. The Check for Logical Loops tool in Corticon Studio will always find mutual dependencies
in a Rulesheet if they are present.

5. True or False. The Check for Logical Loops tool in Corticon Studio can fix inadvertent loops.

Referring to the following illustration, answer questions 6 through 8.

(R ——

Conditions 1] 1 z
a |DWD.priceTier "High' "Medium’
b |DWD.guantityayailable = 100000 -
c |DWD.releaseDate = today, addMonthsi-a) - T
d

Aictions 1 |

Posk Message(s) B i
& DVD.priceTier "Medium’
B DWD.guantityAwvailable += 25000

Creerrides

2] Rule Staterments &3 | Rule Messages

Ref 1D Post Alias Text
1 Warning oD If DWD price tier is High and = 100,000 copies are available,
change price ker ko mediom ko decrease inventory
2 Irfo oD If DYD price tier is Medium and DYD = & months old, then

increase inventory by 25,000 copies to meet expected demand

6. Given these two rules, is it necessary for the Rulesheet to use the Inferencing mode shown? Why or why
not?

7. Is there any potential harm in having this Rulesheet configured to Advanced Inferencing with Self-Triggering?
Why or why not?

8. If the Rulesheet were tested with a DVD having a price tier of Hi gh, quantity available of 150, 000, and
release date within the past 6 months, what would be the outcome of the test?

9. This icon indicates which type of inferencing is enabled for this Rulesheet?

206

Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Rule dependency chaining and looping

[c:) Conditions

10. This icon indicates which type of inferencing is enabled for this Rulesheet?

p? "WD_Inventory.ers 23 h“\k
| () [Conditions
1. A determines the sequence of rule execution and is generated when a Rulesheet is

Progress Corticon: Rule Modeling: Version 6.3 207

Chapter 7: Rule dependency in chaining and looping

208 Progress Corticon: Rule Modeling: Version 6.3

Filters and preconditions

Conditional expressions modeled in the Filters section of a Rulesheet can behave in two ways: as filters alone
or as filters plus preconditions. Both behaviors are explained and illustrated in this section.

Filters can be set to be Database filters on page 218 when its entity is defined to persist in a datastore and the
entity is set to extend to database.

Any conditional expression entered in the Filters window of a Rulesheet is referred to as a filter, regardless of
its strict mode of behavior. This will help you differentiate the expression from its specific behaviors.

For details, see the following topics:

* Whatis a filter

* What is a precondition

* How to use collection operators in a filter
* Filters that use OR

* TestYourself questions for Filters and preconditions

What is a filter

A filter expression acts to limit or reduce the data in working memory to only that subset whose members satisfy
the expression. A filter does not permanently remove or delete any data; it simply excludes data from evaluation
by other rules in the same Rulesheet.

Data that satisfies a Filter expression is referred as surviving the Filter. Data that does not survive the filter is
filtered out, and then is ignored by other rules in the same Rulesheet.

Progress Corticon: Rule Modeling: Version 6.3 209

Chapter 8: Filters and preconditions

A Filter expression, regardless of its full behavior, is unaffected by Filter expressions in other Rulesheets.
As an example, look at the Rulesheet sections shown in the following two figures:

Figure 151: Aliases declared

Q autoClaim.ecore E *BasicFilters.ers

Scope
1 Policy [thePolicy]
—€ driver (Driver) [drivers]
=€ vehicle (Vehicle) [cars]

The Scope window in this figure defines aliases for a root-level Pol i cy entity, a collection of Dr i ver entities
related to that Pol i cy, and a collection of Vehi cl e entities related to that Pol i cy, named t hePol i cy,
drivers, and cars, in that order.

To start with, write a simple Filter and observe its default behavior. In the following simple scenario, the Filter
expression reduces the set of data acted upon by the nonconditional rule (column 0), which in this case posts
the rule statement as a message.

Figure 152: Rulesheet to illustrate basic filter behavior

Q autoClaim.ecore @ BasicFilters.ers &3 VG *BasicFilters.ert

Scope Conditions 0
4 [Policy [thePolicy] a
4 <7 Filters b
WF drivers.age=>16 ;
f==| ctartDate .
F -€ driver (Driver) [drivers] f
4 <7 Filters g
WF drivers.age>16 h
=l age [
== name i
- - I-
—€ vehicle (Wehicle) [cars] Actions - o
Filters Post Message(s) =
177 | drivers.age>16 » A thePolicy.startDate = today
2 B
3 C
4 - Owverrides
[Rule Statements &2 | B Rule Messages
Ref |ID Post Alias Text
i] Age Info drivers Drrver name {drivers.name} is older than 16

210 Progress Corticon: Rule Modeling: Version 6.3

What is a filter

The result is not unexpected: for every element in the collection (every Dr i ver) whose age attribute is greater

than 16, you see a posted message in the Ruletest, as shown:

Figure 153: Ruletest to test filter behavior

[E autoClaim.ecore E *BasicFilters.ers "i; *BasicFilters.ert &2

=l untitled_1 |
/Training/Advanced/BasicFilters.ers
Input Output
E Policy [1] E1 Policy [1]
= ctartDate = startDate [03/25/13]
o— driver (Driver) [1] &— driver (Driver) [1]
= age [18] =] age [18]
= name [Jacob] == name [Jacob]
o— drover (Driver) [2] o— driver (Driver) [2]
= age [14] = age [14]
== narme [John] ==| name [John]
o— driver (Driver) [3] &— driver (Driver) [3]
=l age [21] = age [21]
== name [Lisa] == name [Lisa]

=] Rule Statements | 2 Rule Meszages &3

Severity Message
Info Driver name Lisa is older than 16
Info Drrver name Jacob is older than 16

The policy is issued because there are drivers over 16. But, because only Jacob and Li sa are older than 16,

Rule Messages are posted only for them.

Full filters

By default, each filter you write acts as a full filter. This means not only will the data not satisfying the Filter
expression be filtered out of subsequent evaluations, but in cases where this data is a collection where no

elements survive the filter, the parent entity will also be filtered out!

Progress Corticon: Rule Modeling: Version 6.3

211

Chapter 8: Filters and preconditions

Here is the Testsheet with three juvenile drivers:

Figure 154: Ruletest for Full Filter

[3 autoClaim.ecore @ BasicFilters.ers ¢ *BasicFilters.ert 77

untitled_1
STraining/Advanced/BasicFilters.ers
Input Cutput
= Policy [1] = Policy [1]
= ctartDate = startDate
¢— driver (Driver) [1] &— driver (Driver) [1]
= age[13] = age[13]
== name [Jacoh] == name [Jacoh]
o— driver (Drrver) [2] o— driver (Driver) [2]
= age [14] = age [14]
= narme [John] ==| name [John]
— driver (Driver) [3] ¢— driver (Driver) [3]
= age [10] = age [10]
== narne [Lisa] ==| name [Lisa]

Notice two important things about this Ruletest's results: first, none of the Dr i ver entities in the Input are older
than 16, which means none of them survives the filter. Second, because the parent Pol i cy entity does not
contain atleast one Dr i ver that satisfies the filter, then the parent Pol i cy itself also fails to survive the filter. If
no Pol i cy entity survives the filter, then rule Column 0 has no data upon which to act, so no Pol i cy is
assigned a st art Dat e equal to t oday. The Testsheet's output, shown in the preceding figure, confirms the
behavior.

Why would you want a Filter to behave this way? Perhaps because, if these are the only drivers seeking a
policy, then there must be at least one driver of legal age to warrant issuing a policy. While you will probably
find that the full filter behavior is generally what you want when filtering your data, it might be too strict in other
situations. If other rules on the Rulesheet act or operate on Pol i cy, then a maximum filter gives you an easy
way to specify and control which Pol i cy entities are affected.

Disabling a Full Filter

When testing, you might want to remove one filter. Instead of deleting the filter, you can disable it by right-clicking
the rule and then choosing Disable, as shown:

212

Progress Corticon: Rule Modeling: Version 6.3

What is a filter

L_b autoClaim.ecore Q *BasicFilters.ers &3 ”i; BasicFili

Scope
1 Policy [thePolicy]
<z Filters
f==| ctartDate
—€ driver (Driver) [drivers]
—€ vehicle (Wehiclg) [cars]

Filters
1 7 [drivers.age=16 5
2 of Cut
3 -
=l Co
1 E Py
5 Paste
6
7 M Delete
] Select All
Y =2
10 Disable
11 I,}

After the filter is disabled, all applications of the filter are rendered in gray, as shown:

L_b autoClaim.ecore Q *BasicFilters.ers % "i?, BasicFilters.ert

Scope

= ctartDate
4 —€ driver (Driver) [drivers]
a4 +z Filters

f=| age
= name

—€ vehicle (Wehicle) [cars]

Filters

17F drivers.age=16
) s

A disabled full filter is really no filter at all. You can perform the corresponding action to again Enable the filter.

Limiting filters

There are occasions, however, when the all-or-nothing behavior of a full filter is unwanted because it is too
strong. In these cases, you want to apply a filter to specified elements of a collection, but still keep the selected
entities even if none of the children survive the filter.

Progress Corticon: Rule Modeling: Version 6.3 213

Chapter 8: Filters and preconditions

To turn a Filter expression into a limiting filter, right-click on a filter in the scope section and select Disable
from the menu, as shown:

Figure 155: Selecting to limit a filter

Scope
4 =] Policy [thePolicy]
4 +x Filters
F drivers.age>16
b= startDiate 8 Disable
a = driver (Driver) [dri I,\\r-,
a <7 Filters Localize...
F drivers.age Matural Language...
=| age
== name
—€ wvehicle (Wehicle) [cars]

This causes that specific filter position to no longer apply, indicated in gray:
Figure 156: Limiting filter set
Scope

[=1 Paolicy [thePalicy]
<2l Filters

p=| ctartDate
—€ driver (Driver) [drivers]
L=l Filters
W drivers.age>16
=| age
= name

—€ vehicle (Wehicle) [cars]

Filters
17F | drivers.age=16
Notice that the filter is still enabled, and that it will still be applied at the Dri ver level. The filter was limited.
Use case for limiting filters
The preceding example was basic. Let's explore some more complex examples of limited filters.
Consider the case where there is a rule component designed to process customers and orders.
A customer has a 1 to many relationship with an order.
The rule component has two objectives: one to process customers, and the second to process orders.

If you define a filter that tests for a GOLD status on an order, there can be four logical iterations of how the
filter could be applied to the rules.

Case 1: filter is not applied at all.

Case 2: filter is applied to all custoners and all orders.
Case 3: filter is only applied to custoners.

Case 4: filter is only applied to orders.

214 Progress Corticon: Rule Modeling: Version 6.3

What is a filter

A business statement for these cases could be as follows:

Case 1: Process all custoners and all orders.

Case 2: Process only GOLD status orders and only custonmers that have a GOLD status
order.

Case 3: Process only custonmers that have a GOLD status order and all orders of a
processed custoner.
Case 4: Process all customers and only GOLD status orders.

For filter modeling, the Filter expression could be written as Cust oner. order. status = ‘ GOLD . The
modeling consideration for the cases are:

Case 1. Filter is not entered (or filter disabled, or filter disabled at both Custoner
and Custoner.order levels in the scope).

Case 2: Filter is entered with no scope nodifications (enabled at both Custonmer and
Custoner.order levels in the scope).
Case 3: Filter is entered and then disabled at the Custoner.order |evel in the scope.

Case 4: Filter is entered and then disabled at the Custoner level in the scope.

You see how one filter can apply limits to the full filter to achieve the preferred profile of what survives the filter
and what gets filtered out.

Next, a more complex set of limiting filters is discussed.
Example of limiting filters
Consider the following Rulesheet Scope of a Vocabulary:

Figure 157: Scope in a Rulesheet that will be filtered
Scope
a =] Category
4 ¥ product (Product)
= price
4 | Customer
A —€ order (Order)
4 —€ iterm (Ttem)
=l hid
Consider the filter to be applied to data:
Custoner.order.itembid >= Category. product. price
This is shown in the Rulesheet's Filters section as:
Figure 158: Definition of a filter
4 < Filters
W Customer.order.item.bid = = Category.product.price

Progress Corticon: Rule Modeling: Version 6.3 215

Chapter 8: Filters and preconditions

The resulting filter application applies at several levels, as shown:

Figure 159: Application of the filter to the Scope’s tree structure

Scope
a4 =] Category
4 g Filters
W Customer.order.item.bid > = Category.product.price
4 > product (Product)
4 gl Filters
W7 Customer.order.item.bid > = Category.product.price
==| price
4 = Customer
4 g Filters
W7 Customer.order.item.bid > = Category.product.price
A —€ order (Crder)
4 gl Filters
W Customer.order.item.bid > = Category.product.price
4 —€ iterm (Ttem)
4 g Filters
W Customer.order.item.bid > = Category.product.price
= bid

A Ruletest Testsheet might be created as follows:

216 Progress Corticon: Rule Modeling: Version 6.3

What is a filter

This data tree contains five entity types (Cust oner, Or der, | t em Cat egor y, Pr oduct).

This filter is evaluated as follows:

Custoner[1],Order[1],lten{1], Category[1], Product[1] false
Custoner[1],Order[1],lten{1], Category[1], Product[2] true
Custoner[1],Order[1],1ten] 1], Category[2], Product[2] true
Customer[1],Order[1],lten{1], Category[2], Product[3] true
Custoner[1],Order[1],lten{1], Category[3], Product[1] false
Custoner[1],Order[1],1ten 2], Category[1], Product[1] false
Customer[1],Order[1],1ten{ 2], Category[1], Product[2] false
Customer[1],Order[1],1ten{ 2], Category[2], Product[2] false
Custoner[1],Order[1],1ten] 2], Category[2], Product[3] false
Custoner[1],Order[1],1ten] 2], Category[3], Product[1] false
Customer[1],Order[2],1ten] 3], Category[1], Product[1] false
Customer[1],Order[2],1ten] 3], Category[1], Product[2] false
Custoner[1],Order[2],1ten] 3], Category[2], Product[2] false
Custoner[1],Order[2],1ten] 3], Category[2], Product[3] true
Customer[1],Order[2],1ten] 3], Category[3], Product[1] false
Customer[2],Order[3],1ten{5], Category[1], Product[1] false
Custoner[2],Order[3],lten]{5], Category[1], Product[2] false
Custoner[2],Order[3],lten{5], Category[2], Product[2] false
Customer[2],Order[3],1ten{5], Category[2], Product[3] false
Customer[2],Order[3],1ten{5], Category[3], Product[1] false

The tuples that evaluate to t r ue are:

Custoner[1],Order[1
Custoner[1],Order[1
Customer[1],Order[1
Custoner[1],Order[2

,Iten] 1], Cat egory[1], Product[2]
,Itenf 1], Category[2], Product|[2]
,Itenf1], Cat egory[2], Product [3]

Itenf 3], Category[2], Product|[3]

—_—

The entities that survive the filter are:

Cust omer [1]

Custoner[1], Order[1]
Custoner[1], Order|[2]
Custoner[1],Order[1],Iten] 1]
Customer[1],Order[2], lten 3]
Cat egory[1]

Cat egory|[2]

Cat egory[1], Product[2]

Cat egory[2], Product[2]

Cat egory[2], Product|[3]

The Scope section of the Rulesheet expands as follows:

Notice how the filter is applied towards each discrete entity referenced in the expression:

If the filter is applied to Cust oner , then the survivor of the filter is Cust oner [1] . If not applied, then
{Custoner[1], Custoner[2]} survive the filter.

If the filter is applied to Cust oner . or der, then the surviving tuples are { Cust oner[1], Order[1]}
and { Cust oner [1], Order[2] }. If not applied, then there is no effect (because there was no Or der
child of Cust oner [1] that did not survive the filter).

If the filter is not applied at the Cust oner level as well as the Cust oner . or der level, then all
Cust oner . or der tuples survive the filter with the result: { Custoner[1], Order[1]}, {
Custoner[1],Oder[2]}, {Custoner[2],Oder[3]}.

If the filter is applied to Cust oner. or der . i t em then the surviving tuples are
{Custoner[1],Oder[1],ltenf 1]} and{Custoner[1], Order[2],Iten]3]}.When not applied

Progress Corticon: Rule Modeling: Version 6.3

217

Chapter 8: Filters and preconditions

(at this level but at higher levels), then the surviving tuples are { Cust oner [1], Order[1],Itenf 1]},
{Custoner[1],Order[1],1tenf 2]}, {Customer[1l],Order[2],lten]3]}.

* If the filter is applied to Cat egor y, then the surviving entities are Cat egory[1], Cat egory][2] . If not
applied, then Cat egory[1], Category[2], Category[3].

* If the filter is applied to the Cat egory. pr oduct level, then the surviving tuples are be { Cat egor y[1],
Product[2]}, {Category[2], Product[2]}, {Category[2], Product[3]}

You see how a filter applied (at each level) determines which entities are processed when a rule references a
subset of the filter’s entities. With the limiting filters feature, the filter may or may not be applied to each entity
referenced by the filter.

Database filters

When a Vocabulary has elected to have an EDC Datasource, setting an entity's Datastore Persistent property
to Yes declares that the entity will map to a table in the Datasource. A database cylinder decorates the icons
of the entity and its attributes, as shown:

=12 Cargo Bazic Properties ES
..... = Aircraft Property Name Property Value
HEI _ Entity Marme Cargo
..... = container Inherits From

----- = manifesthumber
..... 4 needsRefrigeration

*

EDC Datasource Properties

_____ B3 volume Entity Identity
: Datastore Perzistent e
""" = wlaght . Table MNarne
----- 3~ flightPlan (FlightPlan) Datastore Caching
=4 FlightPlan Identity Strategy

Identity Column Mame

Identity Sequence

Identity Table Marme

Identity Table Name Colurmn Mame
Identity Table Value Column Marme
Version Strategy

Version Column Mame

After the property is set, right-clicking an Entity's alias in a Rulesheet's Scope section shows the menu command
to Extend to Database, as shown:

218 Progress Corticon: Rule Modeling: Version 6.3

What is a filter

Scope
£ Aircraft [plane]
» =] Cargo
4 |2 Cargo [freight] -
» 4 Filters <~Undo
= container o Cut
= needsRefrig .
= 3 =] Copy
= volume
=y weight 36 Delete
Bxtend to Database
5
7 Comment..,
Localize...
Matural Language...

Then, you can define filters and set them each as a Database Filter, as shown:

Filters

17F plane.aircraftType="747"
27F freight.weight > 2000
3 | |freight.container="reefer

4 < Undo 1
5

G | 1 . - T S
? | il T T R .

8 v Database Filter I},

g Precondition

in

When checked, the filter becomes a database query that retrieves data from the connected database, and then
adds the retrieved data to working memory.

When the option is cleared, the filter is applied only to data currently in working memory.

Note: See Precondition and filters as query filters on page 253 for qualifications and supported operators.

Database filters in an execution sequence diagram

When you choose Rulesheet > Logical Analysis > Execution Sequence Diagram, the graphic that is
generated distinguishes a database filter from local filter by its shape:

Progress Corticon: Rule Modeling: Version 6.3 219

Chapter 8: Filters and preconditions

In this example, F.1, the database query, is displayed within a triangle, while F.2, the local filter, is displayed
within an inverted trapezoid (a quadrilateral with parallel horizontal bases and legs that converge downward).

Error Conditions

Itis important to note that you could set a database filter on an entity that is not datastore persistent or extended
to database. If you do so, then the filter is marked in red, as shown. The error notes that the filter cannot be
processed by a database.

Scope
a =] Aircraft [plang]
4 4 Filters
T planeaircraftType="747T"
=l aircraftType
a 5 Cargo [freight]
4 4 Filters
T freightaweight =2000
T freight.container="reefer’

= container

Filters

19 | planeaircraftType="747"
27 | freightoweight = 2000
37 | freight.container="reefer’

220 Progress Corticon: Rule Modeling: Version 6.3

What is a precondition

What is a precondition

If you are comfortable with the limiting and full behaviors of a Filter expression, then its precondition behavior
is even easier to understand. While reading this section, keep in mind that filters always act as either limiting
or full filters, but they can also act as preconditions if you enable that behavior as described in this section. If
you think of filtering as a mandatory behavior but a precondition as an optional behavior, then you will be in
good shape later. Also, it may be helpful to think of the precondition behavior, if enabled, as taking effect after
the filtering step is complete.

Precondition behavior of a filter ensures that execution of a Rulesheet stops unless at least one piece of data
survives the filter. If execution of a Rulesheet stops because no data survived the filter, then execution moves
on to the next Rulesheet (in the case where the Rulesheet is part of a Ruleflow). If no more Rulesheets exist
in the Ruleflow, then execution of the entire Ruleflow is complete.

In effect, a filter with precondition behavior enabled acts as a gatekeeper for the entire Rulesheet - if no data
survived the filter, then the Rulesheet's gate stays closed and no additional rules on that Rulesheet will be
evaluated or executed.

If, however, data survived the filter, then the gate opens, and the surviving data can be used in the evaluation
and execution of other rules on the same Rulesheet.

The precondition behavior of a filter is significant because it allows you to control Rulesheet execution regardless
of the scope used in the rules. Take, for example, the Rulesheet shown in the following figure. The filter in row
1 is acting in its standard default mode of full filter. This means that Dr i ver entities in the collection named
dri ver s and the collection's parent entity Pol i cy are both affected by this filter. Only those elements of
dri ver s older than 16 survive, and at least one must survive for the parent Pol i cy also to survive.

Figure 160: Input Rulesheet for Precondition

Conditions]
4 =] Palicy [thePolicy] b
o C
a +4# Filters 4
) £
p=| ctartDate f
: —€ driver (Driver) [drivers] g
—€ wvehicle (Wehicle) [cars] h
i
J
Filters k
17F drivers.age=16 - l
2 Actions 1 mn
3 Post Message(s) ¥
4 A ClaimwalidClaim F
g B
& C
7 D
8 - Cherrides

Progress Corticon: Rule Modeling: Version 6.3 221

Chapter 8: Filters and preconditions

But, how does this affect the Cl ai min nonconditional row A (rule column 0)? Cl ai m as a root-level entity, is
safely outside of the scope of the filter, and therefore unaffected by it. Nothing the filter does (or does not do)
has any effect on what happens in Action row A—the two logical expressions are independent and unrelated.
As aresult, Cl ai m val i dC ai mwill always be f al se, even when none of the elements in dri ver s are

older than 16. A quick Ruletest verifies this prediction:

Figure 161: Rulesheet for an action unaffected by a filter

Input
a =] Policy [1]

a io— driver (Driver) [1]

= age[13]

==| name [Jacoch]
a o— drver (Driver) [2]

= age [14]

==| name [John]
4 <— driver (Driver) [3]

= age [10]

= name [Lisa]

a = Claim[1]
=] validClaim

But, what if the business intent of our rule is to update Cl ai mbased on the evaluation of Pol i cy and its
collection of Dri ver s? What if the business intent requires that the Pol i cy and Cl ai mreally be related in

Output
= Policy [1]
o— driver (Driver) [1]
=] age[13]
==| name [Jacoh]
o— driver (Driver) [2]
= age [14]
==| name [John]
o— driver (Driver) [3]
= age [10]
= name [Lisa]
= Claim [1]
==| validClaim [false]

some way? How do you model this?

Using the same example, right-click on Filters row 1 and select Precondition.

Figure 162: Selecting precondition behavior from the filter menu

[2': autoClaim.ecore

Scope
1 Policy [thePolicy]
<z Filters

W drivers.age=16

f==| ctartDate

—€ claim (Claim) [aClaim]
-€ driver (Driver) [drivers]
—€ vehicle (Vehicle) [cars]

Filters

Q BasicFilters.ers &3 Vﬁ: *BasicFilters.

1 7 [drivers.age>16

[R R = R, R SO W (]

Cut
Copy

Database Filter

Precondition L}

Localize...

Matural Language...

222

Progress Corticon: Rule Modeling: Version 6.3

What is a precondition

Note that the two options, Precondition and Limiting Filter, are mutually exclusive: turning one on turns the
other off. A filter cannot be both a precondition and a limiting filter because at least one piece of data always
survives a limiting filter, so a precondition never stops execution.

Selecting Precondition causes the following:
* The yellow funnel icon in the Filter window receives a small red circle symbol
* The yellow funnel icons in the Scope window receive small red circle symbols

The following figure shows a filter in Precondition mode.

Figure 163: A Filter in Precondition Mode

Scope
1 Policy [thePolicy]

47 Filters
g drivers.age~16

p=| ctartDate

—€ claim (Claim]) [aClaim]

—€ driver (Driver) [drivers]
< Filters

g drivers.age>16

= age
= name

=€ vehicle (Vehicle) [cars]

Filters
17E drivers.age=16 *

L = L g

As described before, the precondition behavior of the filter causes Rulesheet execution to stop whenever no
data survives the filter. So, in the original case where Pol i cy and O ai mwere unassociated, a filter in
Precondition mode accomplishes the business intent without artificially changing the Vocabulary or underlying
data model, as shown:

Figure 164: Rulesheet with a filter in Precondition mode

E& autoClaim, ecore W Vﬁ: BasicFilters.ert
Scope | Condikions 1]

== palicy [thePaolicy]

: :-I;d Filkers

----- b= chartDate
EEI----€ driver [drivers)

: i L
e -(wehicle [cars] Actions —I—

Post Message(s) EA

e =all'=

_| laim
& Claim,validClaim F
Filters B
17& drivers.age = 16 ﬂ [
- Cryerrides
L2

Progress Corticon: Rule Modeling: Version 6.3 223

Chapter 8: Filters and preconditions

A final proof is provided in the following figure:

Figure 165: Testsheet for a filter in Precondition mode

m_@ BasicFilkers.ers Ea autoClaim, ecare
untitled_t |
fBasicFilters.ers
Input OLItI:ILIt
=] Palicy [1] =1+ Palicy [1]
..... = startDate - startDate
=4~ claim (Claim) [1] (=14 claim (Claim) [1]
L] alidClaim o] e alidClainn
4= driver (Driver) [1] (b= driver (Driver) [1]
..... = age [13] - age [13]
----- ® name [lacoh] - name [Jacob]
=-%— driver (Driver) [2] [=l-4— driver (Driver) [2]
..... | age [14] = age [14]
----- #=| name [John] - name [John]
(=%~ driver {Driver) [3] [=l+4— driver (Driver) [3]
..... = ane [10] = age [10]
..... | name [Lisa] - name [Lisa]
=+ Claim [2] == Claim [2]
o] e alidClaim o] alidClaim

Summary of filter and preconditions behaviors

* Afilter reduces the available data for other rules in the Rulesheet to use. Filters show as gray text rather
than black. shades of gray - all data, some data, or no data may result from a filter.

* Afilter in Precondition mode stops Rulesheet execution if no data survives the filter. Preconditions are
explicit: data either survives the filter, and allows Rulesheet execution to continue, or no data survives and
the Rulesheet execution stops.

* Filter expressions always acts as a filter. By default, they act as filters only. If you also need true precondition
behavior, then setting the filter to Precondition mode enables precondition behavior while keeping filter
behavior.

Performance implications of the precondition behavior

A rule fires whenever data sharing the rule's scope exists that satisfies the rule's conditions. In other words, to
fire any rule, the rule engine must first collect the data that shares the rule's scope, and then check if any of it
satisfies the rule's conditions. So, even in a Rulesheet where no rules fire, the rules engine may have still
needed to work hard to come to that conclusion. And, hard work requires time, even for a high-performance
rules engine like Corticon.

224 Progress Corticon: Rule Modeling: Version 6.3

What is a precondition

A Filter expression acting only as a filter never stops Rulesheet execution; it limits the amount of data used in
rule evaluations and firings. In other words, it reduces the set of data that is evaluated by the rule engine, but
it does not actually stop the rule engine's evaluation of remaining rules. Even if a filter successfully filters out
all data from a given data set, the rule engine still evaluates this empty set of data against the available remaining
rules. Of course, no rules fire, but the evaluation process occurs and takes time.

Filter expressions also acting as preconditions change this. Now, if no data survives the filter (remember, Filter
expressions always act as filters even when also acting as preconditions), then Rulesheet execution stops. No
additional evaluations are performed by the rules engine. That Rulesheet is done, and the rules engine begins
working on the next Rulesheet. This can save time and improve engine performance when the Rulesheet
contains many additional rules that would have been evaluated were the expression in filter-only mode (the
default mode).

Progress Corticon: Rule Modeling: Version 6.3 225

Chapter 8: Filters and preconditions

How to use collection operators in a filter

In the following examples, all filter expressions use their default filter-only behavior. As detailed in the Rule
Writing Techniques topics, the logic expressed by the following three Rulesheets provides the same result:

Figure 166: A Condition/Action rule column with 2 Conditional rows

Scope |

e CollectionOperatorsindFiker, ers X

=1 Person [p]

Filters

R N R

Conditions 1] 1
a p.skydiver T
b p.age =40 T
Actions 1 |
ﬂ Post Message(s)
& p.riskRating ‘high'

A

Crverrides

= Rule Statements 52

Fef (8]
1

Fule Messages

Post alias

Texk

& person over 40 who skydives is high risk

Figure 167: Rulesheet with one condition row moved to filters row

=ro ConditionalfMovedToPrecondition, ers X
Scope | Conditions]
=1 Person [p] a p.age =40
b
r
Filters Actions 1]
1°& poskydiver =T i’ Post Message(s)
z A poriskRating
3 B
4 ll Orverrides
D Rule Statements &3 | Rule Messages
Ref 0 Posk Alias Tenxk
1 & person over 40 who skydives is high risk

Figure 168: Rulesheet with filter and condition rows swapped

226

Progress Corticon: Rule Modeling: Version 6.3

How to use collection operators in a filter

Scope Conditions 1]
=1 Person [p] a | p.skydiver T
b
©
m &ikions 4|
158 |p.age = 40 il Post Messagels)
2 & p.riskRating "high'
3 B
4 ;I Crverrides
D Rule Statements &4 | Rule Messages
Ref I Postk Alias Texk
1 & person over 40 who skydives is high risk.

Even though expressions in the Filters section of the Rulesheet are evaluated before conditions, the results
are the same. This is true for all rule expressions that do not involve collection operations and therefore do not
need to use aliases, used in this example brevity of expression. Conditional statements, whether they are
located in the Filters or Conditions sections, are AND'ed together. Order does not matter.

In other words, to use the logic from the preceding example:
I f person.age > 40 AND person. skydiver = true, then person.riskRating = 'high'

Because it does not matter which conditional statement is executed first, we could have written the same logic
as:

I f person.skydiver = true AND person.age > 40, then person.riskRating = 'high'

This independence of order is similar to the commutative property of multiplication: 4 x5 =20and 5 x 4 =
20. Aliases work well in a declarative language (like Corticon's) because regardless of the order of processing,
the outcome is the same.

Progress Corticon: Rule Modeling: Version 6.3 227

Chapter 8: Filters and preconditions

Location matters

Order independence does not apply to conditional expressions that include collection operations. In the following
Rulesheets, notice that one of the conditional expressions uses the collection operator - >si ze, and therefore
must use an alias to represent the collection Per son.

Figure 169: Collection operator in Condition row

w Sizel x
Scope | Conditions 1]
= Person [person]: 3 person - size » 3 - T
b
c
d
Filkers Actions 4
157 | person.skydiver il Post Messagels)
2 A person,riskR.ating *high'
3 .| E

= Sizelin
Scope | Conditions]

1 Person [person] a person.skydiver - T
b
C
d
Filkers Actions 4
1%F person -3 size = 3 - Post Message(s)
2 ﬂ f | person.riskR.ating *hight
3 : B

The Rulesheets appear identical with the exception of the location of the two conditional statements. But, do
they produce identical results? Let's test the Rulesheets to see, testing Collection operator in Condition row
first:

Figure 171: Ruletest with three skydivers

Input Outpuk
== Person [1] == Person[1]

o skydiver [true]] skydiver [true]
== Person [2] == Person [2]

o] skydiver [true] = skydiver [true]
=1 Person [3] == Person [3]

o skydiver [False]] skydiver [false]
== person [4] == Person [4]

o skydiver [true]] skydiver [true]

228 Progress Corticon: Rule Modeling: Version 6.3

How to use collection operators in a filter

What happened here? Because filters are always applied first, the Rulesheet initially filtered out the elements
of collection per son whose skydiver value was f al se. Think of the filter as allowing only skydivers to pass
through to the rest of the Rulesheet. The Conditional rule then checks to see if the number of elements in
collection per son is more than 3. If it is, then all per son elements in the collection that pass through the filter
(in other words, all skydivers) receive a ri skRat i ng value of hi gh. Because the first Ruletest included only
3 skydivers, the collection fails the conditional rule, and no value is assigned to ri skRat i ng for any of the
elements, skydiver or not.

Now modify the Ruletest and rerun the rules:

Figure 172: Ruletest with four skydivers

Input Outpuk
=1 Person [1] == Person[1]
o sydiver [true] """ = riskRating [high]
== Person [2] o skydiver [true]
= skydiver [true] ==l Person [2]
=& Person [3] ----- == riskRating [high]
o shydiver [False] o] shydiver [true]
== Person [4] =-= Person [3]
= skydiver [true] 8 skydiver [false]
== Person [5] == Person [4]
o shydiver [true] """ == riskRating [high]
o] clewdiver [true]
== Person [5]
----- #=| riskRating [high]
o clowdiver [true]

It is clear from this run that the rules fired correctly, and assigned a ri skRat i ng of hi gh to all skydivers for
a collection containing more than three skydivers.

Now, test the Rulesheet in Collection Operator in Filter row, where the rule containing the collection operation
is in the Filters section.

Figure 173: Ruletest2 with three skydivers

Input Cuakpuk
=1 Person [1] ==l Person[1]
] skydiver [true] """ == riskRating [high]
== Person [2] o skydiver [true]
=] skydiver [true] == Person [2]
=] Person [3] """ == riskRating [high]
o shydiver [False] v skydiver [true]
== Person [4] == Person [3]
-] skydiver [true] . skydiver [False]
== Person [4]
----- == riskRating [high]
o] clewdiver [true]

Progress Corticon: Rule Modeling: Version 6.3 229

Chapter 8: Filters and preconditions

What happened this time? Because filters apply first, the - >si ze operator counted the number of elements
in the per son collection, regardless of who skydives and who does not. Here, the filter allows any collection
— and the whole collection — of more than three persons to pass through to the Conditions section of the
Rulesheet. Then, the conditional rule checks to see if any of the elements in collection per son skydive. Each
per son who skydives receives a ri skRat i ng value of hi gh. Even though the Ruletest included only three
skydivers, the collection contains four persons, and, therefore, passes the Preconditional filter. Any skydi ver
in the collection has its ri skRat i ng assigned a value of hi gh.

It is important to point out that the Rulesheets in Collection Operator in Condition row and Collection
Operator in Filter row implement two different business rules. When the Rulesheets were built, the
plain-language business rule statements violated the methodology!). The rule statements for these two
Rulesheets would look like this:

1. All skydivers in groups of moaore than 3 skydivers must be assigned a riskRating of 'high'

2. All skydivers in groups of more than 3 persons must be assigned a riskRating of "high'

The difference is subtle but important. In the first rule statement, the test is for skydivers within groups that
contain more than three skydivers. In the second, the test is for skydivers within groups of more than three
people.

Multiple filters on collections

A slightly more complicated example will be constructed by adding a third conditional expression to the rule.

Figure 174: Rulesheet with two conditions

Scope Conditions 0
1 Person [person] a | person - size > 3 =
b person.gender ='F T

Filkers | Actions 1|

177 person.skydiver = true ﬂ Post Messageis)
2 & person.riskRating "high'
3 d Ciwverrides

SCope Conditions 1]

=1 Person [person]: 8_|person - sizs >3 T
b
C
Filkers | Ackions 4 |
177 person.skydiver = true il Post Message(s)
27F person.gender = 'F & person.riskRating "high'
3 ~| i Dverrilales

230 Progress Corticon: Rule Modeling: Version 6.3

How to use collection operators in a filter

Once again, the Rulesheets differ only in the location of a conditional expression. In the first rulesheet, the
gender test is modeled in the second conditional row, whereas in the other rulesheet (Rulesheet with two filters),
it is implemented in the second filter row. Does this difference have an effect on rule execution? Build a Ruletest
and use it to test the Rulesheet in Rulesheet with two conditions first.

Figure 176: Ruletest for Rulesheet with two conditions

Input Outpuk
== Person[1] ==l person [1]

----- = gender [F]

----- = chosdiver [true]
== person [2]

""" == qender [M]

----- = shosdiver [true]
== Person [3]

""" == qender [F]

""" = clovdiver [true)
== Person [4]

----- = gender [F]

----- = chosdiver [true]
== person [5]

""" == qender [M]

----- = shosdiver [False]

----- = gender [F]
----- == riskRating [high]
----- = chwdiver [true)

“H Person [2]

----- = gender [M]
..... = choediver [true]

= Person [3]

..... == gender [F]
----- # riskRating [high]
..... = cloediver [true]

=] Person [4]

----- == gender [F]
----- == riskRating [high]
..... = shoediver [true]

== Person [5]
----- = gender [M]
..... = slodiver [False]

As you see in this figure, the combination of a condition that uses a collection operator (the size test) with
another condition that does not (the gender test) produces an interesting result. What appears to have happened
is that, for a collection of more than three skydivers, all females in that group were assigned ari skRati ng
of hi gh. Step-by-step, here is what the rules engine did:

1. The filter screened the collection of persons (represented by the alias per son) for skydi ver s.

2. If there are more than three surviving elements in per son (that is, skydi ver s), then all females in the
filtered collection are assigned ar i skRat i ng value of hi gh. It may be helpful to think of the rules engine
checking to make sure there are more than three surviving elements, then reviewing those whose gender
is female, and assigning ri skRat i ng one element at a time.

Expressed as a plain-language rule statement, the Rulesheet implements the following rule statement:

1. All fermale skydivers in a group of more than 3 skydivers must be assigned a riskRating value of high

Itis important to note that conditions do not have the same filtering effect on collections that Filter expressions
do, and the order of conditions in a rule has no effect on rule execution.

Progress Corticon: Rule Modeling: Version 6.3 231

Chapter 8: Filters and preconditions

Now that you understand the results in the Ruletest for Rulesheet with 2 Conditions, look at what our second
Rulesheet produces.

Figure 177: Ruletest for Rulesheet with two filters

Input

=1 Person [1]

----- = gender [F]
..... = chosdiver [true]

- Person [2]

----- = gender [M]
----- = shosdiver [true]

~= Person [3]

..... E gE-'l'IdE-'r [F]
----- | closdiver [true]

- =1 Person [4]

----- = gender [F]
..... = chosdiver [true]

-] Person [5]

----- == gender [M]

----- == skydiver [false]

Outpuk

=1 Person [1]

..... E gender [F]
..... = choediver [true]

= person [2]

----- == gender [M]
..... = shoediver [true]

= Person [3]

----- == gender [F]
..... | cloediver [true]

= Person [4]

..... E gender [F]
..... = choediver [true]

=] person [5]

----- == gender [M]

..... = skoydiver [False]

This time, no ri skRat i ng assignments were made to any element of collection per son. Why? Because

multiple filters are logically AND'ed together, forming a compound filter. In order to survive the compound filter,
elements of collection per son must be both skydivers AND female. Elements that survive this compound filter
pass through to the size test in the Condition/Action rule, where they are counted. If there are more than three
remaining, then all surviving elements are assigned ar i skRat i ng value of hi gh. Rephrased, the Rulesheet

implements the following rule statement:

[1.

All fernale skydivers in a group of more than 3 female skydivers must be assigned a riskRating of high h

232

Progress Corticon: Rule Modeling: Version 6.3

Filters that use OR

To confirm that you understand how the rules engine executes this Rulesheet, modify the Ruletest and rerun:

Figure 178: Ruletest with risk ratings

Input
== Person[1]
----- == gender [F]
----- = skydiver [trus]
=& Person [2]
""" == gender [F]
----- = chdiver [true]
== Person [3]
""" = gender [F]
""" = clovdiver [true)
== Person [4]
----- == gender [F]
----- = chosdiver [true]
== person [5]
""" == qender [M]
----- = shosdiver [False]

Outpuk

=l person [1]

----- = gender [F]
----- == riskRating [high]
----- = chwdiver [true)

=l person [2]

----- = gender [F]
----- == riskRating [high]
----- = ckydiver [true)

=l person [3]

----- = gender [F]
----- == riskRating [high]
----- = choediver [true]

=l pPerson [4]

----- == gender [F]
----- # riskRating [high]
----- = choediver [true]

“EH Person [5]

----- == gender [M]
..... = shoediver [False]

That Ruletest includes four female skydivers, so, if you understand our rules correctly, you expect all four to
pass through the compound filter, and then satisfy the size test in the conditions. This test should result in all
four surviving elements receiving a r i skRat i ng of hi gh. That test confirms that the expectation is correct.

Filters that use OR

Just as compound filters can be created by writing multiple preconditions, filters can also be constructed using
the special word or directly in the Rulesheet. See the or operator's details at "Or" in the Rule Language Guide

for an example.

TestYourself questions for Filters and preconditions

Note: Try this test, and then go to TestYourself answers for Filters and preconditions on page 357 to correct

yourself.

1. True or False. All expressions modeled in the Filters section of the Rulesheet behave as filters.

2. True or False. All expressions modeled in the Filters section of the Rulesheet behave as preconditions.

3. True or False. Some rules may be unaffected by Filters expressions on the same Rulesheet.

Progress Corticon: Rule Modeling: Version 6.3

233

Chapter 8: Filters and preconditions

4. When 2 conditional expressions are expressed as two filter rows, they are logically together.

or'ed and'ed replaced duplicated

5. True or False. A Filter row is a stand-alone rule that can be assigned its own Rule Statement
6. A null collection is a collection that:

Has a parent but no children

Has children but no parent

Has no parent and no children

e 0T ®

Has a parent and children

7. An empty collection is a collection that:
Has a parent but no children
Has children but no parent

Has no parent and no children

e 0T ®

Has a parent and children

8. AFilter expression is equivalent to a Conditional expression as long as it includes collection operators
in the expression.

some all no at least one

9. True or False. To join two filters with an or operator, you must use the word or in between expressions.

10. By default, all Filter expressions are filters

limiting coffee full extreme

1. The following Filter expression has which behaviors?

Filters |

1%F cars.make = 'Ford'
z

limiting filter full filter precondition noncondition

12 The following Filter expression has which behaviors?

234

Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Filters and preconditions

Filters |

175 cars.make = 'Ford'
Z

limiting filter full filter precondition noncondition

13. What happens when a Filter expression, acting as a precondition, is not satisfied?
The expression is ignored and Rulesheet execution continues.

The Rulesheet is re-executed from the beginning.

The last Rulesheet is executed.

The next Rulesheet is executed.

All Rulesheet execution stops.

"o 2 0 T ®

Execution of that Rulesheet stops.

14. Which filters behaviors can be active at the same time?
Full filter and precondition

a.
b. Limiting filter and precondition

0

Limiting and full filter

d. Precondition can only act alone

15. For the sample data in the following figure, determine which data survives the filter for each question. Enter
the entity number (the number in brackets) for each survivor in the appropriate column. Assume the collection
Movi e has the alias novi es; Mbvi e. dvd has the alias dvds; and Movi e. oscar has alias oscars.

None behave as preconditions.

Progress Corticon: Rule Modeling: Version 6.3 235

Chapter 8: Filters and preconditions

untitled_1 |

5 DVD
=+ E] Movie [1]
— | director ['Welles]
— = genre [Drama]
— =] studio [REC]
— | title [Citizen Kane]
— = yearRelzased [1941]
=¢— dvD[1]

p=| priceTier [high]
— | quantitydvailable [100]
— =] releaseDate [9/25/2001]
[=—¢— oscar [1]
— | category [Best Actor]
— =] nomination [true]
=] win [False]
[E<¢— oscar [2]
— | category [Best Screenplay]
— | nomination [true]
) win [true]
[=—<¢— oscar [3]
j=| category [Best Picture]
— =] nomination [true]
—— =] win [False]
[=l—¢— oscar [4]
— =] category [Best Sound]
— =] nomination [true]
| win [False]
[=—— oscar [5]
— | category [Best Director]
— = nomination [krue]

- =] win [False]

Precondition/Filter Expressions

example: movies.studio = ‘RKO’

Movie DVD

Oscar

1,2,3,4,5

dvd.priceTier = ‘high’

oscars -> size > 4

oscars.win =T

oscars.nomination

oscars.win or oscars.category = ‘Best
Actor’

oscars.win and oscars.category = ‘Best
Actor’

dvd.quantityAvailable > 100

oscars -> exists(win = T)

movies.yearReleased.yearsBetween
(today) > 50

dvd -> notEmpty

movies -> isEmpty

dvd.releaseDate > ‘1/1/2000’

movies.genre <> ‘Drama’

oscars -> forAll(win = T)

oscars -» size > 2

236

Progress Corticon: Rule Modeling: Version 6.3

9

How to recognize and model parameterized
rules

Patterns emerge in rules that show that there are limits and constraints that you have to handle.

For details, see the following topics:

Parameterized rule where a specific attribute is a variable or parameter within a general business rule
Parameterized rule where a specific business rule is a parameter within a generic business rule
How to populate an AccountRestriction table from a sample user interface

TestYourself questions for Recognizing and modeling parameterized rules

Parameterized rule where a specific attribute is a
variable or parameter within a general business rule

During development, patterns can emerge in the way business rules define relationships between Vocabulary
terms. For example, in the sample FlightPlan application, a recurring pattern might be that all aircraft have
limits placed on their maximum takeoff weights. You might notice this pattern by examining specific business
rules captured during the business analysis phase:

1.

2. DC-10 aircraft must not exceed maximum cargo weight of 150 000 kgs.

747 aircraft must not exceed maximum cargo weight of 200,000 kgs.

Progress Corticon: Rule Modeling: Version 6.3 237

Chapter 9: How to recognize and model parameterized rules

These rules are almost identical; only a few key parts — parameters — are different. Although aircraft type (747
or DC- 10) and max cargo weight (200000 or 150000 kilograms) are different in each rule, the basic form of
the rule is the same. In fact, you can generalize the rule as follows:

| 3. X aircraft must not exceed maximum cargo weight of ¥ kilograms. h

Where the parameters X and Y can be organized in table form, as shown:

Aircraft type X Maximum cargo weight Y
747 200000
DC-10 150000

It is important to recognize these patterns because they can drastically simplify rule writing and maintenance
in Corticon Studio. As shown in the following figure, you could build these two rules as a pair of Rulesheets,
each with a Filter expression that filters data by ai r cr af t Type.

Figure 179: Non-parameterized rule

Scope Conditions 1]

=1 aircrafr a | Aircraft.maxCargoweight = 200000 - T
b
C
4
Filkers Actions 4 I
157 Aircraft, aircraftType = ‘747" ﬂ Post Message(s) =
2 &

3 [=]
= ll Cwerrides

=
D Rule Staterments &3 Fule Messages |

Ref ID | Post Alias Texk
1 Wiolation | Aircraft | A 747 musk nok exceed its maximum cargo weight of 200,000 kilograms.

But, there is a simpler and more efficient way of writing these two rules that leverages the concept of
parameterization. The following figure illustrates how this is accomplished:

Figure 180: Parameterized rules

Conditions 1] 1 2
a | Aircraft, aircraft Type - 747 'DC-10'
b Aircraft. maxCargoieight - = 200000 4150000, , 200000 , = 200000 ¢
C
4
Actions 4
Post Message(s) = =
&
[=]
Creerrides
KD Fule Statements &3 Rule Messages
Ref ID Post Alias | Text
1:2 Wiolation Aircraft | & {Aircraft, aircraft Twpel must not exceed its maximum cargo weight of {aircraft, maxCargoWweight} kilograms.

238 Progress Corticon: Rule Modeling: Version 6.3

Parameterized rule where a specific business rule is a parameter within a generic business rule

Notice how both rules are modeled on the same Rulesheet. This makes it easier to organize rules that share
a common pattern and maintain them over time. If the air cargo company decides to add new aircraft types to
its fleet in the future, then the new aircraft types can be added as additional columns.

Also notice the business rule statements in the Rule Statements section. By entering 1: 2 in the Ref column
and inserting attribute names into the rule statement, the same statement can be reused for both rule columns.
The syntax for inserting Vocabulary terms into a rule statement requires the use of { . . } braces brackets
enclosing the term. See the Rule Language Guide for more details about embedding dynamic values in Rule
Statements.

In addition to collecting parameterized rules on the same Rulesheet, other things can be done to improve rule
serviceability. In the Trade Allocation sample application that accompanies the Corticon Studio installation,
two parameterized rules are accessible directly from the application's user interface. The user can update these
parameters without entering the Corticon Studio because they are stored externally. When the application runs,
Corticon Studio accesses the parameter table to determine which rules should fire.

Parameterized rule where a specific business rule is
a parameter within a generic business rule

The previous topic illustrated the simplest examples of parameterized rules. Other subtler examples occur
frequently. For example, let's return to the Trade Allocation sample application included in the Corticon Studio
installation.

A recurring pattern in Trade Allocation might be that specific accounts prohibit or restrict the holding of specific
securities for specific reasons. You might notice this pattern by examining specific business rules captured
during the business analysis phase:

1. The Airbus Account must not hold securities issued by its competitors.
2. The Puritan Pensions Account must not hold securities issued by companies in the Tobacco industry.

3. The SafeHaven Investments Account must not hold securities of less than investment grade quality
(less than Bbh)

The first specific rule might be motivated by another, general rule that states:

| 4. Aclient's account must not invest in its competition h

The general rule explains why Airbus places this specific restriction on its account holdings: Boeing is a
competitor. The second rule is very similar in that it also defines an account restriction for a security attribute
(the issuer's industry classification), even though the rule has a different motivation. (A client's investments
must not conflict with its ethical guidelines.)

There may be many other business rules that share a common structure, meaning similar entity context and
scope. This pattern allows you to define a generic business rule:

| 5. An Account may restrict holding a type of Security for a specific reason h

You can also write the rule as a constraint:

| 6. AnAccount must not hold a type of Security for a specific reason h

Because there is not a method for accommodating many similar rules as a single, generalized case, you need
to enter each specific rule separately into a Rulesheet. This makes the task of capturing, optimizing, testing,
and managing these rules more difficult and time-consuming than necessary.

Progress Corticon: Rule Modeling: Version 6.3 239

Chapter 9: How to recognize and model parameterized rules

How to populate an AccountRestriction table from a
sample user interface

Parameterizing rules can improve reuse and simplify maintenance. In fact, maintenance of some well-defined
rule patterns can be further simplified by enabling users to modify them external to Corticon Studio. A user can
define and maintain specific rules that follow the generic rule pattern (analogous to an instance of a generic
rule class) using a graphical interface or database table built for this purpose.

The following is a sample user interface that could be constructed to manage parameterized rules that share
similar patterns. Note, this sample interface is discussed only as an example of a parameterized rule maintenance
application. It is not provided as part of the Corticon Studio installation.

Figure 181: Sample GUI window for populating a rule's parameter table

Account Trading Prohibitions - Parameterized Rule

00—
0—
o—
o

o0—
00—

' Select Account: | listof Accounts v
+ Enter Specific Rule | type new business rule here
Restrict By: @ Security Type Types of Secuities |

|
7 lssuer Name | Mames of |ssuers ;I
|

¢ Industry Name Names ofindustries »|

Add Restriction | Delete Restriction |

y = no Junk Bonds (lower than Bob)
= no Small Cap equities

[no FJR-Mabisco S
== N0 Tobacco securities

7]

check box to activate specific business rule - uncheck box to deactwate

—_

. The user selects an account for which the account restriction will be created. Referring back to the example,
the user would select Ai r bus from the list box.

N

The user enters a specific business rule that provides the motivation for the account restriction. The prior
example used no conpetitor securitiesandno tobacco securities.

w

The user selects the type of restriction being created. The example used i ssuer . nane and
i ndustry. nane.

SN

. After all components of the account restriction are entered and selected, clicking Add Restriction creates
the restriction by populating the Account Rest ri cti on table in an external database.

240 Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Recognizing and modeling parameterized rules

AccountRestriction table

Account Security.type Issuer.name Industry.name Business Rule

Ai r bus Boei ng No conpeti tor
securities

Ai r bus Tobacco No tobacco

securities

5. After adding a restriction, it appears in the lower scrolling text box. Selecting the Business Rule in the
scrolling text box and clicking Delete Restriction removes it from the box and from the table.

6. The checkbox indicates an active or inactive business rule. This allows the user to deactivate a rule without
deleting it. In practice, another attribute could be added to the Account Rest ri cti on entity called acti ve. A
precondition might filter out inactive rules to prevent them from firing during run time.

CAUTION!

Whenever you decide to maintain rule parameters outside of Corticon Studio, you risk introducing ambiguities
or conflicts into your Rulesheet. The Conflict Checker may not help you discover these problems because
some of the rule data is not shown in Corticon Studio. Always try to design your parameter maintenance
forms and interfaces to prevent ambiguities from being introduced.

TestYourself questions for Recognizing and modeling
parameterized rules

Note: Try this test, and then go to TestYourself answers for Recognizing and modeling parameterized rules
on page 358 to correct yourself.

1. When several rules use the same set of conditions and actions, but different values for each, we say that
these rules share a common

2. Another name for the different values in these expressions is

3. True or False. When several rules share a pattern, the best way to model them is as a series of Boolean
conditions.

4. What is a potential danger of maintaining rule parameters outside of a Corticon Studio Rulesheet?

5. Write a generalized rule that identifies the pattern in the following rule statements:
* Platinum customers buy $100,000 or more of product each year
* Gold customers buy $75,000 but less than $100,000 of product each year.
* Silver customers buy more than $50,000 but less than $75,000 of product each year.
* Bronze customers buy between $25,000 but $50,000 of product each year.

6. In the rules listed above, what are the parameters?

7. Describe the ways in which these parameters can be maintained. What are the advantages and disadvantages
of each option?

Progress Corticon: Rule Modeling: Version 6.3 241

Chapter 9: How to recognize and model parameterized rules

242 Progress Corticon: Rule Modeling: Version 6.3

10

How to write rules to access external data

Corticon provides three mechanisms that let you interface your rules with databases and other data sources:

* Enterprise Data Connector (EDC) — This technique provides access to a single database from a project
Vocabulary. You map your Vocabulary to the database and rely on Corticon to retrieve data when needed.
EDC makes data access simple and is a great option when small amounts of data are needed or performance
is not paramount. EDC is tightly integrated with rule models, so the functions described in this chapter are
how you effectively create queries to the database.

* Advanced Data Connectors (ADC) — This technique provides control over the SQL queries used to
retrieve or update data in a database. Using ADC requires more database knowledge but provides benefits
such as optimized query performance when retrieving large amounts of data, and the ability to map a
Vocabulary to multiple data sources. ADC is recommended when performing batch rule processing.

* REST Datasource (REST service) — This read-only technique provides secure access to REST services
to retrieve data for use in your decision services. Queries—either preset or specified by data in your
payload—Iimit the results brought into the server's memory, which are then filtered to get the data needed
to enrich the rule in process.

For additional information, see the Data Integration topics.

Overview

Corticon lets you define mappings to a Datasource so that rules can access (query) a database directly, and
then retrieve what it needs during execution, thus enriching the information available to the rules, and then
writing data to the database when appropriate.

This capability is transparent to the rule modelers so that they are only concerned with getting the rules right,
and do not have to get into SQL syntax to interface with an EDC Datasource.

This section focuses on the aspects of rule modeling that are affected by a defined Corticon Enterprise Data
Connector.

Progress Corticon: Rule Modeling: Version 6.3

243

Chapter 10: How to write rules to access external data

While you could start learning how to use any of these Datasources, it is a good idea to start with "Getting
Started with EDC" in the Data Integration Guide.

For details, see the following topics:

* A scope refresher

* Quick steps for setting up the Cargo sample

* Enable database access for rules using root-level entities
* Precondition and filters as query filters

* Insert new records in a middle table

* Integrate EDC Datasource data into rule output

* TestYourself questions for how to write rules to access external data

A scope refresher

The concept of scope is key to rule design and execution. Scope in a Rulesheet helps define or constrain which
data is included in rule processing, and which data is excluded. If a rule uses the Vocabulary term

FI i ght Pl an. car go. wei ght , then we know that those Fl i ght Pl an entities without associated Car go
entities will be ignored.

You also know that Vocabulary root-level entities — Fl i ght Pl an, for example — bring every instance of the
entity into scope. This means that a rule using root-level FI i ght Pl an acts on every instance of Fl i ght Pl an,
including Car go. f1 i ght Pl an,and Ai rcraft. fli ght Pl an, orany other role using Fl i ght PI an that may
exist in our Vocabulary.

When you add the ability for the Corticon Server and Studio to dynamically retrieve data from a database, rule
scope determines which data to retrieve. This is exactly the same concept as Studio determining which data
in an Input Ruletest to process and which to ignore based upon a rule’s scope. So, if you write rules using
root-level Fl i ght Pl an, then the Studio processes all FI i ght Pl ans in the Input Ruletest during rule execution.

Quick steps for setting up the Cargo sample

For the examples that use Cargo, here are the steps to set up the sample data in Corticon Studio and your
preferred database:

1. In your database administrative tool, create a database named Car go.
2. In Corticon Studio:
a. Import the Car go sample.
b. Create the EDC Datasource, and then define and test its connection to the Car go database.
c. On each of the three entities, set Datastore Persistent to Yes, and choose its appropriate Entity Identity:
e Aircraft: t ai | Nunmber

* Cargo: nani f est Nunber

244 Progress Corticon: Rule Modeling: Version 6.3

Enable database access for rules using root-level entities

* FlightPlan: f | i ght Nunber

d. On the EDC Datasource tab, click Create/Update Schema

3. Copy the contents of the project’'s Car go_dat a. sql

then click Execute.

file to your database administrative tool’s editor, and

Enable database access for rules using root-level

entities

Once interfaced with EDC, the amount of test data is no longer limited to that contained in a single Input

Ruletest. Itis limited by the sizes in the connected database. Rules using root-level FI i ght Pl an (or any other
root-level entity) forces the Server or Studio to retrieve all Fl i ght PI an entities (records) from the database.
If the database is very large, then that will mean a large amount of data is retrieved. For this reason, database
access for root-level rules is turned off by default. This ensures that you do not accidentally force the Server
to perform extremely large and time-consuming data retrievals from the database unless you explicitly require

it.

Because database access for rules using root-level terms is disabled by default, you need to know how to
enable it for those circumstances when you do want it. This is called extending a root-level entity to the database.
To illustrate, a simple rule based on the Cargo project's Vocabulary is used, as follows:

1. In Corticon Studio, create a new Rulesheet in the Cargo project, and open its advanced view.

2. Drag from the Vocabulary into the Scope as shown, including adding Car go. wei ght tothe Fl i ght Pl an

association as shown.

Add the aliases in the Scope as shown.

Add the rule statement as shown.

o o ko

Save the Rulesheet as Car goLoad. ers.
Figure 182: CargoLoad Rulesheet

2l Rule Vocabulary &2 = B |E@ Cargoload.ers &3

= 7 | Scope
-] Cargo -1 Aircraft [plane] a

5-E5 Aircraft D = maxCargoWeight b
..... e tailMumber * =] tailMumber ;
----- = aircraftType == Carge =
----- =y maxCargoVeolume ol weight f
----- = maxCargoWeight =1 FlightPlan [plan]
B-—% flightPlan (FlightPlan) ----- f=| flightMumber

2B Carge E|-\; cargo |'Ca_|_'\go) [load] A
----- ® manifestMumber * . t B
----- = container - c
----- = needsRefrigeration Filters E
----- | '.fol_ume j;" j‘
----- = weight
-3 flightPlan (FlightPlan) 5] Rule Statements i3

£ FlightPlan Ref |ID Post Alias
----- =y flightNumber™ 1 Load Violation plane
3= aircraft (Aircraft)
=% cargo (Cargo)

Write the rule condition and its values in columns 1 and 2.

= 8
Conditions 0 1 2 -
loadweight -> sum > plane.maxCargoWeight T F
=
Actions L b~
Post Message(s) =
=
Owverrides
= 8
Text Rule rxil

The [{plane.tailMurmber}] must not be assigned to flightplan
[{plan.flightNurmber}] because the assigned cargo weighs too much.

| o

Progress Corticon: Rule Modeling: Version 6.3

245

Chapter 10: How to write rules to access external data

The Rulesheet shown adds up (sums) the collection (see Collections on page 129) of Car go weights associated
with a Fl i ght Pl an (I oad. wei ght) and compares this to the naxCar goWei ght of the root-level Ai rcraft.
The intention is to perform this comparison for every available Ai r cr af t , so the root-level Ai r cr af t in our
Conditional expression was used. Any Ai r cr af t whose naxCar goWi ght is inadequate is identified with a
posted Vi ol at i on message.

Test the Rulesheet with database access disabled

Testing this Rulesheet without database access is a simple matter of building an Input Ruletest with all necessary
data. An example of this is a Ruletest that was created against the Car go. ecor e named Car goLoad. ert.
Its input data is as shown:

Figure 183: Sample Input Ruletest

Input
= Aircraft [1]
= aircraftType [MD-11]
= maxCargoVolurme [400.000000]
= maxCargoWeight [200000.000000]
= tailMurnber [M1001]
= Aircraft [2]
= aircraftType [A380]
= maxCargoVolume [300.000000]
= maxCargoWeight [300000.000000]
= tailMumber [MN1002]
= Aircraft [3]
= aircraftType [747]
= maxCargoVolume [400.000000]
= maxCargoWeight [250000.000000]
= tailMurnber [MN1003]
B Aircraft [4]
= aircraftType [DC-10]
= maxCargoVolume [350.000000]
= maxCargoWeight [150000.000000]
= tailMurnber [M1004]
E FlightPlan [1]
= flightMumber [7]
<— cargo (Cargo) [1]
=] weight [80000]
<— cargo (Cargo) [2]
=] weight [40000]
¢— cargo (Cargo) [3]
F=| weight [50000]

Looking at this Input Ruletest, there is a single FI i ght Pl an with its collection of Car go. This collection is
what is represented with the alias | oad in our Rulesheet’'s Scope section. Each Car go has a wei ght value
entered.

The four root-level Ai r cr af t entities are also shown. Each one has a maxCar goWei ght , which will be
compared to the sum of | oad. wei ght during rule execution.

246

Progress Corticon: Rule Modeling: Version 6.3

Enable database access for rules using root-level entities

Given what is known about rule scope, you can confidently predict that the test data provided in this Input
Ruletest will be processed by the Rulesheet because it contains the same scope!

In the following figure, we've executed the Test and see that it functioned as expected. Because | oad. wei ght
sums to 170000 kilograms, and the Ai r cr af t with t ai | Nunber N1004 can only carry 150000 kilograms,
we receive a Vi ol at i on message for that Ai rcr aft and that Ai r cr af t alone. All other Ai rcr aft have
nmaxCar goWei ght values of 200000 kilograms or more, so they fail to fire the rule.

Figure 184: Ruletest Violation Message

| Rule Staternents © Comments £ Rule Messages 27 = B8
Severity | Message | Entity
Violation The [N1004] must not be assigned to flightplan [7] because the assigned cargo weighs too much., Aircraft[4]

So far, this behavior is exactly what is expected from rules: they process data of the same scope.

Save the Car goLoad. ert Ruletest.

Test the Rulesheet with database access enabled

First, you need to update the database in the EDC tutorial to prepare for the features that will be demonstrated.
The Ruletest, Car goLoad. er t, has the aircraft data including the primary key. Copy the Ruletest, drop those
unwanted inputs, and then update the database column t ai | Nunber . That edit actually extends the tutorial's
data with one added row that is cargo info we want in this topic.

Note: The procedure for connecting and mapping a Vocabulary to an external database, and setting an Input
Ruletest to access that database in Read OnlyRead/Update modes is discussed in the topic "How data from
an EDC Datasource integrates into rule output" section of the Data Integration Guide.

To load the aircraft data:

1. In the Project Explorer, copy and paste the Car goLoad. ert file. Name the copy Ai rcr aft Loader. ert.
2. Open Ai rcraftLoader.ert.

3. Inthe Input area, click Fl i ght Pl an, and then press Delete.

4. Select the menu option Ruletest > Testsheet > Database Access > Read/Update.

5. Select the menu command Ruletest > Testsheet > Run Test.

Look at the Ai r cr af t table in the database. You see the updated values and the new row:

dbo.Aircraft ¥ X
tailMumber aircraftType maxCargoVolume maxCargoWeight
M1001 747 400.00 250000,00
M1002 DC-10 300.00 150000, 00
M1003 DC-10 400.00 200000,00
M1004 747 350.00 250000,00
:Hﬁ_ ALEL ALEL MLEL AL

To make the test effective, you need to add some heavy cargo to one of the flight plans. Here are four SQL
query lines to add four new Cargo manifests to one flight:

| NSERT | NTO Car go. dbo. Car go
(mani f est Nunber, Rf I i ght Pl anAssoc_f | i ght Nunber,
needsRefri geration, cont ai ner, vol une, wei ght)

Progress Corticon: Rule Modeling: Version 6.3 247

Chapter 10: How to write rules to access external data

VALUES (' 625E' , 102, nul |, nul I, 80, 50000) ;
| NSERT | NTO Car go. dbo. Car go
(mani f est Nunber, Rf I i ght Pl anAssoc_f | i ght Nunber,
needsRefri geration, contai ner, vol ume, wei ght)
VALUES (' 625F' , 102, 0, nul |, 100, 40000) ;
| NSERT | NTO Car go. dbo. Car go
(mani f est Nunber, Rf | i ght Pl anAssoc_f | i ght Nunber,
needsRefri geration, contai ner, vol ume, wei ght)
VALUES (' 625G , 102, 0, nul I, 90, 20000) ;
| NSERT | NTO Car go. dbo. Car go
(mani f est Nunber, Rf I i ght Pl anAssoc_f | i ght Nunber,
needsRefri geration, contai ner, vol ume, wei ght)
VALUES (' 625H , 102, 1, nul |, 50, 50000) ;

Copy the text in the codeblock and paste it into a new SQL Query in your database, and then execute it.

Alternative approach: Using a Ruletest to load a database

You could instead create a Ruletest, Car goLoader , with these values and the associated f | i ght Pl an,
entering the values as shown, and then running the test in Read/Update mode:

Figure 185: Using a Ruletest to add Cargo rows to the connected external database

Input
= Cargoe [1]
= manifestMumber [625E]
=| needsRefrigeration
=] volume [80]
=] weight [50000]
&— flightPlan (FlightPlan] [1]
=] flightMumber [102]
= Carge [2]
= manifestMumber [625F]
=| needsRefrigeration [false]
=] volume [100]
= weight [40000]
<— flightPlan (FlightPlan) [2]
=] flightMumber [102]
= Carge [3]
= manifestMumber [625G]
=| needsRefrigeration [falsg]
=] volume [20]
= weight [20000]
<— flightPlan (FlightPlan) [3]
= flightMumber [102]
=l Cargo [4]
= manifestMumber [625H]
=| needsRefrigeration [true]
=] volume [50]
= weight [50000]
<— flightPlan (FlightPlan) [4]
= flightMumber [102]

248 Progress Corticon: Rule Modeling: Version 6.3

Enable database access for rules using root-level entities

Setting up the test
The Car go table now shows that there are eight items, five of which are assigned to one flight:

Figure 186: Cargo Table from Database

manifestMurm... | container needsRefrigera... | volume weight

4 5254 MULL NULL 10 1000
6258 MULL False 40 1000
625C MULL False 20 30000
6250 MULL True 10 1000
B25E MULL NULL &0 50000
B25F MULL False 100 40000
625G MULL False a0 20000
625H MULL True 50 50000

* MULL MULL NULL NULL NULL

Now, create a new Ruletest that uses the test subject we created earlier, the Car goLoad. er s Rulesheet:
CargoLoad Rulesheet . You will create a new Input Ruletest that just takes the FI i ght Pl an entity from the
scope, and then enter the f | i ght Nunber value 102. When you run the test, the output is identical to the
input, and there are no messages. That test seemed to do nothing:

Figure 187: Ruletest of FlightPlan seed data

Input Cutput
= FlightPlan [1] = FlightPlan [1]
= flightfumber [102] = flightMumber [102]

Notice that the only data necessary to provide in the Input Ruletest is a Fl i ght Pl an. f | i ght Nunber value.
Since this attribute serves as the primary key for the Fl i ght Pl an table, Studio has all the seed data it needs
to retrieve the associated Car go records from the Car go database table. In addition to retrieving the

| oad. wei ght collection, we also needed all Ai r cr af t records from the Ai r cr af t table. Butno Ai r cr af t
records were retrieved, therefore the rule’s comparison couldn’t be made, so the rule couldn’t fire. This behavior
was expected because that database access for root-level terms is disabled by default.

Now set the Ruletest to read data from the database and return everything that it finds. Toggle the menu options
in the Ruletest > Testsheet menu as shown:

k‘ v Read Only
Read/Update

v Return All Entity Instances

Return Incoming/Mew Entity Instances Only

Enable Cache
v [isable Cache

When you run the test again, the output is the same as the input and there are no messages.

Progress Corticon: Rule Modeling: Version 6.3 249

Chapter 10: How to write rules to access external data

Extend to Database

Now you will set the Rulesheet to Extend to Database, and then see how it affects the test. On the
Car goLoad. er s Rulesheet, right-click Ai r cr af t in the Scope area, and then select Extend to Database,
as shown:

Scope

=RE=] Aircraft [plane

- o= maxCarge! of Cut

: . tailNumbe [iZ Copy
== Cargo
P =] weight 9 Delete

&= FlightPlan [pla Extend to Database
- flightNum >
: e

==& cargo (Car Comment...
: Localize...

Matural Language...

Save your Rulesheet to ensure that the changes take effect. Now, retest the same Input Ruletest shown in
Input Ruletest with Seed Data. The results are as follows:

Figure 188: Results Ruletest showing a successful Extend-to-Database retrieval

Input

== FlightPlan [1]
o flightNurnber [102]

Output

E-=] FlightPlan [1]

./ flightNumber [102]
A cargo (Cargo) [1]
<~ cargo (Cargo) [2]
<= cargo (Cargo) [3]
<= cargo (Cargo) [4]
PaE

— cargo (Carga) [5]

------ = container

.= manifesthurmber [625E]

...... = needsRefrigeration

----- = volume [80]

B-=5 Aircraft [1]

E-E5 Aircraft [2]

B--E4 Aircraft [3]

o & [

L8 aircraftType [DC-10]

E, maxCargoVolurme [350.000000]
E. maxCargoWeight [150000.000000]
. tailMurmber [N1004]

Expected

Severity | Message

[Rule Messages &3

= 8
| Entity |

Violation The [M1004] must not be assigned to flightplan [102] because the assigned ...

Aircraft[4]

These results are much different! Corticon successfully retrieved all Ai r cr af t records, performed the summation
of all the cargo in the given flight plan, and identified an Ai r cr af t record that fails the test. Given this set of

sample data, it is the Ai rcraft witht ai | Nunber

N1004 that receives the Vi ol at i on message.

250

Progress Corticon: Rule Modeling: Version 6.3

Enable database access for rules using root-level entities

Returning all instances can be overwhelming

While this rich relational data retrieval is good to see, there are only four planes and five packages in the flight
plan. What if there are 1,000 planes and hundreds of thousands of packages every day? That amount of data
would be overwhelming. So what you can do is constrain the return data to just relevant new information by
toggling the Ruletest's return option to Return Incoming/New Entity Instances Only, as shown:

Database Access b Mone
v Read Only
Read/Update

Return All Entity Instances
¥ | Return Incoming/Mew Entity Instances Only
The data that returns is taken only from those entities that were:
¢ Directly used in the rules.
* Presentin the request message.

* Generated by the rules (if any).

Note: This option can be set in a Deployment Descriptor file (. cdd), or as a parameter in the 9-parameter
version of addDeci si onSer vi ce method in the Server API scripts.

When you run the Ruletest now, the output is unchanged. You see a Violation message as to which plane
cannot be assigned that flight plan.

L}g Cargo.ecore E *Cargoload.ers v[’,: CargolLoad.ert vi;: *SeedData.ert 3 = B8

untitled 1
/Tuterial/Tutorial-Done/CargolLoad.ers

Input Output Expected
=] FlightPlan [1] =] FlightPlan [1]
== flightNumber [102] == flightMNumber [102]

|=] Rule Statements | & Rule Messages ¢ =0
Severity Message Entity

 Violation The [M1004] must not be assigned to flightplan [102] becauset the assigned cargo weighs too much.

That result is concise, providing the information you wanted from this test.

Progress Corticon: Rule Modeling: Version 6.3 251

Chapter 10: How to write rules to access external data

Optimize aggregations that extend to database

This Rulesheet used a condition statement that did a calculation and a difference, calling a statement when it
evaluated as t r ue, as shown:

=77 Cargoload.ers &1 g Cargo.ecore ¢ Cargo.ert

Scope Conditions 0

=1 Aircraft [plane] load.weight -> sum > plane.maxCargoWeight =
= maxCargoWeight
= tailMurmber

=] Cargo
=] weight

[=] FlightPlan [plan]
f=| flightNumber
=+ cargo (Cargo) [load]

— |~

m o N oo

Actions 1 mn

Post Message(s) EA

=y weight

Y om I

As written, | oad. wei ght ->sum > pl ane. maxCar go\Wei ght , the condition copies all the relevant cargo
records into Corticon's memory to perform its sum and then evaluates whether total weight is greater than the
plane's capacity. Because you chose to extend to database, the number of values could be large. Corticon lets
you optimize such calculations for non-conditional (column 0) actions.

You can recast the conditions by creating an attribute in the Fl i ght Pl an entity to store a calculation. Here,
the | oad attribute was created, and then its properties were set so that the data type is | nt eger (the same
as the wei ght data it will aggregate), and its mode is to Mode to Tr ansi ent as this is data that will be just

used locally:
g cargoecare &1 =8
4 [Z] Cargo Property Name Property Walue
. B4 Aircraft Attribute Mame load
. EH Cargo Data Type Integer
. Mandatory Mo
FlightPI
4= e Mode Transient

= flightumber
=y load

- zircraft (Aircraft)
=& cargo (Cargo)

You could rewrite the conditions and actions to create a non-conditional rule followed by a conditional test of
the computed result, as follows:

E@ Optimizedfggregationers &3 | L@ Cargaecare =08
Scope Conditions I] 1 2z e
a | plan -» notEmpty - - R
F=| maxCargo¥eight b | plan.loadxplane.maxCargoWeight ° T -
=l tailMurmber ;

a = flightPlan (FlightPlan) [plan] -
= flightMumber Actions «[m =1l
=y load Past Messagels) %]

a =& cargo (Cargo) [containers] A | planJoad = containersmeight-=sum
= rmanifestNumber B
=y weight g
Filters E il
= - Owerrides
12l Rule Staternents &2 | C Rule Messages =8
Ref |ID Paost Alias Text R~
1 Load Wiolation plane The plane [[plane tailMumber}] must not be assigned flightplan [{planflightMurber}] because | | =

the assigned cargo weight of [{planload]}] exceeds its limit,

252 Progress Corticon: Rule Modeling: Version 6.3

Precondition and filters as query filters

This nonconditional rule optimizes the performance by calculating | oad on the database side, and then
evaluating the | oad against maxCar goWei ght in memory.

Note: This feature applies to all Collection operators that are aggregation operators: sum avg, si ze, m n,
and max. See Aggregations that optimize EDC database access on page 162 for more information about these
Collection operators.

Precondition and filters as query filters

When the Enterprise Data Connector is in use, scope rows in a Rulesheet can act as queries to an external
database. When an alias definition is designated as Extend to Database, the scope of the alias is assumed
to include all database records in the entity’s corresponding table. But you often want or need to qualify those
queries to further constrain the data returned to the Server or Studio. You can think of conditional clauses
written in the Preconditions/Filters section of the Rulesheet as placing constraints on these queries. If you
are familiar with structured query languages (SQL), then you may recognize these constraints as WHERE
clauses” in a SQL query.

If you are not familiar with SQL, review the Filters and Preconditions topics to learn more about how a
Precondition/Filter expression serves to reduce or filter the data in working memory so that only the data that
satisfies the expression survives to be evaluated and processed by other rules on the same Rulesheet. EDC
simply extends working memory to an external database; the function of the Precondition/Filter expression
remains the same.

For performance reasons, it is often desirable to perform a complete query -- including any WHERE clauses --
inside the database before returning the results set (the data) to Studio or Server. An unconstrained or unfiltered
results set from an external database may be very large, and takes time to transfer from the database to Studio
or Server. After the results set enters Studio’s or Server’s working memory, then Preconditions/Filters expressions
serve to reduce (or filter) the results set further before rules are applied. But if we believe the unfiltered results
set will take too much time to transfer, then you may decide to execute the Preconditions/Filters expressions
inside the database query, thereby reducing the results set prior to transmission to Studio or Server. This may
make the entire database access process faster.

Filter query qualification criteria

When any of the following are true, the Precondition/Filter expression does not qualify as a query filter:
1. If it does not contain at least one alias that was extended to the database.

2. Ifit contains any attributes of Boolean data type. Boolean data types are implemented inconsistently in
commercial RDBMS, and cannot be included in query filters.

3. If it has relational operators with Boolean operands.
4. If it uses an operator not supported by databases (see the next topic)

5. If it references more than one alias not extended to the database.

Progress Corticon: Rule Modeling: Version 6.3 253

Chapter 10: How to write rules to access external data

Operators supported in query filters

Query filters are Corticon Rule Language expressions that are performed in the database. As such, the operators
used in these expressions must be compatible with the database’s native query language, which is based on
some form of SQL. Not all Corticon Rule Language operators have comparable functions in SQL. Those

operators supported by standard SQL and therefore also permitted in query filters are shown in the following

table:

Table 8: Operators supported by query filters

Operator Name Operator Syntax Data types Supported
Add + Decimal, Integer
Subtract - Decimal, Integer
Multiply * Decimal, Integer
Divide / Decimal, Integer
Equal To (comparison) = DateTime, Decimal, Integer, String
Not Equal To <> DateTime, Decimal, Integer, String
Less Than < DateTime, Decimal, Integer, String
Greater Than > DateTime, Decimal, Integer, String
Less Than or Equal To <= DateTime, Decimal, Integer, String
Greater Than or Equal To >= DateTime, Decimal, Integer, String
Absolute Value . absval Decimal, Integer
Character Count . size String
Convert to Upper Case .t oUpper String
Convert to Lower Case . toLower String
Substring .substring String
Equal To (comparison) .equal s String
Collection is Empty ->i sEnpty Collection
Collection is not Empty ->not Enpty Collection
Size of Collection ->si ze Collection
Sum ->sum Collection

254

Progress Corticon: Rule Modeling: Version 6.3

Precondition and filters as query filters

Operator Name Operator Syntax Data types Supported
Average ->avg Collection
Minimum ->mn Collection
Maximum - >max Collection
Exists ->exists -

Note: The Collection operators listed must be used directly on the extended-to-database alias in order to
qualify as a query filter. If the collection operator is used on an associated child alias of the extended-to-database
alias, then the expression is processed in memory.

How to use multiple filters in filter queries

One or more filters can be set as a database filter. When multiple filters are set as database filters, Corticon
logically combines them with the AND operator to form one database query.

Note: If the database filters have different entity/alias references they will not be logically combined into one
query. Each filter will execute in processing order. To determine which expression gets processed first, generate
an execution sequence diagram by choosing Rulesheet > Rulesheet > Execution Sequence Diagram from
Studio’s menubar.

Consider the filters:

* Customer.age > 18

* Customer.status = ‘GOLD

The result is one database query:

Select * from Custoner where age > 18 and status = “GOLD’
However, when the two filters are:

* Customer.age > 18

* Order.total > 1000

The result is two database queries (because Cust oner and Or der are not logically related):
Select * from Custoner where age > 18

Sel ect * form Order where total > 1000

When the database filter contains more than one database entity/alias (a compound filter), it still acts as a
single query; for example:

* Oder.bid >= Itemprice
The compound filter results in the query:
Select * fromOrder o,Itemi where o.bid > i.price

When there are multiple filters related to one or more of the entities in a compound filter, they are combined
with the AND operator For example, consider the filters:

Progress Corticon: Rule Modeling: Version 6.3 255

Chapter 10: How to write rules to access external data

e Oder.bid >= Itemprice

e Order.status = ‘VALID

* Itemqgty >0

Using a compound filter results in the query:

Select * fromOrder o,Item | where o.bid > i.price and o.status = “VALID' and
i.qty >0

Insert new records in a middle table

In relational databases, many-to-many relationships are modeled using a “middle” table (also known as an
intersection table). Assume two tables named A and B, and they have a many-to-many relationship. A third or
middle table named AB has a many-to-1 relationship with both A and B.

A many-to-many association between two entities in the Vocabulary can be mapped to such a middle table.
Therefore, table AB does not need to correspond to a specific entity in the Vocabulary. However, should the
middle table contain additional business fields, then it must have a corresponding entity in the Vocabulary. In
such a situation, attempting to create a new record/row in table AB using rules can cause limitations depending
on:

* The cardinalities of the associations between AB and A, and AB and B
* The identity strategy used for A, B, and AB

The following table highlights known limitations for combinations of entity identity (Application or Datastore)
and association directionality (bidirectional or unidirectional):

. L. . Datastore Identity
Application Identity

(using ‘identity’ strategy)

Both Uni Both Bi One Uni/One Bi Both Uni | Both Bi | One Uni/One Bi

oK NO NO CK oK OK

The one uni / one bi configuration should be avoided when Application Identity is used.

Integrate EDC Datasource data into rule output

EDC introduces a new dimension to rule execution. When EDC is not used, data management during Decision
Service execution is relatively straightforward: incoming data contained in the request payload is modified by
rules, and the resulting updated state for all objects is returned in the response.

However, when EDC is used, data management becomes more complicated. Data in the database needs to
synchronize with the data in the request payload and the data produced by Decision Service execution.

This functionality is discussed in detail in the topic "How data from an EDC Datasource integrates into rule
output"” in the Data Integration Guide.

Using several scenarios, that section describes the algorithms used by Corticon Server to perform this
synchronization in a variety of read-only and read-write cases. All scenarios use the familiar Car go. ecor e,
as set up and verified in Quick steps for setting up the Cargo sample on page 244.

256 Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for how to write rules to access external data

TestYourself questions for how to write rules to
access external data

Note: Try this test, and then go to TestYourself answers for Logical analysis and optimization on page 359 to
correct yourself.

Rule scope determines which is processed during rule execution.

Why is root-level database access disabled by default?
When a Scope row is shown in bold text, what do you know about that entity’s database access setting?
True or False. Only root-level entities can be extended to a database.

Where can | learn more about accessing external data?

A O

In general, does a rule author need to care about where actual data is stored, how it is retrieved, or how it
is sent to the rules when creating Rulesheets?

7. Are there any exceptions to the general rule you defined in the preceding question?

Progress Corticon: Rule Modeling: Version 6.3 257

Chapter 10: How to write rules to access external data

258 Progress Corticon: Rule Modeling: Version 6.3

11

Logical analysis and optimization

A strength of Corticon's toolset is the ability to perform extensive tests and analysis of your rules using traditional
methods as well as within Studio. You can evaluate the completeness of rule coverage, conflicts between rules,
and looping in rules. You can even test the subtleties of rule executions with expected results. You are offered
techniques to compress and optimize your rules.

For details, see the following topics:

¢ Test, validate, and optimize your rules

* Traditional methods of analyzing logic

* Validate and test Rulesheets in Corticon Studio

* Test rule scenarios in the Ruletest Expected panel
* How to optimize Rulesheets

* Precise location of problem markers in editors

* TestYourself questions for Logical analysis and optimization

Test, validate, and optimize your rules

Corticon Studio provides the rule modeler with tools to test, validate, and optimize rules and Rulesheets prior
to deployment. Before proceeding, let's define these terms.

Progress Corticon: Rule Modeling: Version 6.3 259

Chapter 11: Logical analysis and optimization

Scenario testing

Scenario testing is the process of comparing an actual decision operation to an expected operation using data
scenarios or test cases. The Ruletest provides the capability to build test cases using real data, which can then
be submitted as input to a set of rules for evaluation. The actual output produced by the rules is then compared
to the expected output from those rules. If the actual output matches the expected output, then you may have
some degree of confidence that the decision is performing properly. Why only some confidence and not complete
confidence is addressed in this set of topics.

For complete details about settings and analysis for scenario testing, see Test rule scenarios in the Ruletest
Expected panel on page 280

Rulesheet analysis and optimization

Analysis and optimization is the process of examining and correcting or improving the logical construction of
Rulesheets, without using test data. As with testing, the analysis process verifies that the rules are functioning
correctly. Testing, however, does nothing to inform the rule builder about the execution efficiency of the
Rulesheets. Optimization of the rules ensures they execute most efficiently, and provide the best performance
when deployed in production.

The following example illustrates the point:

Two rules are implemented to profile life insurance policy applicants into two categories: high risk and low risk.
These categories might be used later in a business process to determine policy premiums.

Figure 189: Simple rules for profiling insurance policy applicants

[T ——

Conditions 1] 1 z
a Applicant.age <=55
b Applicant,smoker - T
C
d

Actions L |

Post Messageis) i | EA
& Applicant. riskR.ating o risk! "high risk!
B

Overrides

] Rule Skatements &3 | Rule Messages

Ref 10 Posk Alias Text
1 Info Applicant applicants 55 ar younger are low risk
z Warning Applicant Applicants who smoke are high risk

To test these rules, create a new scenario in a Ruletest, as shown:

260 Progress Corticon: Rule Modeling: Version 6.3

Traditional methods of analyzing logic

t= ~ = O||% rolicyapplicant.ert 52
= [:.I life_policy |= untitled_1 |
BR=]pplcant IRMG/PolicyApplicant, ers
----- = age
""" #=| homeState Luput
..... == riskRating = @ Applicant [1]
""" = cloediver E age [45]
..... . cmoker “o o] croker [False]
..... E s=m
EEI----€ policy (Policy)
-] Palicy

In this scenario, a single example of Per son, a non-smoker aged 45 is created. Based on the rules just created,
the expectation is that the Condition in Rule 1 will be satisfied (People aged 55 or younger...) and that the
person's ri skRat i ng will be assigned the value of | ow. To confirm the expectations, run the Ruletest:

Figure 190: Ruletest

B

= Policyapplicant.erk

untitled_1 |

=l

IRMGIPalicyapplicant.ers

Input Cukput
E & applicant [1] = = applicant [1]
E age [45] E age [45]
“o-] emoker [False] E riskRating [low risk]

Lo snoker [False]

Rule Statements | T Rule Messages &3

Severity | Message | Enkiky
Info Applicants 55 or younger are low risk, Applicant[1]

As you can see in the figure, the expectations are confirmed: Rule 1 fires and ri skRat i ng is assigned the
value of | ow. Furthermore, the . post command displays the appropriate rule statement. Based on this single
scenario, can we say conclusively that these rules will operate properly for other possible scenarios; that is,
for all instances of Per son? How do we answer this critical question?

Traditional methods of analyzing logic

The question of proper decision operation for all possible instances of data is fundamentally about analyzing
the logic in each set of rules. Analyzing each individual rule is relatively easy, but business decisions are rarely
a single rule. More commonly, a decision has dozens or even hundreds of rules, and the ways in which the
rules interact can be very complex. Despite this complexity, there are several traditional methods for analyzing
sets of rules to discover logical problems.

Progress Corticon: Rule Modeling: Version 6.3 261

Chapter 11: Logical analysis and optimization

Flowcharts

A flowchart that captures these two rules might look like the following:

Figure 191: Flowchart with two rules

Person.age
Person.smoker

NO Is Person.smoker = True?

= Low

Is Person.age = 557

Person.riskRating

Upon closer examination, the flowchart reveals two problems with our rules: what happens if Per son. age>55
or if Per son. snoker =f al se? The rules built in Simple rules for profiling insurance policy applicants do not
handle these two cases. But, there is also a third, subtler problem here: what happens if both conditions are
satisfied, specifically when Per son. age<=55 and Per son. snoker =t r ue? When Per son. age<=55,

Per son. ri skRat i ng should be given the value of | ow. But, when Per son. snoker =t r ue,

Per son. ri skRat i ng should be given the value of hi gh.

262

Progress Corticon: Rule Modeling: Version 6.3

Traditional methods of analyzing logic

There is a dependency between our rules: They are not truly separate and independent evaluations because
they both assign a value to the same attribute. So, the flowchart turns out to be an incorrect graphical
representation of the rules, because the decision flow does not truly follow two parallel and independent paths.
Let's try a different flowchart:

Figure 192: Flowchart with two dependent rules

Person.age
Person.smoker

Is Person.smoker = True?

Is Person.age <= 557

Person.riskRating
=777

In this flowchart, an interdependence between the two rules was acknowledged, and they were arranged
accordingly. However, a few questions still exist. For example, why is the smoker rule before the age rule? By
doing so the smoker rule has an implicit priority over the age rule because any smoker is immediately given a
ri skRati ng value of Hi gh regardless of what their age is. Is this what the business intends, or are we, as
modelers, making unjustified assumptions?

This is a problem of logical conflict, or ambiguity, because it is not clear from the two rules, as they were
written, what the correct outcome should be. Does one rule take priority over the other? Should one rule take
priority over the other? This is, of course, a business question, but the rule writer must be aware of the
dependency problem and resulting conflict in order to ask the question in the first place. Also, notice that there
is still no outcome for a non-smoker older than 55. This is a problem of logical completeness and it must be
taken into consideration, no matter which flowchart is used.

The point is that discovery of logical problems in sets of rules using the flowcharting method is very difficult
and tedious, especially as the number and complexity of rules in a decision (and the resulting flowcharts) grows.

Progress Corticon: Rule Modeling: Version 6.3 263

Chapter 11: Logical analysis and optimization

Test suites

The use of a test suite is another common method for testing rules (or any kind of business logic). The idea is
to build a large number of test cases, with carefully chosen data, and determine what the correct system
response should be for each case.

Then, the test cases are processed by the logical system, and output is generated. Finally, the expected output
is compared to the actual output, and any differences are investigated as possible logical bugs.

Let's construct a very small test table with only a few test cases, determine the expected outcomes, and then
run the tests and compare the results. To ensure that the rules execute properly for all cases that might be
encountered in a “real-life” production system, create a set of cases that includes all such possibilities.

In a simple example of two rules, this is a relatively straightforward task:

Table 9: All combinations of conditions in table form

Condition Smoker (smoker = true) Non-Smoker (smoker = false)

Age <= 55

Age > 55

In this table, there is a matrix that uses the Values sets from each of the Conditions in our rules. By arranging
one set of values in rows, and the other set in columns, the Cross Product (also known as the direct product
or cross product) of the two Values sets is created, which means that every member of one set is paired with
every member of the other set. Because each Values set has only two members, the Cross Product yields 4
distinct possible combinations of members (2 multiplied by 2). These combinations are represented by the
intersection of each row and column in the table. Now, let's fill in the table using the expected outcomes from
our rules.

Rule 1, the age rule, is represented by row 1 in the table. Recall that rule 1 deals exclusively with the age of
the applicant and is not affected by the applicant's smoker value. To put it another way, the rule produces the
same outcome regardless of whether the applicant's smoker value is t r ue or f al se. Therefore, the action
taken when rule 1 fires (ri skRat i ng is assigned the value of | ow) should be entered into both cells of row 1
in the table, as shown:

Figure 193: Rule 1 expected outcome

condition ‘ Smoker (smoker = true) ‘ Non-Smoker (smoker = false)

Age > 55

264 Progress Corticon: Rule Modeling: Version 6.3

Traditional methods of analyzing logic

Likewise, rule 2, the smoker rule, is represented by column 1 in the table, All Combinations of Conditions
in Table Form. The action taken if rule 2 fires (r i skRat i ng is assigned the value of hi gh) should be entered
into both cells of column 1 as shown:

Figure 194: Rule 2 expected outcome

condition Smoker (smoker = true) Non-Smoker (smoker = false)

Age <=55 low, high

Age > 55 high

The table format illustrates that a complete set of test data should contain four distinct cases (each cell
corresponds to a case). Rearranging, the test cases and expected results can be summarized as follows:

Figure 195: Test cases extracted from cross product

Expected
Test case age smoker
outcome
1 <= 55 true low, high
2 <= 55 false low
3 > 55 true high
4 > 55 false

The table format also highlights two problems that were encountered earlier with flowcharts. In the figure Rule
2 Expected Outcome, row 1 and column 1 intersect in the upper left cell. This cell corresponds to test case
#1 in the figure above. As a result, each rule tries to assert its own action — one rule assigns a | owvalue, and
the other rule assigns a hi gh value. Which rule is correct?

Logically speaking, they both are. But, if the rule analyst had a business preference, it was lost in the
implementation. As before, you cannot tell by the way the two rules are expressed. Logical conflict reveals
itself again.

Also notice the lower right cell (corresponding to test case #4) — it is empty. The combination of age>55 AND
non-smoker (snoker =f al se) produces no outcome because neither rule deals with this case — the logical
incompleteness in our business rules reveals itself again.

Progress Corticon: Rule Modeling: Version 6.3 265

Chapter 11: Logical analysis and optimization

Before you can deal with the logical problems discovered here, let's build a Ruletest in Studio that includes all
four test cases in the preceding figure.

Figure 196: Inputs and outputs of the four test cases

Input Dukpuk
= E Applicant [1] EI E Applicant [1]
=] age[45] = age [45]
P E srmioker [true] ------ E riskR ating [high risk]
EI E fpplicant [2] P e E amaker [true]
P E age [35] El @ Applicant [2]
L L smoker [False] = age [35]
= E Applicant [3] 1 B == riskRating [low risk]
P -] age [65] o smoker [False]
L e] smoker [true] E'"E Applicant [3]
EI--@ Applicant [41 0 e =] age [£5]
...... E age [75] ; E riskRating [high risk]
------ E srnoker [False] E srnoker [true]
EI--E Applicant [4]
...... E age [75]

------ E srmoker [False]

-
Fule Skatements m\

Severity | Message | Entity I
Info Applicants 55 or wounger are low risk, Applicant[1]
YW arning applicants who smoke are high risk: Applicant[1]
Info Applicants 55 ar wounger are low risk Applicant[2]
YW arning applicants who smoke are high risk Applicant[3]

Let's look at the test case results in the figure above. Are they consistent with your expectations? With a minor
exception in case #1, the answer is yes. In case #1, ri skRat i ng was assigned the value of hi gh. But, also
notice the rule statements posted: case #1 produced two messages which indicate that both the age rule and
the smoker rule fired as expected. But, because ri skRat i hg can hold only one value, the system

non-deterministically assigned it the value of hi gh.

So, if using test cases works, what is wrong with using it as part of your Analysis methodology? Let's look at
the assumptions and simplifications made in the previous example:

1. There are just two rules with two Conditions. Imagine a rule pattern comprising three Conditions — our simple
2-dimensional table expands into three dimensions. This may still not be too difficult to work with because
some people are comfortable visualizing in three dimensions. But, what about four or more? It is true that
large, multi-dimensional tables can be “flattened” and represented in a 2-D table, but these become very
large and awkward very quickly.

2. Each of the rules contains only a single Conditional parameter limited to only two values. Each also assigns,
as its Action, a single parameter which is also limited to just two values.

266

Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

When the number of rules and values becomes very large, as is typical with real-world business decisions, the
size of the Cross Product rapidly becomes unmanageable. For example, a set of only six Conditions, each
choosing from only ten values produces a Cross Product of 10°, or one million combinations. Manually analyzing
a million combinations for conflict and incompleteness is tedious and time-consuming, and still prone to human
error.

In many cases, the potential set of cases is so large that few project teams take the time to rigorously define
all possibilities for testing. Instead, they often pull test cases from an actual database populated with real data. If
this occurs, conflict and incompleteness may never be discovered during testing because it is unlikely that
every possible combination will be covered by the test data.

Validate and test Rulesheets in Corticon Studio
Now, having demonstrated how to test rules with real cases (as performed in Inputs and outputs of the four

test cases) as well as having discussed two manual methods for developing these test cases, it is time to
demonstrate how Corticon Studio performs conflict and completeness checking automatically.

How to expand rules

Look at this table:

Figure 197: Rule 1 expected outcome

condition ‘ Smoker (smoker = true) ‘ Non-Smoker (smoker = false)

Age > 55

Then look at this Rulesheet:

Figure 198: Simple Rules for Profiling Insurance Policy Applicants

L Policwspplicant.ers X

Conditions 0 1 2
a | Applicant.age =55 -
b Applicant. smoker - T
C
d

Actions 1 |

Post Message(s) 1 EA
& Applicant. riskP.ating o risk! "high risk!
B

Cverrides

D Rule Skatements &3 | Rule Messages

Ref 1D Post Alias Teuk
1 Info Applicant Applicants 55 or younger are low risk,
a W arning Applicant applicants who smoke are high risk

Progress Corticon: Rule Modeling: Version 6.3 267

Chapter 11: Logical analysis and optimization

Rule 1 (the age rule) is a combination of two subrules; an age value was specified for the first Condition but
did not specify a smoker value for the second Condition. Because the smoker Condition has two possible
values (t r ue and f al se), the two subrules can be stated as follows:

1. Applicants aged 55 or younger AND who do not smoke are assigned a risk rating of low risk

2 Applicants aged 55 or younger AND who do smoke are assigned a risk rating of low risk

Corticon Studio makes it easy to view subrules for any or all columns in a Rulesheet. By clicking the Expand

Rules @ button on the toolbar, or double-clicking the column header, Corticon Studio displays subrules for
any selected column. If no columns are selected, then all subrules for all columns are shown. Subrules are
labeled using decimal numbers: rule 1 below has two subrules labeled 1.1 and 1.2. Subrules 1.1 and 1.2 are
equivalent to the upper left and upper right cells in Rule 1 Expected Outcome.

Figure 199: Expanding rules to reveal components

| E!{l bl | R)

Conditions 1] 1l 1.2 2.1 2.2
a | Applicant.age - <=55 <=55 <=55 =55
b aApplicant.smoker - T F T T
c
d
Actions 4 I
Post Message(s) = = =
A Applicant.riskRating low risk! lowrisk ‘highrisk' ‘high risk'
B
Overrides
L) Rule Statements 23 _Rule Messages
Ref ID Post Alias Text
1 Info Applicant Applicants 55 or younger are low risk
2 ‘Warning applicant &pplicants who smoke are high risk

As pointed out before, the outcome is the same for each subrule. Because of this, the subrules can be
summarized as the general rules shown in column 1 of Simple Rules for Profiling Insurance Policy Applicants.
The two subrules collapse into the rules shown in column 1. The dash character in the smoker value of column
1 indicates that the actual value of smoker does not matter to the execution of the rule. It will assignr i skRat i ng
the value of | owno matter what the smoker value is (as long as age <= 55, satisfying the first Condition).
Looking at it a different way, only those rules with dashes in their columns have subrules, one for each value

in the complete value set determined for that Condition row.

268

Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

The conflict checker

With the two rules expanded into four subrules, most of the Cross Product is displayed. Click the Check for
Conflicts ﬁ button in the toolbar.
Figure 200: Conflict revealed by the Conflict Checker

B @] B R E aa

Conditions 1] 1.l 1.2 &l 2.2
a | Applicant.age - <=55 =155 <=55 =55
b Applicant.smoker - T F T T
C
d
Actions 4 I
Post Message(s) = & = =
A Applicant.riskRating lows risk' lowrisk ‘highrisk' ‘high risk
B
Overrides
[Rule Statements £3 _Rule Messages
Ref 1D Post blias Text
1 Info Applicant Applicants 55 or younger are low risk
2 Warning &pplicant applicants who smoke are high risk

Note: The mechanics of confict checks are described in the Tutorial: Basic Rule Modeling topic "Analyze rules.

Note: Refresher about conflict discovery and resolution: On a Rulesheet, click Check for Conflicts &

and then expand the rules by clicking Expand Rules ‘E Expansion shows all of the logical possibilities for
each rule. To resolve conflict, either change the rules, or decide that one rule should override another. To do
that, in the Overrides row, at each column intersection where an override is intended, select the one or more
column numbers that will be overridden when that rule fires. Click Check for Conflicts again to confirm that
the conflicts are resolved.

In this topic, the intent is to correlate the results of the automatic conflict check with the problems we identified
first with the flowchart method, and then later with test cases. Subrules 1.1 and 2.1, the subrules highlighted
in pink and yellow in Figure 200: Conflict revealed by the Conflict Checker on page 269, correspond to the
intersection of column 1 and row 1 of Rule 2 Expected Outcome or test case #1 in Test Cases Extracted from
Cross Product. But note that Corticon Studio does not instruct the rule writer how to resolve the conflict; it alerts
the rule writer to its presence. The rule writer, ideally someone who knows the business, must decide how to
resolve the problem. The rule writer has two basic choices:

Progress Corticon: Rule Modeling: Version 6.3 269

Chapter 11: Logical analysis and optimization

1. Change the Actions for one or both rules. You could change the Action in subrule 1.1 to match 2.1 or vice

versa. Or, you could introduce a new Action, say ri skRati ng =

nmedi um as the Action for both 1.1 and

2.1. If either method is used, then the result will be that the Conditions and Actions of subrule 1.1 and 2.1
are identical. This removes the conflict, but introduces redundancy, which, while not a logical problem, can
reduce processing performance in deployment. Removing redundancies in Rulesheets is discussed in the
How to optimize Rulesheets on page 290 topics.

2. Use an Override. Think of an override as an exception. To override one rule with another means to instruct
the rules engine to fire only one rule even when the Conditions of both rules are satisfied. Another way to
think about overrides is to refer back to the discussion surrounding the flowchart in Flowchart with two
dependent Rules. At the time, it was unclear which decision should execute first. No priority was declared
in the rules. But, it made a big difference how our flowchart was constructed and what results it generated. To
use an override here, select the number of the subrule to be overridden from the drop-down box at the
bottom of the column of the overriding subrule, as shown circled in the following figure. This is expressed
as “subrule 2.1 overrides 1.1”. It is incorrect to think of overrides as defining execution sequence. An override
does not mean “fire rule 2.1 and then fire rule 1.1.” It means “fire rule 2.1 and do not fire rule 1.1”.

Figure 201: Override entered to resolve conflict

Q- |#|B-|O-F-|v B MBEBPB EH S6.
Conditions 0 1.1 1.2 2.1 2.2
a | Applicant.age <=55 =55 =55 =55
b Applicant.smoker T F T T
c
d
Actions 4
Post Message(s) = = =] =
A Applicant.riskRating 'lowy risk’ Tow risk | highrisk' | high risk
B
Overrides
L] Rule Statements &2 -H“‘n__ﬂule Messages
Ref D Post Alias Text >
1 Info applicant applicants 55 or younger are low risk
2 Warning Applicant applicants who smoke are high risk

An override is essentially another business rule, which should to be expressed somewhere in the Rule Statements
section of the Rulesheet. To express this override in plain English, the rule writer might choose to modify the

rule statement for the overridden rule:

are assigned a high risk rating.

1. Applicants aged 55 or younger are assigned a low risk rating unfess they smoke, in which case they

This modification successfully expresses the effect of the override.

270

Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

If you are ever in doubt as to whether you have successfully resolved a conflict, click the Check for Conflicts
button again. The affected subrules should not highlight as you step through any remaining ambiguities. If all
ambiguities were resolved, then you see the following window:

Figure 202: Conflict Resolution Complete

Corticon Studio E |
L.
‘!ll) Mo conflicks detected

(84

Note: How does one rule override another rule? To understand overrides, the first concept to learn is
condition context. The condition context of a rule is the set of all entities, aliases, and associations that are
needed to evaluate all the conditional expressions of a rule. The second concept is the override context. The
override context is defined using set algebra. The override context of two rules is the intersection of the two
rule’s condition contexts. To evaluate the override, the set of entities that fulfill the overriding rule’s conditions
are trimmed to the override context and recorded. Before the conditions of the overridden rule are evaluated,
the entities that are part of the override context are tested to determine if they recorded; if so, then the rule is
overridden, and processing of the rule with those entities stopped. If the override context is empty, then any
execution of the overriding rule will stop all executions of the overridden rule.

Use overrides to handle conflicts that are logical dependencies

Overrides can be used for more than just conflicting rules. While the basic use of overrides is in cases where
rules are in conflict to allow the modeler to control execution, it is not the only use. The more advanced usage
applies cases where there is a logical dependency—cases where a rule might modify the data so that another
rule can also execute. This type of conflict is not detected by the conflict checker.

Progress Corticon: Rule Modeling: Version 6.3 271

Chapter 11: Logical analysis and optimization

Consider a simple Cargo Rulesheet:

Conditicns] 1 2
a Cargowolume 100 200
b

Acticns 1 L)

Post Message(s)
A | Cargowvolume 200 150
]

Ohverrides

When tested, the first rule is triggered, and its action sets a value that triggers rule 2:

Input Output
4 H Cargo [1] 4 | Cargo [1]
== container == container
=) yolume [100] = volume [150]
= weight = weight
4 H Cargo [2] a4 | Cargo [2]
== container == container
= yolume [200] = volume [150]
= weight = weight

The Ruletest result shows that the value set in the first rule's action modified the data so that the change in the
condition's value triggered the second rule. If this effect is not what is intended, an override can be used. The
use of an override here ensures that the modification of data will not trigger execution of the second rule; they
are mutually exclusive (mutex). When an override is set on rule 1 that specifies that, if it fired, it should skip
rule 2...

Conditions 0 1 2
a Cargowvolume 100 200
b
Actions 1 m
Post Message(s)
A | Cargowvolume 200 150
R
Crwverrides
.. the rules produce the preferred output:
Input Cutput
4 = Cargo [1] 4 =] Cargo [1]
==| container ==| container
=] volume [100] = volume [200]
= weight = weight
4 = Cargo [2] 4 =] Cargo [2]
==| container ==| container
= volume [200] = volume [150]
=] weight =] weight

If these rules were re-ordered, then the override would be unnecessary.

Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

The completeness checker

When rules are expanded, check for completeness by correlating results with the previous manual methods

of logical analysis.

Note: The mechanics of completeness checks are described in the Tutorial: Basic Rule Modeling topic "Analyze

rules.

Clicking the Check for Completeness ﬁ button, the message window is displayed:

Figure 203: Completeness Check message window

Corticon Studio m |

y Completeness check has added 1 missing scenarios which have been automatically compressed in to 1 non-overlapping columns.

After clicking OK to dismiss the message window, notice that the Completeness Check produced a new column

(3), shaded in green:

Figure 204: New rule added by completeness check

(% polcyappicant.ers %

Conditions 1l 1.1 1.2 2.1 2.2
a Applicant.age - <= 55 <=55 <=55 =55
b Applicant.smoker - T F T T
C
d
Actions 4
Post Message(s) = = = =
A Applicant.riskRating 'low risk’ low risk! | highrisk' | ‘high risk!
B
Cwverrides 1.1
=
D Rule Statements &3 Rule Messages
Ref 10 Post alias Text
1 Info applicant Applicants 55 or wounger are low risk
2 Warning applicant Applicants who smoke are high risk
Progress Corticon: Rule Modeling: Version 6.3 273

Chapter 11: Logical analysis and optimization

This new rule, the combination of age>55 AND snoker =f al se corresponds to the intersection of column 2
and row 2 in Rule 2 expected outcome and test case #4 in Test cases extracted from Cross Product. The
Completeness Checker has discovered the missing rule! To do this, the Completeness Checker employs an
algorithm that calculates all mathematical combinations of the Conditions' values (the Cross Product), and
compares them to the combinations defined by the rule writer as other columns (other rules in the Rulesheet).
If the comparison determines that some combinations are missing from the Rulesheet, then these combinations
are automatically added to the Rulesheet. As with the Conflict Check, the Action definitions of the new rules
are left to the rule writer. The rule writer should also remember to enter new plain-language Rule Statements
for the new columns so it is clear what logic is being modeled. The corresponding rule statement might look
like this:

[2. An applicant older than 55 who does not smoke is profiled as medium risk |

Automatically determine the complete values set

As values are manually entered into column cells in a Condition row, Corticon Studio automatically creates
and updates a set of values, which for the given datatype of the Condition expression, is complete. This means
that as you populate column cells, the list of values in the drop-down lists you select from will grow and change.

In the drop-down list, you will see the list of values you entered, plus null if the attribute or expression can have
that value. But this list displayed in the drop-down is not the complete list. Corticon Studio maintains the complete
list but only shows you the elements that you manually inserted.

This automatically generated complete value list feeds the Completeness Checker with the information it needs
to calculate the Cross Product and generate additional “green” columns. Without complete lists of possible
values, the calculated Cross Product itself will be incomplete.

Automatically compress the new columns

An important aspect of the Completeness Checker's operation is the automatic compression it performs on the
resulting set of missing Conditions. As you can see from the message displayed in Completeness Check
Message Window, the algorithm not only identifies the missing rules, but it also compresses them into
non-overlapping columns. Two important points about this statement:

1. The compression performed by the Completeness Checker is a different kind of compression from that
performed by the Compress Tool introduced in "How to optimize Rulesheets" in the Corticon.js Rule Modeling
Guide. The optimized columns produced by the Completeness Check contain no redundant subrules (that
is what non-overlapping means), whereas the Compression Tool intentionally injects redundant subrules
in order to create dashes wherever possible. This creates the optimal visual representation of the rules.

2. The compression performed here is designed to reduce the results set (which could be extremely large)
into a manageable number while simultaneously introducing no ambiguities into the Rulesheet (which might
arise due to redundant subrules being assigned different Actions).

274 Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

Handle limitations of the completeness checker

The Completeness Checker is powerful in its ability to discover missing combinations of Conditions from your
Rulesheet. However, it is not smart enough to determine if these combinations make business sense or not.
The example in the following figure shows two rules used in a health care scenario to screen for high-risk
pregnancies:

Figure 205: Example prior to completeness check

erLimitations.ers X

Conditions 0 1 z
a |Patient.gender ‘Female’' ‘female’'
b Patient.age <=4 =40
¢ Patient.pregnant T T
d

Actions 1| |

Post Messageis) | EA
& Patient.riskFactor ‘normal ‘elevated
5]

Cwerrides

D Rulz Statements &3 | Rule Messages

Ref 1D Post Alias Text
1 Info Patient | Pregnant patients age 40 and wounger are assigned a risk Fackor of normal risk,
z Warning Patient | Pregnant patients older than 40 are assigned a risk Factor of elevated risk.

Now, click on the Completeness Checker:

Figure 206: Example after completeness check

Zonditions 1] 1 z 3 4
a |Patient.gender - ‘fermnale' Femnale' <= 'femalg' ‘Fermale'
b Patient.age - =40 =40 - -
c |Patient.pregnant = T T = F
d
Actions 4
Post Message(s) = =
& Patient.riskFactor 'narmnal ‘elevated'
B
Crverrides
=
D Rule Statements &3 Rule Messages
Ref ID Past Alias Teuxk
1 Info Patient Pregnant patients age 40 and wounger are assigned a risk Factor of normal risk,
z W arning Patient Pregnant patients older than 40 are assigned a risk Factor of elevated risk
[Progress Corticon Studio il

Ll
\IJ) Completeness check has added & missing scenarios which have been automatically compressed in to 2 non-overlapping colurmns,

Progress Corticon: Rule Modeling: Version 6.3 275

Chapter 11: Logical analysis and optimization

Notice that columns 3-4 were automatically added to the Rulesheet. But also notice that column 3 contains
an unusual Condition: gender <> f enal e. Because the other two Conditions in column 3 have dash values,
it contains component or subrules. By double-clicking column 3's header, its subrules are revealed:

Figure 207: Non-female subrules revealed

3.1 3.2 3.3 3.4
<> 'Female’ <> 'Temale’ <> 'female’ <= 'female’
<= 40 <= 40 = 40 = 40
T F T F

Because our Rulesheet is intended to identify high-risk pregnancies, it would not seem necessary to evaluate
non-female (that is, male) patients. And if male patients are evaluated, then the scenarios described by subrules
3.1 and 3.3—those scenarios containing pregnant males—are unnecessary. While these combinations may
be members of the Cross Product, they are not combinations that can occur in real life. If other rules in an
application prevent combinations like this from occurring, then subrules 3.1 and 3.3 may also be unnecessary.
On the other hand, if no other rules catch this faulty combination earlier, then you may want to use this opportunity
to raise an error message or take some other action that prompts a re-examination of the input data.

Renumber rules

Assume that subrules 3.1 and 3.3 are impossible, and so they can be ignored. However, if you decide to keep
subrules 3.2 and 3.4 and assign Actions to them. For this example, violation messages will be posted.

However, when you try to enter Rule Statements for subrules 3.2 and 3.4, you will discover that Rule Statements
can only be entered for general rules (whole-numbered columns), not subrules. To convert column 3, with its
four subrules, into four whole-numbered general rules, select Rulesheet >Rule Column(s)>Renumber Rules
from the Studio menubar.

Figure 208: Sub-rules renumbered and converted to general rules

Zonditions 1] 1 z 3 4 5] 7
a Patient,gender - ‘female' | 'female' | == female' <= 'female' <> 'Temale' <= 'female' 'Female'
b Patient.age - <= 40 =40 <= 40 <= 40 =40 =40 -
c Patient.pregnant o T T T F T F F
d
Ackions 4
Posk Messageis) = =
& Patient, riskFackor normal’ | elevated'
B
Overrides
=
|=] Rule Statements &3 Rule Messages
Ref 1D Post Alias Teuxk
1 Info Patient Pregnant patients age 40 and wounger are assigned a risk Fackor of normal risk,
g ‘W arning Patient Pregnant patients older than 40 are assigned a risk Factor of elevated risk,

Now that the columns are renumbered, Rule Statements can be assigned to columns 4 and 6, and columns 3
and 5 can be deleted or disabled (if you want to do so).

276

Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

When impossible or useless rules are created by the Completeness Checker, we recommend disabling the
rule columns rather than deleting them. When disabled, the columns remain visible to all modelers, eliminating
any surprise (and shock) when future modelers apply the Completeness Check and discover missing rules
that you had already found and deleted. And, if you disable the columns, be sure to include a Rule Statement
that explains why. See the following figure for an example of a fully complete and well-documented Rulesheet.

Figure 209: Final Rulesheet with impossible rules disabled

|7 Completenesscheckerlinitations.ers X Y

Conditions 1] 1 z 3 4 5] 7
a Patient.gender - female' | fermale' | <= female' <= 'female’ <= female’ == 'female’ ‘Female'
b Patient.age = <= 40 =40 <= 40 =40 =40 =40 -
¢ Patient.pregnant - T T T F T F F
d

Actions 4

Post Messageis) = = = = =
A Patient.riskFactor normal' | 'elevated'
B

Orverrides

=
|=] Rule Statements 23 Rule Messages

Ref ID Post Alias Texk
1 Info Patient Pregnant patients age 40 and wounger are assigned a risk Factor of normal risk,
z Warning Patient Pregnant patients older than 40 are assigned a risk factor of elevated risk,
{4,686} W arning Patient Mon-pregnant, non-Females not considered by this decision
13,5} Violation Patient Pregnant non-Females are not possible; these rules have been disabled
7 Warning Patient Mon-pregnant Females nok considered by this decision

Let the expansion tool work for you with tabular rules

Business rules, especially those found in operational manuals or procedures, often take the form of tables.
Take for example the following table that generates shipping charges between two geographic zones:

Matrix to Calculate Shipping Charges per Kilogram
From/To Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Zone 1 $1. 25 $2. 35 $3. 45 $4.55 $5. 65
Zone 2 $2. 35 $1. 25 $2. 35 $3. 45 $4. 55
Zone 3 $3. 45 $2. 35 $1. 25 $2. 35 $3. 45
Zone 4 $4. 55 $3.45 $2.35 $1. 25 $2.35
Zone 5 $5. 65 $4. 55 $3. 45 $2. 35 $1. 25

Progress Corticon: Rule Modeling: Version 6.3 277

Chapter 11: Logical analysis and optimization

In the following figure, a simple Vocabulary with which to implement these rules was built. Because each cell
in the table represents a single rule, the Rulesheet contains 25 columns (the Cross Product equals 5x5 or 25).

Figure 210: Vocabulary and Rulesheet to implement matrix

ol = i
] Rule Vocabulary 53 B m_

‘{E = Conditions 1] 1
Manifest. sendingAddress -
Manifest. receivingdddress -

=l [:I manifest
=] Manifest

- rereivingdddress

o cendingaddress

""" == chipCharge

[B B i 1]

Ackions 4
Post Message(s)
& Manifest,shipCharge

Rather than manually create all 25 combinations (and risk making a mistake), you can use the Expansion Tool
to help you do it. This is a three-step process. Step 1 consists of entering the full range of values found in the
table in the Conditions cells, as shown:

Figure 211: Rulesheet with Conditions automatically populated

5 anifest.crs X WY

Conditions 1] 1
a | Manifest,sendingAddress - {'Fone 1', Fone 2', Fone 3', Fone 4, Fone 5'}
b Manifest.receivinghddress - {'Zone 1', Fone 2', Fone 3', Fone 4, Fone 5'}
C
d

Actions 4 |

Post Messagels)
& Manifest,shipCharge

Now, use the Expansion Tool to expand column 1 into 25 non-overlapping columns. You now see the 25
subrules of column 1 (only the first ten sub-rules are shown in the following figure due to page width limitations
in this document):

Figure 212: Rule 1 expanded to show sub-rules

5 panifest.ers X WY

Paost Messagels)
8 Manifest.shipCharge

Conditions] 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.5 1.9 1.10
a | Manifest,sendingAddress - Fonel' Fonel' Fone 1'|'Zone ' 'Zone 1 Zone 2 'Zone 2' Fone 2 Fone 2 Fone 2
b Manifest.receivinghddress - Zonel' Zone 2 Zone 3| 'Zone 4| Zone &' Zone 1' Zone 2' Fone 3 Fone 4 Fone §
C
d

Actions 4

278

Progress Corticon: Rule Modeling: Version 6.3

Validate and test Rulesheets in Corticon Studio

Each subrule represents a single cell in the original table. Now, select the appropriate value of shi pChar ge
in the Actions section of each subrule as shown:

Figure 213: Rulesheet with Actions populated

(5 anifest.crs X W

Conditions] 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.5 1.9 1.10
a | Manifest.sendingAddress - Fonel' Zornel' Fone ' 'Zone ' Fone ' Zone 2' Zone 2' Fone 2 Fone 2 Fone 2
b Manifest.receivinghddress - Zonel' ZFone 2 Zone 3| 'Zone 4| Zone &' Zone 1' Zone 2' Fone 3 Fone 4 Fone §
C
d

Actions 4

Post Messagels)
A Manifest.shipCharge 025 035 045 055 065 | 035 0 025 035 045 055
B

In step 3, shown in the following figure, select Rulesheet >Rule Column(s)>Renumber Rules to renumber
the subrules to arrive at the final Rulesheet with 25 general rules, each of which can now be assigned a Rule
Statement.

Figure 214: Rulesheet with renumbered rules

5 enist crs. x N

Conditions 0 1 2 3 4 o & 7 g 9 10
a | Manifest,sendingAddress - Fonel' Fonel' 'Zone 1'|'Zone ' Fone 1" 'Zone 2' 'Zone 2' Fone 2 Fone 2 Fone 2
b Manifest.receivinghddress - Zonel' Zone 2 'Fone 3| 'Zone 4| Fone &' 'Zone 1 'Zone 2' Fone 3 Fone 4 Fone §
C
d

Actions 4

Post Messagels)
A Manifest.shipCharge 025 03 045 055 065 | 035 025 035 045 055
B

For more about this example, see the section "How to optimize Rulesheets”.

Memory management

As you might suspect, the Completeness Checker and Expansion algorithms are memory intensive, especially
as Rulesheets become very large. If Corticon Studio runs low on memory, get details on increasing Corticon
Studio's memory allotment in “Increase Corticon Studio memory allocation" in the Corticon Installation Guide.

Logical loop detection

Corticon Studio has the ability to both detect and control rule looping. This is important because loops are
sometimes inadvertently created during rule implementation. Other times, looping is intentionally introduced
to accomplish specific purposes.

Progress Corticon: Rule Modeling: Version 6.3 279

Chapter 11: Logical analysis and optimization

Test rule scenarios in the Ruletest Expected panel

Using Ruletests, you can submit request data as input to Rulesheets or Ruleflows to see how the rules are
evaluated and the resulting output. You can make Ruletests even more powerful by specifying the results you
expected, and then seeing how they reconcile with the output. Running the test against a specified Rulesheet
or Ruleflow automatically compares the actual Output data to your Expected data, and color codes the
differences for easy review and analysis.

You can establish the expected data in either of two ways:
1. Create expected data from test output:
a. Create or import a request into a Ruletest.
b. Run the test against an appropriate Rulesheet or Ruleflow.
c. Choose the menu command Ruletest > Testsheet > Data > Output > Copy to Expected, or click |
in the Corticon Studio toolbar.
2. Create expected data directly from the Vocabulary:

a. Drag and drop nodes from the Rule Vocabulary window to create a tree structure in the Expected panel
that is identical to the input tree.

b. Enter expected values for the Input attributes as well as the attributes that will be added in the Output
panel.

Note: See the topics in Techniques that refine rule testing on page 284.

How to navigate in Ruletest Expected comparison results

When reviewing the results of a test run, two navigation features help you focus your attention :

* Synchronized scrolling: When you slide the scroll tab in the Ruletest panels, the three columns do not
move together, making alignment of data points difficult. You can set (or unset) synchronized scrolling of
the columns by either right-clicking any of the Ruletest panels and then choosing Scroll Lock, or clicking

s in the Corticon Studio toolbar. After you set the panels to synchronize, all panels will synchronize their
scrolling, even advancing across collapsed entities and associations to stay synchronized on the first
displayed line.

* Navigation to differences: The Ruletest window provides a set of controls that report the number of
discovered differences and controls to navigate across the items. In the upper right of the Ruletest window,
the following image shows that the test results identified six differences:

Differences: 6 {;} G i} {:i'

The four buttons take you to the first, previous, next, and last discovered difference.

Review test results when using the Expected panel

The following topics present a variety of test results.

280 Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

Output results match expected exactly

In the following example, both packagi ng values are shown in bold text, indicating that these values were
changed by the rules. Because all colors are black and the differences count is 0, the Output data is consistent

with the Expected data.

untitled_1

Input
4 & Cargo [1]
==| container
=) yolume [10]
=] weight [1000]

a =

fTuteorial/Tuterial-Done/tuterial_example.erf

Differences;

Output
Cargo [1]
==| container [standard]
=) volume [10]
=] weight [1000]

0

Expected
4 & Cargo [1]
==| container [standard]
=) volume [10]
=] weight [1000]

4 & Cargo [2] 4 & Cargo [2] 4 & Cargo [2]
==| container ==| container [standard] ==| container [standard]
=) yvolume [30] =) volume [30] =) volume [30]
=l weight [600] =] weight [600] =] weight [600]

[Rule Messages 3 = O
Severity Message Entity
{Info Cargo weighing == 20,000 kilos must be packaged in a standard container. Cargoe[2]
Info Cargo weighing <= 20,000 kilos must be packaged in a standard container. Cargoe[l]

Different values output

than expected

In the following example, one difference was identified. The expected value of Car go[2] packaging value is
st andar d, but the Ruletest produced an actual value of over si ze. Because the Output does not match the
Expected data, the text is colored red.

Progress Corticon: Rule Modeling: Version 6.3

281

Chapter 11: Logical analysis and optimization

a= untitled_1
fTutorial/Tuterial-Done/tutorial_example.erf Differences: 1 ffj {B
Input Output Expected
4 H Cargo [1] 4 = Cargo [1] 4 | Cargo[1]
==| container ==| container [standard] ==| container [standard]
=) volume [10] =) volume [10] =] volume [10]
=] weight [1000] =] weight [1000] F=| weight [1000]
4 H Cargo [2] 4 H Cargo [2] 4 H Cargo [2]
== container = container [oversize] == container [standard]
=) volume [30] =) volume [30] =) volume [30]
=] weight [600] =] weight [600] =] weight [600]

L Rule Messages 7 = 0
Severity Message Entity

: Info Carge weighing <= 20,000 kilos must be packaged in a standard container. Carge[2]
Info Cargo weighing <= 20,000 kilos must be packaged in a standard container. Carge[1]

In this example, notice that it is the value determined by the rule that changed, not the input values. Research
indicates that the designer changed the rule for volume from >30 to >=30 thereby triggering the different
container requirement.

Fewer values output than expected

In the following example, Car go[2] has no input attribute values in the Input panel. The rule test failed because
of inadequate input data, and the two missing attributes (and their expected values) are colored green.

282

Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

iz untitled 1
[Tutarial/Tutorial-Done/tutorial_example.erf Differences: 3 {fj Ei i} {fj
Input Output Expected
4 H Cargo [1] 4 H Cargo [1] 4 H Cargo[1]
==| container ==| container [standard] ==| container [standard]
=) volume [10] =) volume [10] =) volume [10]
=] weight [1000] =] weight [1000] =] weight [1000]
4 H Cargo [2] 4 H Cargo [2] 4 H Cargo [2]
==| container ==| container ==| container [standard]
=) volume [30]
m=| weight [600]
L Rule Messages &3 = B
Severity Message Entity
{Info Cargo weighing == 20,000 kilos must be packaged in a standard container. Carge[1]

More values output than expected

In the following example, Car go[3] was added in the Intput, and shown correctly in the Output panel. But,
because it was not anticipated by the Expected panel, it is colored blue as one difference at the entity level.

Input
4 & Cargo[1]
== container
=] volume [10]

4 & Cargo [2]
== container
=] volume [30]

4 = Cargo [3]
== container

STutorial/Tutorial-Doneftuteorial_example.erf

= weight [1000]

=] weight [600]

=] volume [75]
=] weight [22000]

Output
4 = Cargo [1]

== container [standard]

=) volume [10]
= weight [1000]
4 | Cargo [2]

== container [standard]

=) volume [30]
=] weight [600]
4 | Cargo [3]

== container [oversize]

= volume [75]
=] weight [22000]

Differences: 1

OG0

Expected
4 | Cargo [1]
== container [standard]
= volume [10]
= weight [1000]
4 | Cargo [2]
== container [standard]
= volume [30]
= weight [600]

L Rule Messages 531 = B
Severity Message Entity
 Info Carge with volume = 30 cubic meters must be packaged in an oversize container. Cargo[3]
Info Cargo weighing <= 20,000 kiles must be packaged in a standard container. Cargo[2]
Infao Cargo weighing <= 20,000 kilos must be packaged in a standard container, Cargo(l]

Progress Corticon: Rule Modeling: Version 6.3

283

Chapter 11: Logical analysis and optimization

All Expected panel problems

In this example, there are three differences. The designer changed the trigger point for volume so Car go[1]
chose a container that is different from what was previously expected. Car go[3] is on the input and likewise
in the output, but Car go[2] was expected and is missing from the output.

STutorial/Tutorial-Done/tutorial_sxample.erf Differences: 3 (D02 Q)
Input Output Expected
a = Cargo[1] a E Cargo [1] a = Cargo [1]
==| container == container [oversize] == container [standard]
= volume [10] = volume [10] = volume [10]
f=| weight [1000] =] weight [1000] =] weight [1000]
a = Cargo [3] a =] Cargo [3] a4 E Cargo [2]
==| container == container [oversize] = container [standard]
= volume [75] = volume [75] =] volume [30]
=] weight [22000] =] weight [22000] =] weight [600]
B Rule Messages 53 = O
Severity Message Entity
{ Info Cargo with volurme = 30 cubic meters must be packaged in an oversize container, Cargo[l]
Info Cargeo with velume = 30 cubic meters must be packaged in an oversize container. Cargo[3]

Techniques that refine rule testing

The following settings help you tune the results of comparing the output data and expected data so that irrelevant
errors are minimized:

Set selected attributes to ignore validation

When different values are output than what was expected, it could mean that the Expected panel data created
from Output data were reflecting dynamic values such as dates and time. If your Rulesheets use nowort oday,
then the Expected values will evaluate as errors very soon. To handle that situation, you can choose to ignore
validation for selected values in the Expected panel.

Consider the following example:

284 Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

The selected attribute in this test has no input value and no expected value:

Input Output Expected
4 = Customer [1] 4 = Customer[1]
=] age [57] =] age [57]
=] cmoker [true] ==| cmoker [true]
4 4— policy (Policy] [1] a4 4— policy (Policy) [1]
=] category [Life] = category [Life]
= coverage =l coverage
=| effective_date = effective_date
= id = id
= newlyCreated [true] = newlyCreated [true]
= premium [0] =l premium [2220.000000]
= type [Standard] = type [Standard]

When the test runs, it is valid.

Input Output Expected
4 = Customer [1] 4 =] Customer [1] 4 = Customer [1]
=] age [57] =] age [57] =] age [57]
= smoker [true] = smoker [true] = smoker [true]
4 <— policy (Policy) [1] 4 <— policy (Policy) [1] 4 <— policy (Policy) [1]
=) category [Life] =) category [Life] =) category [Life]
= coverage = coverage = coverage
= effective_date = effective_date = effective date
= id = id = id
= newlyCreated [true] = newlyCreated [true] = newlyCreated [true]
= premium [0] = premium [2220.000000] B premium [2220.000000]
=) type [Standard] =) type [Standard] =) type [Standard]

But, when the input gets a value and the output still has no value (or a different value), the test fails.

Input Output Expected
4 = Customer [1] a & Customer [1] a &= Customer [1]
= age [57] = age [57] = age [57]
= crnoker [true) = crnoker [true) == crnoker [true)
a 4— policy (Policy) [1] 4 o— policy (Policy) [1] 4 ¢— policy (Policy) [1]
B=| category [Life] = category [Life] =| category [Life]
= coverage = coverage = coverage
= cffective_date [7/4/2014)] = cffective_date [7/4/2014] = effective_date
= id = id = id
= newlyCreated [true] =] newlyCreated [true] = newlyCreated [true]
= premium [0] = premium [2220.000000] =] premium [2220.000000]
= type [Standard)] = type [Standard) = type [Standard]

Clicking the expected attribute, you can choose Ignore Validation.

Progress Corticon: Rule Modeling: Version 6.3 285

Chapter 11: Logical analysis and optimization

Expected
4 & Custormer [1]
= age[57]
= sroker [true]
4 <— policy (Policy) [1]
=] category [Life]
= coverage
=] effective_r'~*-
= id -.'-fCLIt
= newlyCre: = Copy
= premium 9¢ Delete
= type [Stan

Set to Mull

Ignore Validation

Key Attribute

Collapse All

Expand All

Sort Entities
@'—ﬂ Scroll Lock

Properties

An attribute that will be ignored is greyed out.

Input Output
4 = Customer [1]
= age [57]
== cmoker [true]
4 4— policy (Policy) [1]

= category [Life]
= coverage
=| effective_date [7/4/2014]
= i
=] newlyCreated [true]
= premium [0]
= type [Standard]

Running the same test, the test passes.

Expected
4 = Customer[1]
= age [57]
==| cmoker [true]
4 o— policy (Policy] [1]
= category [Life]
= coverage
]
= id
=] newlyCreated [true]
= premium [2220.000000]

= type [Standard]

286

Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

Input Output Expected
4 = Customer [1] 4 = Customer [1] 4 = Customer[1]
=l age [57] =] age [57] = age [57]
== cmoker [true] ==| cmoker [true] ==| cmoker [true]
a 4— policy (Policy) [1] 4 <— policy (Policy) [1] 4 4— policy (Policy] [1]

= category [Life] = category [Life] = category [Life]
= coverage B=| coverage = coverage
m=| effective_date [7,/4/2014] = effective_date [7/4/2014] Jos]
= id = id = id
=l newlyCreated [true] = newlyCreated [true] =] newlyCreated [true]
= premium [0] =| premium [2220.000000] = premium [2220.000000]
= type [Standard] = type [Standard] = type [Standard]

The setting can revert by selecting the attribute and then choosing Enable Validation.

Expected
4 = Customer [1]
= age [57]
= srnoker [true]
a <— policy (Policy) [1]
=] category [Life]

F=| coverage
= effective_di-
= id <7 Undo
— naﬁl}r[reat- Cut
== premium [{
== type [Stand = Copy
M Delete
Set to Mull

Enahle Validation L})

Sort Entities

@mH Scroll Lock

Properties

Use key attributes to improve difference detection in Ruletests

The execution of Ruletests can, in some cases, erroneously detect differences between the Output and Expected
results. This typically occurs in Rulesheets that add new entities to collections. The unsorted nature of collections
makes it impossible to match the collections in the Output and Expected results with complete accuracy. An
optional feature is available when you encounter problems with test failures due to the randomness of entity
ordering. To avoid this problem, you can specify certain attributes as key attributes that will assist the comparison
algorithm, that the validation linking entities in both panels are chosen based on the key values.

To set a key attribute, right-click the attribute in the Expected panel, and then choose Key Attribute, as shown:

Progress Corticon: Rule Modeling: Version 6.3 287

Chapter 11: Logical analysis and optimization

Expected
4 = Customer [1]
= age [43]
= income [20000]
=l life_risk_rating [Medium]
= long_term_value [660000]
== name [Alpha] :
) net_worth [0 <&~ Undo
= real_estate_ass

4 o— policy (Policy) C?CUt
= category [# =| Copy
== coverage[] 3¢ Delete
= premium [
= type [Stan Set to Mull
4 = Custormer [2] Ignore Validation

=] age [47] Key Attribute

= income 80000

Coll All
=l life_risk_rating ollapse

Expand All
= long_term_val

Sort Entities

== name [Baker]
= net_worth [60(EﬁSchII Lock

= real_estate_ass

Properties

4 o— policy (Policy)=
=l ratenore [Antnl

Key attributes are shown in italic in the current entity as well as all other corresponding entities in the Expected
panel, as shown:

288 Progress Corticon: Rule Modeling: Version 6.3

Test rule scenarios in the Ruletest Expected panel

Expected
4 = Customer [1]
= age[43]
=| income [90000]
= life_rick_rating [Medium]
= long_term_value [660000]
= name [Alpha]
=] net_worth [700000]
==| real_estate_assets [300000]
4 4— policy (Policy) [1]
= category [Auto]
= coverage [500000]
= premium [300.000000]
= type [Standard]
4 = Customer [2]
== age [47]
== income [80000]
=] life_risk_rating [Medium]
= long_term_value [480000]
= name [Baker]
= net_worth [600000]
= real_estate_assets [320000)
a o— policy (Policy) [2]
= rateanrs [Autnl

To remove a key attribute, right-click on the attribute again in the Expected panel, and then choose Key
Attribute to clear the setting.

Setting multiple key attributes attempts to match the full set.

Set how whitespace is handled

Leading or trailing blanks on String values (often called whitespace) might cause imprecise matching to the
output from rules. While the default behavior of trimming whitespaces is often preferred, you can add
comcorticon.tester.trimstringval ues=fal setoyourbrns. properti es file to tell Corticon Studio
to not perform trimming, and thus reduce validation mismatches. The default behavior is apparent when copying
the output to the Expected column, because that action strips whitespaces, and often reveals apparent
mismatches immediately.

Numerical equivalence

When comparing expected results with output results during the validation stage of testing, two values that
have a different number of trailing zeros to the right of the decimal place will validate correctly. However, you
should avoid introducing rounding errors and inconsistent use of big decimal data types because they can
produce unintended differences during comparisons.

Progress Corticon: Rule Modeling: Version 6.3 289

Chapter 11: Logical analysis and optimization

How to optimize Rulesheets

The tools that evaluate completeness and that perform compression can be reviewed to ensure that the decision

service executes them efficiently .

The compress tool

Corticon Studio helps improve performance by removing redundancies within Rulesheets. There are two types

of redundancies the Compress Tool & detects and removes:

1. Rule or subrule duplication. The Compress Tool searches a Rulesheet for duplicate columns (including
subrules that may not be visible unless the rule columns are expanded), and deletes extra copies. Picking
up where we left off in New Rule Added by Completeness Check, let's add another rule (column #4), as
shown in the following figure:

Figure 215: New Rule (#4) added

Conditions
applicant. age
applicant, smoker

[S B 1 1]

Actions
Post Messageis)

[——

& | Applicant. riskR.ating

Crverrides

Z 3 4
= - =55 <=0
T F F
I
EA % B ¥l
o risk! *high risk! ‘medium risk’ o risk!

[Z] Rule Statements 23
Fef iin)

BRIV N R

Fule Messages

Past
Info
Warning
Irfo
Info

Alias

Applicant
Applicant
Applicank
Applicant

Text

Applicants 55 or younger are low risk,

Applicants who smioke are high risk

Applicants 55 or alder who do nak smoke are mediom risk,
Applicants 55 or younger who do not smoke are low risk

290

Progress Corticon: Rule Modeling: Version 6.3

How to optimize Rulesheets

While these four rules use only two Conditions and take just two Actions (an assignment to ri skRat i ng

and a posted message), they already contain a redundancy problem. Using the Expand Tool ﬂ this
redundancy is visible in the following figure:

Figure 216: Redundancy problem exposed

[—

Conditions 0 1.1 1.2 2.1 2.2 & 4
a | Applicant,age = <= 055 <=055 =55 »=55 »=55 =55
b | applicant, smoker - T F T T F F
C
d

Actions 1| |

Post Messageis) % | EA EA %
& Applicant. riskR.ating o risk! o risk! ‘high risk! | ‘high risk! | 'mediurm risk’ | o Fisk!
]

Cwverrides 1.1

=] Rule Statements 23 | Rule Messages

Ref 1D Post Alias Text
1 Irfo Applicank Applicants 55 or younger are low risk,
z Wharning Applicant Applicants who smoke are high risk
3 Info Applicant Applicants 55 or alder who do nok smoke are mediom risk
4 Irfo Applicank Applicants 55 or younger who do nok smoke are low risk,

Clicking the Compress Tool & has the effect shown in the following figure:

Figure 217: Rulesheet after compression

[T——

Conditions 1] 1 2 3
a | Applicant,age - £=E55 - =55
b | applicant, smoker - - T F
C
d
Actions 1 | |
Post Message(s) = =X
& | Applicant, riskR.ating o rish! *high risk! ‘medium risk’
B
Cverrides 1.1

=] Rule Statements 3 | Rule Messages

Ref 10 Post Alias Text
1 Info Applicant Applicants 55 or vounger are low risk,
1 W arming Applicank Applicants who smiake are high risk
3 Info Applicant Applicants 55 or older who do not smoke are medium risk,
3 Info Applicant Applicants 55 or vounger who do not smoke are low risk,

Looking at the compressed Rulesheet in this figure, notice that column #4 disappeared. More accurately,
the Compress Tool determined that column 4 was a duplicate of one of the subrules in column 1 (1.2) and
removed it.

Compression does not, however, alter the text of the rule statement; that task is left to the rule writer.

Progress Corticon: Rule Modeling: Version 6.3 291

Chapter 11: Logical analysis and optimization

It is important to note that the compression does not alter the Rulesheet's logic; it simply affects the way
the rules appear in the Rulesheet: the number of columns, Values sets in the columns, and
such. Compression also streamlines rule execution by ensuring that no rules are processed more than

necessary.

2. Combining Values sets to simplify and shorten Rulesheets. In the Shipping charge example, the
Compress Tool combined Rulesheet columns wherever possible by creating Values sets in Condition
cells. For example, rule 6 in the figure Compressed Shipping Charge Rulesheetis the combination of rule

6 and 8 from Rulesheet with Renumbered Rules.

Figure 218: Compressed shipping charge Rulesheet

C—

Conditions 1] 1 z 3 4 g5 &
a Manifest, sendingdddress - Zonel' 'Zone ' Zone1' 'Zone1'| 'Zone 1 ‘Zane 2'
b Manifest,receivingfddress - Zonel' 'Fone 2 Zone3d 'Zoned' ZoneS {'Zomel', '‘Zone 3t
C
d
Actions 4
Posk Message(s)
A Manifest. shipCharge 0,25 0.35 0.45 0.55 0.65 0.35

Value sets in Condition cells are equivalent to the logical operator OR. Rule 6 therefore reads:

$0.35 per pound to ship.

6. A manifest with a Zone 2 sending address ANDa Zone 1 or Zone 3 receiving address costs

In deployment, the decision service will execute this new rule 6 faster than the previous rule 6 and 8 together.

How to produce characteristic Rulesheet patterns

Because Corticon Studio is a visual environment, patterns often appear in the Rulesheet that provide insight
into the decision logic. After rule writers recognize and understand what these patterns mean, they can often
accelerate rule modeling in the Rulesheet. The Compression Tool is designed to reproduce Rulesheet patterns

in some common cases.

For example, take the following rule statement:

1. An aircraft with max cargo volume greater than 300 anDp max cargo weight greater than
200,000 anp tail number of N123UA must be a 747.

2. Otherwise it must be a DC-10.

292

Progress Corticon: Rule Modeling: Version 6.3

How to optimize Rulesheets

Applying modeling techniques, you might implement rule 1 as:

Figure 219: Implementing the 747 rule

Conditions 0 1 2
a | Aircraft.maxCargoVolume = 300
b | Aircraft.maxCargoWeight = 200000
c | Aircraft.tailMumber ™123UA
d
e
f

Actions €

Post Message(s) EA
K | Aircraft.aircraftType 74T
L
[

Now let's have the Completeness Checker populate any missing columns:

Figure 220: Remaining columns produced by the Completeness Checker

Conditions 2 3 4 5
a |Aircraft. maxCargoVolume = 300 = 300 {== 300, null}
b | Aircraft. maxCargoWeight = 200000 {== 200000, null} -
c | AircrafttailMumber not 'M12304" - -
d
Actions 4
Post Message(s)
K Aircraft.aircraftType
L
Progress Corticon Studio >
Completeness check has added 17 missing scenarios which
Text have been automatically compressed in to 3 non-overlapping
- - - columns.,
k An aircraft with a maximu i
k A Boeing 747 can transpor

Click Expand to fill out the Rulesheet so you can examine the 17 cross-product subrules:

Figure 221: Underlying subrules produced by the Completeness Checker

0 1 2 3.1 3.2 3.3 34 4.1 42 43
= 300 = 300 = 300 = 300 = 300 = 300 <= 300 <= 300 <= 300
= 200000 = 200000 == 200000 <= 200000 null null <= 200000 | == 200000 = 200000

™I23UA" | not 'N123UAY T 'MNI123UA" not 'N123UA" | 'N123UA" | net 'N123UA" T 'NI123UAY | not 'N123UA" | 'N123UA"

The 17 new columns (counting both rules and subrules) include an optimization that combined <> ' N312UA'
and nul | intonot ' N312UA' . So, the number of combinations is 3*3*2 = 18. Subtracting the rule in column
1, 17 new columns were added.

Now, click Compress&.

Progress Corticon: Rule Modeling: Version 6.3 293

Chapter 11: Logical analysis and optimization

There are now just 4 rules. Fill in the Actions for the new columns, DC-10, as shown:

Figure 222: Missing Rules with Actions assigned

Conditions 0 1 2 3 4
a |Aircraft.maxCargoVolume = 300 - - {== 300, null}
b | Aircraft. maxCargoWeight = 200000 - 1= 200000, null} -
c | AircrafttailMumber M1230A not 'M123UA" - -
d
e
.F

Actions <

Post Message(s) i |
K Aircraft.aircraftType 74T ‘oC-10 ‘DC-10 ‘oDC-10
L
M
M
0

Owverrnides

Because the added rules are non-overlapping, you can be sure they won't introduce any ambiguities into the
Rulesheet.

To be sure, click the Conflict Checker ﬂ

Figure 223: Proof that no new conflicts were introduced by the Completeness Check

Conditions 0 1 2 3 4
a | Aircraft.maxCargoVolume > 300 - - {== 300, null}
b Aircraft.maxCargoWeight = 200000 - {== 200000, null} -
c | Aircraft.tailMumber ‘M1230a not 'M1230A" - -
d
e
§ Progress Corticon Studio >

Actions €

pl.jSt MES.SEQEI:SJ - o Mo conflicts detected
K Aircraft.aircraftType TAT'
L
Il
N
]

Cvernides

This pattern tells you that the only case where the aircraft type is a 747 is when max cargo volume is greater
than 300 AND max cargo weight is greater than 200,000 AND tail number is N123UA. This rule is expressed
in column 1. In all other cases, specifically where max cargo volume is 300 or less OR max cargo weight is
200,000 or less OR tail number is something other than N123UA will the aircraft type be a DC-10.

The characteristic diagonal line of Condition values in columns 2-4, surrounded by dashes indicates a classic
OR relationship between the 3 Conditions in these columns. The Compression algorithm was designed to
produce this characteristic pattern whenever the underlying rule logic is present. It helps the rule writer to better
see how the rules relate to each other.

294 Progress Corticon: Rule Modeling: Version 6.3

How to optimize Rulesheets

Compression creates subrule redundancy

Compressing the example in the preceding topic into a recognizable pattern, however, has an interesting side

effect: it introduced more subrules than were initially present. To see this, click Expand E to compress the
Rulesheet as shown:

Figure 224: Expanding Rules following compression

] 1 2.1 31 4.1
= =300 <= 300 <= 300 <= 300
= = 200000 <= 200000 <= 200000 <= 200000
= MIZ3UA | <= NL23UAT 2 M123041 == M1Z304'
1
=
747 ‘Dz-10' ‘Dz-10' ‘Tnz-10¢

You may be surprised to see a total of 54 subrules (columns) displayed (in the preceding figure) instead of the
26 prior to compression. Look closely at the 54 columns, and you will see several instances of subrule
redundancy. Of the 18 sub-rules within the original columns 2, 3 and 4, almost half are redundant (for example,
subrules 2.1, 3.1 and 4.1, shown in the preceding figure, are identical). What happened?

Effect of compression on Corticon Server performance

Why does Corticon Studio have what amounts to two different kinds of compression: one performed by the
Completeness Checker and another performed by the Compression Tool? It is because each has a different
role during the rule modeling process. The type of compression performed during a Completeness Check is
designed to reduce a (potentially) very large set of missing rules into the smallest possible set of non-overlapping
columns. This allows the rule writer to assign Actions to the missing rules without worrying about accidentally
introducing ambiguities.

The compression performed by the Compression Tool is designed to reduce the number of rules into the
smallest set of general rules (columns with dashes), even if the total number of subrules is larger than that
produced by the Completeness Checker. This is important for three reasons:

1. The Compression Tool preserves or reproduces key patterns familiar and meaningful to the rule modeler.

2. The Compression Tool, by reducing a Rulesheet to the smallest number of columns, optimizes the Corticon
rules engine. Smaller Rulesheets (lower column count) result in faster performance.

3. The Compression Tool, by reducing columns to their most general state (the most dashes), improves
Corticon Server performance by allowing it to ignore all Conditions with dash values. This means that when
the rule in column 3 of Missing Rules with Actions Assigned is evaluated by the rules engine, only the max
cargo weight Condition is considered. The other two Conditions are ignored because they contain dash
values. When rule 3 of Missing Rules with Actions Assigned is evaluated after the Completeness Check
is applied but before the Compression Tool, however, both max cargo weight and volume Conditions are
considered, which takes slightly more time. So, even though both Rulesheets have the same number of
columns (four), the Rulesheet with more generalized rules (more dashes - Missing Rules with Actions
Assigned) executes faster because the engine is doing less work.

Progress Corticon: Rule Modeling: Version 6.3 295

Chapter 11: Logical analysis and optimization

Precise location of problem markers in editors

Problems experienced in Corticon editors are easily located when you click each annotated error line in the
Problems view to open the corresponding file in its editor, and then bring the specific location into view and

give it focus.

In the following illustration, the problem location is Rul esheet cell [b3598] of the 2DI MRulesheet.
Double-clicking the problem line opened the file to that precise location, as shown:

i Allocation.erf E AccountDerivations.ers E 2DIM.ers &3

Conditions
Policy.beneficiaryAge
b Policy.applicantAge

o

Actions
Post Message(s)
A Policy.factor

gt Problems &2

3 errors, 1 warning, 0 others
Description ‘
4 @ Errors (3 items)
@ dPositionHiYiel is not a valid call on [t].

@ Invalid number format (possible overflow)

@ One or more referenced Rulesheet contain errors.

4 & Warnings (1 item)

¥ One or more referenced Rulesheet centain errors,

3597 3598 3599 3600 3601 3602 3603
33 34 35 36 37 38 39
76 76 76 76 76 76
€ b
0.4561 0.4585 0461 0.4636 0.4664 0.4694 0.4725
Overrides
v =
Resource Path Location Type
AccountDerivations.ers /Tradehllocation/Rules/Allocation Action row [C] Validation Message Marker
2DIM.ers JExcelMatritImport Rulesheet cell [b3598] Problem
Allocation.erf /TradeAllecation/Rules/Allocation Unknown Validation Message Marker
Allocation.erf /TradeAllecation/Rules/Allocation Unknown Validation Message Marker

This functionality applies to Vocabularies, Rulesheets, Ruleflows, and Ruletests.

Note: When migrating projects from earlier releases, the marker metadata has not been captured. When you
clear the existing problem list, and then perform a full build of the project, the location metadata that enables

this feature will be established.

TestYourself questions for Logical analysis and

optimization

Note: Try this test, and then go to TestYourself answers for Logical analysis and optimization on page 359 to

correct yourself.

A 0N =

or why not?

What does it mean for two rules to be ambiguous?

What does it mean for a Rulesheet to be complete?

Are all ambiguous rules wrong, and must all ambiguities be resolved before deployment? Why or why not?

Are all incomplete Rulesheets wrong, and must all incompletenesses be resolved before deployment? Why

5. Match the Corticon Studio tool name with its toolbar icon

296

Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Logical analysis and optimization

Conflict Checker

Compression Tool

Expansion Tool

Collapse Tool

Conflict Filter E g

Completeness Checker

Explain the different ways in which an Ambiguity/Conflict between two rules can be resolved.
True or False. Defining an override enforces a specific execution sequence of the two ambiguous rules

True or False. A Conditions row with an incomplete values set will always result in an incomplete Rulesheet.

© ® N o

If a Rulesheet is incomplete due to an incomplete values set, will the Completeness Checker detect the
problem? Why or why not?

10. Can a rule column define more than one override?

1. If rule 1 overrides rule 2, and rule 2 overrides rule 3, does rule 1 automatically override rule 3?
12 Are rules created by the Completeness Checker always legitimate?

13. In a rule column, what does a dash (-) character mean?

14. True or False. The Expansion Tool permanently changes the rule models in a Rulesheet. If false, how can
it be reversed?

15. True or False. The Compression Tool permanently changes the rule models in a Rulesheet. If false, how
can it be reversed?

16. If a rule has 3 condition rows, and each condition row has a Values set with 4 elements, what is the size of
the Cross Product?

17. In above question, is it necessary to assign actions for every set of conditions (that is, for every column)?
18. If you do not want to assign actions for every column, what can be done to or with these columns?

19. Which Corticon Studio tool helps to improve Rulesheet performance?

Expansion Tool Compression Tool [Completeness Collapse Tool Squeeze Tool
Checker

Progress Corticon: Rule Modeling: Version 6.3 297

Chapter 11: Logical analysis and optimization

20. How is the compression performed by the Completeness Checker different from that performed by the
Compression Tool?

21. What is wrong with using databases of test data to discover Rulesheet incompleteness?

22 If you expand a rule column and change the Actions for one of the subrules, what will Corticon Studio force
you to do before saving the changes?

23. What does it mean for one rule to subsume another?

298 Progress Corticon: Rule Modeling: Version 6.3

12

Advanced Ruleflow techniques and tools

Ruleflows provide techniques for combining, branching, and graphing. You can also use versioning and effective
dating to precisely manage your Ruleflows when they are compiled into Decision Services.

For details, see the following topics:

How to use a Ruleflow in another Ruleflow
Conditional branching in Ruleflows

How to generate Ruleflow dependency graphs
Ruleflow versions and effective dates

TestYourself questions for Ruleflow versions and effective dates

How to use a Ruleflow in another Ruleflow

You can reduce the complexity and testing of large Ruleflows by breaking a Ruleflow into smaller Ruleflows,
and then constructing the larger Ruleflow from them. The resulting modularity simplifies unit testing and
collaboration.

Consider the following Ruleflow from the Life Insurance sample project:

(et Existing Policies @ Assess Applicant Risk @ Calculate Long Term Value & Generate Policy

Progress Corticon: Rule Modeling: Version 6.3

299

Chapter 12: Advanced Ruleflow techniques and tools

The Ruleflow editor shows the i Sanpl e_pol i cy_pri ci ng. erf canvas with four objects in sequence. The
first three apply the risk assessment rules and the other object is altogether separate Ruleflow file, as you can
see in the object's properties:

i=| Properties 3 T = F
Ruleflow Activity Mame: | Generate Policy | |:|
Ruleflow: |_e'LifeInsurancefiSample_generate_policy.erf | Browse...

Figure 225: A Ruleflow overrides settings on an embedded Ruleflow

A Ruleflow file's Properties provide settings for versioning and effective date stamping of the Decision Service
that will be created. (See the topic Ruleflow versions and effective dates on page 323 for details.) However,
when a Ruleflow is added to another Ruleflow's canvas, it ignores its Ruleflow Properties and takes on
Ruleflow Activity Properties that are local to its role as a component of another Ruleflow, as illustrated.

You can change the name of the Ruleflow on the canvas in this context so that it provides meaning, and you
can add comments. None of these actions change the Ruleflow properties of the original Ruleflow.

The referenced Ruleflow, i Sanpl e_gener at e_pol i cy. er f, contains four Rulesheets, as shown:

Q Create Policy Q Adjust Premium for CA Q Validate Premium Q Finalize Pricing

With these two Ruleflows, each can be updated and tested independently, and -- as long as you ensure that
the Vocabulary stays consistent -- separate teams can collaborate on developing risk rules and policy rules.
That makes it easy to reuse either of these Ruleflows. For example, if policy pricing varies in different markets,
then you can create a new Ruleflow that brings in the same risk assessment rules to provide the data to process
against a modified policy pricing Ruleflow for the other market.

The parent Ruleflow provides its own settings for versioning and effective date stamping of the Decision Service
that will be created, as illustrated:

= Properties 2 ™M =8
Ruleflow Activity Rule Vocabulary: | /Life Insurance/iSample_Vocabulary.ecore Browse...
Rulers & Grid Major Version: 1

Minor Version: 0

Version Label:

Effective Date: | / / =| Time 0 5 0 5 0 5 |AaM w| [Clear
Expiration Date: |/ / | Time 0 5 0 55 0 (&AM = Clear

Total Number of Rules: | 33

4

Note: Deploying Ruleflows within a Ruleflow: When this Ruleflow is deployed, the generated Decision
Service includes the content of both Ruleflows. However, when either of the included Ruleflows changes,
Ruleflows that include one of them are not automatically updated: each must be redeployed to include the
changes.

For more information, see the "Ruleflows" section of the Quick Reference Guide

300 Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

Conditional branching in Ruleflows

In a Ruleflow, you often have steps that should only process an entity with a specific attribute value. You can
accomplish this by using preconditions on a Rulesheet, but the resulting logic, or flow, is difficult to perceive
when looking at the Ruleflow. The following Ruleflow shows a progression of processing from the upper left to
the lower right. But, the rules to decide whether a loan is approved or declined are one-or-the-other, and the
Rulesheets for the US states do not represent a progression because the applicant's state is going to trigger
only one of these Rulesheets to fire its rules:

Q Post Process

Looking at this Ruleflow, the real flow is somewhat hidden. If the Rulesheets for Texas, California, Vermont,
and ldaho each had a precondition such that only matching states were processed, then they represent a set
of mutually exclusive options, not the linear flow depicted in the Ruleflow. You will see how to create a branch
in a Ruleflow like this:

Progress Corticon: Rule Modeling: Version 6.3 301

Chapter 12: Advanced Ruleflow techniques and tools

(o2 State Specific Rules

California
(CA)

Idaho
= (0

Texas

= (TX)
Vermant

= VT)

E Cther States
(other)

And then bring that Ruleflow into another Ruleflow where you will also create a branch for the Declined and
Approved Rulesheets that also might have needed to use preconditions. The completed Ruleflow looks like

this:

@ Pre Process

g State Rules

% EvaluateCreditScore]

© o Loan Status

% Post Process

A branch node can be Rulesheet, Ruleflow, Service Call Out, Subflow, or another Branch container.

Note: Multiple branches can be assigned to the same target activity. These values are shown as a set in the

Ruleflow canvas.

Refresher on enumerations and Booleans

302

Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

Branching can occur on either enumerated or Boolean attribute types. Only these are allowed because they
have a set of known possible values. These possible values can be used to identify a branch. Using branches
in a Ruleflow lets you clearly identify the set of options, or branches, for processing an entity based on an
attribute value. In the example, using branching for the set of state options and whether the loan is approved
or declined makes the flow more apparent. It will also be easier to create and maintain.

This topic covers the general concepts of branching. First, let's review enumerations and Booleans because
they are essential to branching definitions.

When defining elements of a Vocabulary, each attribute is specified as one of seven data types in the Corticon
Vocabulary.

Property Name Property Value
Attribute Mame state
Data Type String

Boolean
Decimal
DateTime
Date
Integer
String
Time

These data types can be extended by Constraints or Enumerations. In this illustration, States are extending
their String type to be qualified as a list of labels and corresponding values that delimit the expected values
yet offer the listed items in drop-down lists when you are defining Ruletests. Notice that the Boolean data type
is not listed as it is implicitly an enumeration.

4 [Z] mortgage Custom Data Types | Databaseﬁ.ccess|
4 = Applicant

= address Data Type Name Base Data Type Enumeration | Constraint.. = Label Walue -

= city States String Yes AK AR

| name . AL ‘AL

Decimal AR AR

B state DateTime AF ‘AT

~€ creditReport (CreditReport) CA A

-€ mortgage (Mortgage) co o'

a4 (= CreditReport cT T

= agency DC ‘oc
= ccore = DE ‘DE E

a = Mortgage FL FL

= amount GA IIG‘a‘II

= approved IHJ ,ELI,

= rate D TSy

1L L

TR w1

The Vocabulary definition then chooses the States data type, a subset of String, as its data type.

Progress Corticon: Rule Modeling: Version 6.3 303

Chapter 12: Advanced Ruleflow techniques and tools

Property Mame
Attribute Mame

Property Value
state

Data Type

States

Boolean
Decimal
DateTime
Date
Integer
String
States
Time

Every attribute that is an enumerated data type or a Boolean is available for branching. For more information,
see Enumerations on page 49.

Example of branching based on a Boolean

In the example, loan status does not pass through being declined on its way to being approved; it is one or the
other. This true/false decision pointin a Ruleflow that contains several Rulesheets provides an easy introduction
to branching.

To create a branch on a Ruleflow canvas for a Boolean attribute:

1.

On the Ruleflow canvas where you want to create a branch, click Branch on the Palette, and then click on
the canvas where you want to place the branch. A Branch container is created with your cursor in the name
label area.

Enter a name such as Loan St at us, and press Enter. You can change the name later.

Drag the Rulesheets Appr oved. er f and Decl i ned. er f from the Project Explorer to the branch
compartment.

On the Branch's Properties tab for Branch Activity, click ‘M. The Select Branch Attributes for
the Ruleflow's Vocabulary identifies three attributes that are candidates for branching (state, agency, and
approved), and the associations that apply to these attributes. For this branch, appr oved is the Boolean
attribute appropriate for loan status. More specific, the attribute preferred is

Appl i cant . nort gage. appr oved. Click on that attribute as shown:

304

Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

G Select Branch Attribute I&

4] mortgage
a4 = Applicant
j==| ctate
a —€ creditReport (CreditReport)
= agency
4 —€ mortgage (Mortgage)
= approved
a | CreditReport
=| agency
a = Mortgage
= approved

L™

5. Click OK.

6. You can define the Boolean branches in a few ways:

* Click the Value drop-down list, as shown:

Value

-_—

true
falze
null
other

Notice that there four choices for a Boolean. The null value is offered because the attribute is not set as

Mandatory so nul | is allowable. The other value is demonstrated below.

* Choose t r ue on the first line, and then choose ot her on the second line.

* Click Check for completeness, as shown, to populate the Value list from the attribute:

Progress Corticon: Rule Modeling: Version 6.3

305

Chapter 12: Advanced Ruleflow techniques and tools

El Properties 532 = ¥ = g

Branch Activity pjame. State Specific Rules @ I
Branching Attribute: Mortgage.approved

Extend to Database [Clear] [Cleanup]

Value Mode

»

m

true -
false Completeness Results Iﬁ

null

SISISIS

:I Completeness Check added 2 missing cases.

'
:

Notice that it does not add ot her to the list. If you sett r ue and ot her as shown above, clicking Check
for completeness would have nothing to add because ot her implies completeness. You can clear
green highlights by clicking the Clear analysis results button.

The values listed are in red until we each one is bound to a node. You can delete any or all but a minimal
number of these lines if you do not have nodes that will handle specific cases. For this example, keep only
true and f al se. Then, click Cleanup to remove lines that no assigned node.

7. In the Branch Activity section, the Node column lets you click a Value line and then use the drop-down
list to choose the appropriate target node for the value. When the request in process matches this value, it
will be passed to this branch in the branch container:

Value Mode
true m
false 7 [ﬁ]
Declined
Approved

When both true and false have nodes specified, the required branches for this rule flow are defined.

8. Connect the incoming and outgoing connections to the branch to complete the flow on the canvas.

306 Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

o Loan Status

Approved

€

Declined

€

Multiple values can direct to the same target node, as shown in these colorized examples, where all the 'not
true' possibilities are assigned to the Declined node:

Progress Corticon: Rule Modeling: Version 6.3 307

Chapter 12: Advanced Ruleflow techniques and tools

e *ColorExample.erf &3 = O
“

E Pre Process

B¢ ldaho

"IF Loan Status
. Approved
"‘b [true)
o Declined
"‘h (false,null, other)
4 }
E Properties &2 ' *(Problems @] Error Log Y = g

*

Branch Activity Mame: Loan Status E} I
Branching Attribute: Applicant.mertgage.approved

Extend to Database ’ Fill] ’ Clear] ’ Cleanupl |
Yalue Mode
true Approved [ﬂ]

false Declined [ﬁ]
(1)

That completes the creation of this Boolean-based branch.

308 Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

Example of branching based on an enumeration

In the example, four US states each have specific rules defined. Processing policy might require graceful
rejection of requests that do not specify one of these four states. And, over time, the included states might
expand or contract. This branch for State Specific Rules will be created as a separate Ruleflow, St at e Rul es,
so that it can be reused in other Ruleflows.

To create a branch on a Ruleflow canvas for an attribute that is an enumerated list:

1. On the Ruleflow canvas, click Branch on the Palette, and then click on the canvas where you want to place
the branch. A Branch compartment is created with your cursor in the name label area.

2. Enteraname such as St at e Speci fi ¢ Rul es, and press Enter.

' ; . . | Browse... | .

3. On the Branch's Properties tab for Branch Activity, click ———'. The Select Branch Attributes for
the Ruleflow's Vocabulary identifies three attributes that are candidates for branching (state, agency, and
approved), and the associations that apply to these attributes.

4. Choose Appl i cant . st at e. The list of all US state abbreviations that is used by this attribute defines the
enumeration in the Vocabulary, as shown:

4 [Z] mortgage Custom Data Types | Database Access
4 =] Applicant
== address Data Type Name = Base Data Type Enumeration |Constraint.. = Label Value -
= city String Ves AK AR
= name Agency String Yes AL AL
= ctate :; I:;I
—£ creditReport (CreditReport) CA A
-€ mortgage (Mortgage) co 'Co
4 = CreditReport T T
=] agency DC ‘nC’
== ccore = DE ‘DE’ 3
4 =] Mortgage FI: IFl:I
== amount GA IIG"'\II
== approved E{ -']j-_\l-
== rate D]
1L i
Note: See Enumerations on page 49 for information about entering or pasting enumeration labels and
values as well importing them from a connected database.
5. Dragthe Rulesheets Cal i f or ni a. er s, | daho. er s, Texas. ers,Vernont. ers,and her States.ers

into the branch compartment on the canvas. You can use Ctrl+click to select multiples and then drag them
as a group. Each Rulesheet is marked with a error flag at this point, as shown:

Progress Corticon: Rule Modeling: Version 6.3 309

Chapter 12: Advanced Ruleflow techniques and tools

i State Specific Rules

Eg H California

B¢ Hldahe

% B Texas

% BVermont

% B Other States

6. On the canvas, click the branch to open its Properties tab. You can define the enumeration branches in a

few ways:

* Click the Value drop-down list. On separate value lines, choose each of the defined states and then

ot her.

* Click Check for completeness, as shown, to populate the Value list from the attribute:

MName: State Specific Rules

Branching Attribute: Applicant.state

Extend to Databasze

[Clear] [Cleanup]

-
Value Node Completeness Results

—

WY
Wy
WI |
WA s
VT
VA
uT

| Completeness Check added 51 missing cases.

T

4 |

Notice that it does not add ot her to the list. If you sett r ue and ot her as shown above, clicking Check
for completeness would have nothing to add because ot her implies completeness. You can clear
green highlights by clicking the Clear analysis results button.

The values listed are in red until each one is bound to a node.

7. Click a state value, then use the drop-down list to select the appropriate node. In the following image, notice
that the California node was assigned to the CA value, so that value turned black. The node on the canvas
cleared the error, and the branching value is indicated in parentheses.

310

Progress Corticon: Rule Modeling: Version 6.3

M= T

ln | »

1

Conditional branching in Ruleflows

Note: An additional node was added to the canvas, but because it is connected to a node, it is not offered
in the drop-down list as a branch.

8. After matching the states with appropriate nodes, the O her St at es Rulesheet is unassigned. To handle
this, a special purpose value is added. At the bottom of the value list, click the down arrow and choose

ot her.

'|~|'|'- '-\l'

ather

Assign the Ot her St at es Rulesheet to that value.

9. After all the nodes are assigned to values, click Cleanup to clear all the unassigned values, as shown:

Progress Corticon: Rule Modeling: Version 6.3 311

Chapter 12: Advanced Ruleflow techniques and tools

& “State Rules.erf 232

£l Properties &3

Branch Activity

MName:

o5 State Specific Rules
|Q Califarnia |
|Q Idaheo |

|@ TEK_ES |—{Q Texas_County

|Q ‘u‘er_rl'n_o nt |

ortner,

|@ Other States

State Specific Rules

Branching Attribute: Applicant.state

Extend to Database

Value

other
VT
TX

D
CA

ey
MNode

Other States

Vermont

Texas

Idaho

California

= 8
“

m

-

The unassigned values that were removed will all be handled by the ot her value's node. If you click Check
for Completeness now, you get that the branch is complete.

That completes the creation of this enumeration-based branch.

Note: Other features of the user interface for defining branch activity are:

Clicking a trashcan button on the right side of a branch line deletes that line.

Clicking the Clear button removes all lines. The branch and components on the canvas are not removed.

The Extend to Database option is offered when the branching attribute is defined to connect to a database
table and columns. The option is enabled in the Vocabulary editor by setting the attribute's Entity property
Datastore Persistent to Yes. Choosing the option when it is available pulls the entities out of the defined
and connected database and then processes the branch; when cleared, it tests against only the payload.

312

Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

Logical analysis of a branch container

A Ruleflow branch container is subject to two significant types of logical errors: completeness and conflicts.

Completeness in a branch

A branch is complete when all of its possible values are accounted for in branch nodes. When first defining
branch activity, instead of selecting each possible value on each line, you can click Check branch for
completeness, as shown:

8 e] (@) [cwr] [ciamn]

[Check branch for completeness,]

This adds all missing values as branch targets.

When branching by a Boolean attribute, three values are added, as shown:

Marme: State Specific Rules @
Branching Attribute: Mortgage.approved

Extend to Database ’J] ’;] ’ Clear] ’ Cleanup]
Value Mode =
ft';I-ll:E [Completeness Results @

rull

Slel=ls)

'
|

Progress Corticon: Rule Modeling: Version 6.3 313

Chapter 12: Advanced Ruleflow techniques and tools

When branching by an enumerated Custom Data Type attribute, each label in the enumeration is added, as
illustrated:

Mame: State Specific Rules @
Branching Attribute: Applicant.state

Extend to Database ’;] ’ Clear l ’ Cleanup]
Value Node [Completeness Results ﬁ n
AK =
AL B i
AR I:' | Completeness Check added 50 missing cases. i
CA i
o i
CT i
DC i -
1 | r_

If the completeness check adds additional branch values, these will be highlighted in green. Clicking Clear
analysis results removes color highlighting:

@[Clear | | Cleanup |

]
[_Clear analysis results.]

==l
Assign nodes in the branch to appropriate listed value values. When you are done, click Cleanup to remove
any branch values which do not have corresponding branch nodes. Unless you specify the keyword ot her as

a branch value and assign it a branch node, your branch would be incomplete; you have not accounted for
some of the possible branch values.

Conflicts in a branch

When branch nodes include logic that creates conflicts or ambiguities, those conflicts are difficult to identify.
You can evaluate whether there are logical conflicts in a branch by clicking Check branch for conflicts, as
shown:

%] ll% | Clear || Cleanup |

[Check branch for conflicts,]

314 Progress Corticon: Rule Modeling: Version 6.3

Conditional branching in Ruleflows

Conflict or ambiguity in a Ruleflow branch container might be:

Different branches modify a shared entity: You are informed of the attribute/association being modified.

A branch accesses the branch entity through an association that is not being filtered by the branch:

For example, the branch is on Pol i cy. t ype while some rules act on Cust orer . pol i cy. t ype. That
creates a conflicting branch node, each of which is highlighted in red, as shown:

E@ DirectAccounts.ers 53

Conditions
a | Policytype
h

Actions
Post Message(s)
.

E@ PartnerAccounts.ers 53

Conditions
a | Custermerpolicy.type

Actions
Post Message(s)

‘& “AccountDistribution.erf &7

= 8

Overrides

Overrides

o3 Accounts
Q DirectAccounts
Q PartnerAccounts

£ Properties 57

Branch Activity Mame:

Comments

Branching Attribute:

Extend to Database

Accounts ||:||

Pelicy.type |Browse... |

|i| |£| |E| | Clear | | Cleanup |

m

Value Mode

Elite DirectAccounts |m|
Preferred DirectAccounts |ﬁ|
Standard Partnerficcounts |ﬁ|

@ .

Note: For more about this type of conflict, see the topic, "How branches in a Ruleflow are processed".

Click the Clear analysis results button to remove the highlights.

How branches in a Ruleflow are processed

Branch activities are executed in the enumeration order as defined in the Vocabulary. Branch activities are not
processed concurrently, they are executed sequentially.

Progress Corticon: Rule Modeling: Version 6.3 315

Chapter 12: Advanced Ruleflow techniques and tools

Branch selection

Data is assigned to each branch before any branch execution occurs, so if an attribute in the branch condition
changes value during a branch activity execution, it will not change the branch assignment. Further downstream,
the new value is presented for subsequent branch activity execution.

Consider the following example. When branching by Cust onmer . snoker , the value of snoker determines
which branch is executed. Changing the value of srmoker within a branch does not alter which branch processes
the customer.

Suppose you had the payload:

Custoner 1 (snoker = "Yes")
Custoner 2 (snoker = "No")

Changing the snoker for Customer 1 from "Yes" to "No" would not, within the current branch condition, cause
it to be passed to the "No" snoker branch. Subsequent branching by snoker would use its current value.

Branching by associated attributes

When associations are involved, the data passed into the branch activity is the full association traversal of the
branch condition. The entity (with possible associated parents) that satisfies the branch condition is passed
into the branch activity. Child associations are available during activity execution. Unrelated entities are part
of the branch payload.

Consider the following example of branching by Cust oner . pol i cy. t ype. All the policies for an order of
some t ype will be passed into the matching branch.

Suppose you had the payload:

- Customer 1
- policy 1 (type="standard")
- policy 2 (type="preferred")
- Custoner 2
- policy 3 (type="standard")
- policy 4 (type="preferred")

The branch for "standard" would be passed:

- Custoner 1

- policy 1 (type="standard")
- Customer 2

- policy 3 (type="standard")

The branch for "preferred" would be passed:

- Custoner 1

- policy 2 (type="preferred")
- Custoner 2

- policy 4 (type="preferred")

Branch consistency

When a root entity is used for the branch and the branch activities use associations, care must be taken to
ensure consistent results in a Ruleflow branch. It is important to use the same association traversals in the
branch Rulesheets as used in the branch attribute. Thus, if the branch Rulesheets reference entities like
Cust oner . pol i cy. t ype and the branch attribute is on entity pol i cy. t ype, the branch attribute in the
branch container properties should be defined as Cust orrer . pol i cy. t ype, notPol i cy. t ype. If the branch
container is the root entity Pol i cy. t ype, then the branch Rulesheets will still allow for references through
the association Cust oner . pol i cy. t ype to Pol i cy entities that did not survive the branch.

Consider the following example of branching on Pol i cy. t ype.

316

Progress Corticon: Rule Modeling: Version 6.3

How to generate Ruleflow dependency graphs

Suppose the payload had Pol i cy. t ype:

- Custoner 1
- policy 1 (type="standard")
- policy 2 (type="preferred")
- Custoner 2
- policy 3 (type="standard")
- policy 4 (type="preferred")

The branch for "standard" would be passed:

- Policy 1 (type="standard")
- Policy 3 (type="standard")

The branch for "preferred" would be passed:

- Policy 2 (type="preferred")
- Policy 4 (type="preferred")

However, in both branches, Cust orer 1 and Cust oner 2 (with associations) will also be available. So, if
rules in those branches reference Cust oner . pol i cy, then the rules will execute on every Cust oner . pol i cy,
not just the branched ones. Because the branch was on Pol i cy, rules that reference Pol i cy only execute

on the branched ones.

How to generate Ruleflow dependency graphs

When working on large Ruleflows, you often want to know the dependencies between the nodes in the Ruleflow.
This can help you determine how best to order the nodes or detect unanticipated dependencies. Dependencies
are identified by the attributes that are set or referenced in the nodes of a Ruleflow. You also often want to
know how one or more attributes are used in a Ruleflow. Ruleflow graphing lets you see the dependencies
and where attributes are used. This is useful for understanding a Ruleflow, debugging problems, and performing

impact analysis when changing a vocabulary.

Progress Corticon: Rule Modeling: Version 6.3

317

Chapter 12: Advanced Ruleflow techniques and tools

With the Ruleflow you want to graph open in its Studio editor, select the Ruleflow menu command Dependency
Graph, as shown:

Ruleflow Window Help

7 Comment...
Properties
Dependency Graph...

Report...

Service Contract...
Export WSDL...
Export X5D...

i 57

The Generate Dependency Graph dialog box opens:
e Generate Dependency Graph

Graph Options
Choose options for generating the graph.

Ol x|
r
Graph Type: Attribute Dependency Graph | Attnbutes..
Output Folder | C:/_6.0 work_dir/Studic/Graphs Browse...

¥ Graph only selected ruleflow nodes

Finish | Cancel

Choose the type of graph you want and the output folder. You can focus the analysis on just nodes that you
selected before opening the dialog, or all nodes on the Ruleflow canvas.

Note: When no objects on the Ruleflow canvas are preselected, the option to graph only selected nodes has
no effect.

Attribute Dependency Graph

An attribute dependency graph shows the attributes that establish dependencies: that is, when a Rulesheet
uses an attribute set by another Rulesheet, the former has a dependency on the latter.

318 Progress Corticon: Rule Modeling: Version 6.3

How to generate Ruleflow dependency graphs

When you just generate a graph right away, all the attributes are included, as in this graph of the advanced

tutorial's Ruleflow:

Progress'Corticon

GRAPH TYPE
Attribute Dependency Graph

PreferredAc count. cumulativeCashBack

ShoppingCart.useCashBack

use__cashBack

ShoppingCart.savings

ShoppingCart.cashBackEarned @

N

ShoppingCart totalAmount

ASSET NAME
MyAdvancedTutorial

Checks

Customer.isPreferredM ember ltem.department

ShoppingCart.checkiD

coupons

i

‘ it
Coupon.description Coupaon.expirationDate

Progress Corticon: Rule Modeling: Version 6.3

319

Chapter 12: Advanced Ruleflow techniques and tools

For large projects, graphs with all the attributes and dependencies can be difficult to work with. You can specify
that only selected attributes are to be analyzed. Click Attributes to open the Attribute Selector dialog box,

as shown:
e Attribute Selector ﬂ
Available Selected
L:_Ig Customer j Preferredccount.cumulativeCashBack

= Marne * ShoppingCart.cashBackEarned

) ShoppingCart.savings
- isPreferredMember ShnEEingCart.tntaIEmnunt
[]---;‘ preferredCard (PreferredAcc ShoppingCart.useCashBack
F-—€ ShoppingCart (ShoppingCar

==l kem

..[m=] barCode™*
== department
.= name j
== price

F-3— shoppingCart (ShoppingCar
=& PreferredAccount

== cardMumber *

/=] cumulativeCashBack

m-—€ customer (Customer)

== ShoppingCart

...J= cashBackEarned -
ol |

OK Cancel

In this illustration, five attributes were selected. Clicking OK returns to the graph options. Clicking Finish
generates the graph.

320 Progress Corticon: Rule Modeling: Version 6.3

How to generate Ruleflow dependency graphs

The graph opens in your default browser, as shown:

Progress'Corficon

GRAPH TYPE ASSET NAME
Attribute Dependency Graph MyAdvancedTutorial

ShoppingCart.useCashBack
Vv

Checks use_cashBack

ShoppingCart.totalAmount ShoppingCart.savings

coupons

ShoppingCart.cashBackEarned

The graph image and its supporting files are saved in the output folder.

PreferredA c count. cumulativeCashBack

Note: When you next generate an attribute graph from the same Ruleflow, it overwrites the existing file unless
you relocate generated files or specify unique output folders.

Logical Dependency Graph

Progress Corticon: Rule Modeling: Version 6.3 321

Chapter 12: Advanced Ruleflow techniques and tools

A logical dependency graph shows the dependency between the Rulesheets in a Ruleflow. Change the graph

type to Logical Dependency Graph, as shown:

e Generate Dependency Graph O ﬂ
Graph Options \
Choose options for generating the graph. L

Graph Type: |L0gica| Dependency Graph

Output Folder: | C:/_6.0 work_dir/Studio/Graphs

[~ Graph only selected ruleflow nodes

Cancel

Finish |

You can set the output folder to your preference and if Ruleflow nodes were selected before opening the dialog
box, the analysis is limited to those nodes. The option to specify attributes is not relevant and not available.

Clicking Finish generates the graph. The following figure is the logical dependency graph for Rulesheets in

the advanced tutorial's Ruleflow:

Progress’Corficon

GRAPH TYPE
Logical Dependency Graph

ASSET NAME
MyAdvancedTutorial

Checks

/

coupons

L]

use__cashBack

The graph image and its supporting files are saved in the output folder.

Note: When you again generate a dependency graph from the same Ruleflow, it overwrites the existing file

unless you relocate generated files or specify unique output folders.

322

Progress Corticon: Rule Modeling: Version 6.3

Ruleflow versions and effective dates

Ruleflow versions and effective dates

You can apply versioning and effective dates so that you can focus requests, and delimit availability of a
Decision Service

Ruleflow version

Major and minor version numbers for Ruleflows are optional. With the Ruleflow open in its editor, select the
menu command Ruleflow > Properties, and then enter the Major Version and Minor Version as integer
values, as shown:

Figure 226: Assigning a version number to a Ruleflow

1 Properties &3 e =
Ruleflow Rule Vecabulary: | /Training/Advanced/lifePolicy.ecore | Browse... |
Rulers & Grid Work Docurment Entity: hd

Major Version: 1

Minor Version: 0

Yersion Label:
Effective Date: | / / =| Time: 0 = 0 & 0 = |AM V| | Clear |
Expiration Date: | / / = Time: 0 3 0 B 0 = |AM V| | Clear |

Total Mumber of Rules: | 3

When you use different version numbers to describe identically named Ruleflows, the Corticon Server keeps
each Decision Service distinguished in its memory, so it can respond correctly to requests for a specified
version. In other words, an application or process can use (or call) different versions of the same Decision
Service depending on certain criteria. The details of how this works at the Server level are discussed in the
topics at "Decision Service versioning and effective dating" in the Deployment Guide.

Version label

You can add a text descriptor to the Ruleflow by typing in the Version Label field. The description stays with
the Ruleflow file, and is packaged in any Decision Services created from the Ruleflow. In the Web Console,
every deployed instance of the Decision Service lists the Version Label on its details page.

Major and minor versions

Major and Minor version designations are arbitrary and can be adapted to fit the version naming conventions
used in different environments. As an example, Ruleflow minor versions can be incremented whenever a
component Rulesheet is modified. Major Ruleflow versions can be incremented when more substantial changes
are made to it, such as adding, replacing, or removing a Rulesheet from the Ruleflow.

Version numbers can be incremented, but not decremented.

For details about how to invoke a Ruleflow by version number, see the topic "Decision Service versioning and
effective dating" in the Deployment Guide.

Progress Corticon: Rule Modeling: Version 6.3 323

Chapter 12: Advanced Ruleflow techniques and tools

Effective and expiration dates

Effective and expiration dateTimes are optional for Ruleflows and can be assigned singly or in pairs. When
you use different effective and expiration dateTimes to describe identically named Ruleflows, the Corticon
Server keeps them straight in memory, and responds correctly to requests for the different dates. In other
words, an application or process can use different versions of the same Ruleflow depending on dateTime
criteria. The details of how this works at the Corticon Server level is described in the Deployment Guide.

Effective and expiration dates can be assigned using the same window as for the version numbers. Clicking
on the Effective Date or Expiration Date drop-down displays a calendar and clock interface, as shown:

Figure 227: Setting Effective and Expiration Dates

Effective Date: I ['I‘ll
' & - 3

Expiration Date: I_

April 2014
SMTWTEFS

1 2@ 4 s
6§ 7 8 91011 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

Total Mumber of Rules: |0

Setting a specific target date for a Ruletest

When you execute a Ruletest against a corresponding Decision Service that is deployed and running on a
Corticon Server that was deployed with effective and expiration dates, the day you are testing the Decision
Service could be impacted by the data constraints. The ability to set a target date lets you execute the test as
though it were sent at a specific date and time. Using this feature enables setting the clock back to see how
past date ranges would have handled a request, as well as setting the clock forward to test deployed Decision
Services in pre-production staging.

To set a version and effective target date for a Ruletest:

1. With the Ruletest in its editor, choose the menu command Ruletest > Testsheet > Select Test Subject.
2. Select the Run against Server tab, select a Server URL, and then click Refresh.

3. Click on a Decision Service in the list.
4

. In the Optional Overrides section, specify the Decision Service's version identity and effective target date
to use for the Ruletest, as shown:

Optional Overrides

Major Version: 1

Minor Version: |

Effective Target Date: |01/29/2016 ~ Time: 0 5 0 5 1 = |AM = ||Clear

5. Click OK. The dialog box closes. The details of the deployed Decision Service and its overrides are displayed
at the top of the Testsheet:

324 Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Ruleflow versions and effective dates

untitled_1

http://localhost:8850//axisTname= Carge, major version=1, effective target date=01,/29/16 12:00:01 AM

6. Run the Ruletest.

The test executes against the specified Decision Service on the selected server using the overrides you entered.

TestYourself questions for Ruleflow versions and
effective dates

Note: Try this test, and then go to TestYourself answers for Ruleflow versioning and effective dating on page
360 to correct yourself.

True or False. If a Ruleflow has an Effective date, then it must also have an Expiration date.
True or False. If a Ruleflow has an Expiration date, then it must also have an Effective date.
True or False. Ruleflow Version numbers are mandatory.

Which Corticon Studio menu contains the Ruleflow Properties settings?

True or False. A Ruleflow Minor or Major Version number can be raised or lowered.

SN S

True or False. Ruleflow Effective and Expiration dates are mandatory.

Progress Corticon: Rule Modeling: Version 6.3 325

Chapter 12: Advanced Ruleflow techniques and tools

326 Progress Corticon: Rule Modeling: Version 6.3

13

Troubleshooting Corticon Studio problems

In addition to being a convenient way to test your Rulesheets with real business scenarios, the Corticon Studio
Ruletest facility is also the best way to troubleshoot rule, Rulesheet, and Ruleflow operations. Corticon Ruletest
are designed to replicate exactly the data handling, translation, and rule execution by Corticon Server when
deployed as a Java component or web service in a production environment.

This means that if your rules function correctly when executed in a Corticon Ruletest, you can be confident
they will also function correctly when executed by Corticon Server. If they do not, then the trouble is most likely
in the way data is sent to Corticon Server — in other words, in the technical integration. This is such a fundamental
tenet of rule modeling with Corticon, we'll repeat it again:

If your rules function correctly when executed in a Corticon Studio, they will also function correctly when
executed by Corticon Server. If they do not, then the trouble is most likely your client application's integration
with or invocation of Corticon Server.

The following methodology will guide your rule troubleshooting and debugging efforts. The basic technique is
known generically as half-splitting or binary chopping. In other words, dividing a decision into smaller logical
pieces, and then setting aside the known, good pieces systematically until the problem is isolated.

This guide is not intended to be an in-depth cookbook for correcting specific problems because, as an expression
language, the Corticon Rule Language offers too many syntactical combinations to address each in any detail.

For details, see the following topics:

* Where did the problem occur

* Use Corticon Studio to reproduce the behavior

* Studio license expiration

* How to compare and report on Rulesheet differences

* TestYourself questions for Troubleshooting rulesheets and ruleflows

Progress Corticon: Rule Modeling: Version 6.3 327

Chapter 13: Troubleshooting Corticon Studio problems

Where did the problem occur

Regardless of the environment the error or problem occurred in, always attempt to reproduce the behavior in
Studio. If the error occurred while you were building and testing rules in Corticon Studio, then you're already
in the right place. If the error occurred while the rules were running on a test or production deployment
environment, then obtain a copy of the Ruleflow (. er f file) and open it, its constituent Rulesheets (. er s files),
and its Vocabulary (. ecor e file) in Studio.

Use Corticon Studio to reproduce the behavior

It is always helpful to build and save known-good Ruletests (. er t files) for the Corticon Rulesheets and
Ruleflows you intend to deploy. A Ruletest known to be good not only verifies that Rulesheet or Ruleflow is
producing the expected results for a given scenario, it also enables you to re-test and re-verify these results
at any time in future.

If you do not have a known-good Ruletest, build one now to verify that the Ruleflow, as it exists right now, is
producing the expected results. If you have access to the actual data set or scenario that produced the error
in the first place, it is especially helpful to use it here now. Run the Ruletest.

Observe constraint violations or severe errors

When you run a Ruletest in Studio, it might produce error messages. Error messages are distinct from Post
messages you specified in Rulesheet Rule Statements to generate info, warning, and violation statements
that are posted by normal operation of the rules.

Constraint violation

A constraint violation indicates that values in the test's attributes are not within numeric constraint ranges or
not included in enumerated lists that were set in the Vocabulary's Custom Data Types. A constraint violation
might look like this:

Figure 228: A Constraint violation in a Ruletest

Severity Message

Viclation An unexpected error occurred in Input Data: com.corticen.cde.ConstraintViclationException: constraint viclation setting Cargowolume to value [-1]

In the example, the constraint is shown, and its violation is marked on the attribute and its entity in the Input
column:
Constraint Expression — Cargo [1]
value »=1 =] volume [-1]
=] weight [100]

Running the test halts at the first constraint violation. The log lists the first constraint exception and its detailed
trace. No response is generated.

You can revise the input to have valid values, or choose to relax the enforcement of such violations through a
setting in the br ns. properti es file, com corti con. vocabul ary. cdt. rel axEnf or cenment =t r ue.

328 Progress Corticon: Rule Modeling: Version 6.3

Use Corticon Studio to reproduce the behavior

When the option is enabled, a response is generated that includes each of constraint violation warnings. For
example:

<Corti conResponse xm ns="urn: Corticon"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
deci si onServi ceNanme="Cargo. ers_nul | _ALL">
<Wor kDocunent s>
<Cargo id="Cargo_id_1">
<wei ght >0</ wei ght >
<vol ume>- 1</ vol ume>
<cont ai ner >st andar d</ cont ai ner >
</ Car go>
</ Wor kDocunent s>
<Messages version="0.0">
<Message post Or der ="cc00000001" >
<severity>Warni ng</severity>
<text>constraint violation setting Cargo.weight to value [0] </text>
<entityReference href="Cargo_id_1" />
</ Message>

< Massages>
</ Corti conResponse>

See How to relax enforcement of Custom Data Types on page 60 for details about constraints and the option
to relax enforcement.

Note: The output example shown reflects the execution properties in a Ruletest output file. If you extract the
same response for a Ruletest from your Studio log when the RULETRACE logging filter is enabled, then you
reveal several additional execution properties that can be helpful in support efforts, but they are otherwise not
meaningful to users.

Severe errors

Some errors indicate problems with how the rules engine is handling the Decision Service: Null Pointer Exception,
Reactor Exception, Fatal Exception. These error conditions are important to resolve as soon as possible.

Immediately capture and save any advanced information in the alert, and then copy and save the logs. You
might want to try closing Corticon Studio and running the Ruletest again. If it reliably fails with a severe error,
package the current project and logs, and then contact support. If you followed the best practice of retaining
offline backups of the project as well as saving your work, you might be able to resume with most-recent backup
in a different project workspace.

Note: Next step in troubleshooting—If you did not encounter constraint violations or severe errors, any other
problems are within your rules. Proceed to Analyzing Test Results. To work around a problem in rules, you
can identify the expression syntax that produces it, and then try to express the logic in a different way. The
Corticon Rule Language is very flexible and usually allows the same logic to be expressed in many different
ways.

Analyze Ruletest results

This section assumes:
* Your Ruletest produced none of the previously mentioned errors, or
* You or Corticon Technical Support identified workarounds that overcame these errors

Does the Rulesheet produce the expected test results? In other words, does the actual output match the
expected output?

Progress Corticon: Rule Modeling: Version 6.3 329

Chapter 13: Troubleshooting Corticon Studio problems

* If so, and you were using the same scenario that caused the original problem, then the problem is not with
the rules or with Studio, but instead with the data integration or Corticon Server deployment.

The Corticon Server log captures errors and exceptions caused by certain rule and request errors. These
log messages are detailed in the Using Corticon Server logs section of the Server Guide.

* If not, the problem is with the rules themselves. Continue in this section.

Trace rule execution

A first step in analyzing results of executing Decision Services is to gain visibility to the rules that fired. With
rule tracing, you can see which rules and Rulesheets fired in processing a work document. There are two
techniques for tracing rule execution:

* Rule trace viewer—See all the actions that took place in a Ruletest with the click of a button. Drill into the
changes and make changes to the source files immediately.

* Rule message metadata—Set up rule messages to expose metadata about selected rules in Studio Tester
as well as with deployed Decision Services.

Note: The following examples use the Advanced Tutorial's Ruleflow as the test subject. The Ruleflow has
three Rulesheets, each with conditional and non-conditional rules. Here is the output of the coupons. ert
Ruletest:

Output
~ =] Customer [1]
= isPreferredMember [true]
= Mame []
w ¢— preferredCard (PreferredAccount) [1]
== cardMumber [12]
== cumulativeCashBack [0.000000]
w ¢— ShoppingCart (ShoppingCart) [1]
= cashBackEarned [1.649800]
=] savings [10.889800]
== totalAmount [71.600200]
= useCashBack [trug]
w ¢— |tem (Item) [1]
== barCode [39-280-12345]
=] department [280]
= name [Filet Mignon]
== price [35.000000]
w ¢— |tem (Item) [2]
== barCode [32-300-23456]
= department [300]
== narme [Beach Towel]
B price [14.950000]
w ¢— |tem (Item) [3]
== barCode [32-285-34567]
=] department [285]
= name [Ginger Ale Case]
== price [12.500000]
w (=] Coupon [1]
=] description [10% off next gas purchase]
=] expirationDate [05/07/22]

330 Progress Corticon: Rule Modeling: Version 6.3

Use Corticon Studio to reproduce the behavior

RULE TRACE VIEWER

You can reduce the time it takes diagnose rule execution problems by efficiently analyzing the Ruletest as it
executes to trace all the rules that fired. Run a Ruletest with the additional functionality of the Rule Trace Viewer
by just clicking a button:

b

Run Test with Rule Trace

The Ruletest runs the test as well a rule trace across all Rulesheets, and then presents the results in the Rule
Trace tab, as shown:

|2 Rule Statements [J Rule Messages [Rule Trace &2

Sequ"ence Acticn Element Old Value Mew Value Assoc.. Location

i Update Attribute |tem (ltem) [3]/department 285 checks : AD

2 Update Attribute [tem (tem) [2]/department 300 checks : AD

3 Update Attribute Item (ltem) [1]/department 280 checks : AD

4 Update Attribute ShoppingCart (ShoppingCart) [1]/totalAmount 82.430000 checks: DO

5 Update Attribute Customer [1]/isPreferredMember true

b Update Attribute ShoppingCart (ShoppingCart) [1]/cashBackEarned 1.643800 coupaons : AD

7 Add Entity Coupen [1] coupons: 3

8 Update Attribute Coupen [1]/expirationDate 05/07/22 coupons: 3

9 Update Attribute Coupen [1]/description 10% off next gas ... coupons: 3

10 Update Attribute preferredCard (PreferredAccount) [1]/cumulativeCashBack 9.240000 10.883800 coupons : BO

1 Update Attribute SheppingCart (ShoppingCart) [1]/totalAmount 82.490000 71.600200 use__cashBack: 1
12 Update Attribute ShoppingCart (ShoppingCart) [1]/savings 10.839200 use__cashBack: 1
13 Update Attribute preferredCard (PreferredAccount) [1]/cumulativeCashBack 10.829300 0.000000 use_ cashBack: 1

The results of a rule trace are dynamic:

Highlight—Click anywhere on a line to highlight that element in the Testsheet output. Click on any item in
the Ruletest to see all the rules related to that element highlighted in the Rule Trace Viewer.

Sort—Click on any column header in the Rule Trace tab to sort the tab content in ascending order. Click
again to sort into descending order.

Locate—Double-click on any line to open the related Rulesheet positioned at the Action line and rule. The
Rulesheet is in editable form so you can make adjustments quickly, and run again to see the effects of

changes.

Note: The Rule Trace Viewer is based on JSON. If you have the Studio property
comcorticon.tester.ccserver. execute. format setto XM (instead of the default, JSON), the Rule
Trace Viewer function is inoperative.

Progress Corticon: Rule Modeling: Version 6.3

331

Chapter 13: Troubleshooting Corticon Studio problems

RULE MESSAGE METADATA

You can expose the Rulesheet and rule for items that you have specified in rule statements, including selected
values as illustrated:

Figure 229: Rule messages when metadata is enabled in Studio

[Rule Messages &3 =0
Severity Message Entity

Info [Checks,2] The customer is a Preferred Cardholder Customer[1]

Info [coupons,2] 52 off next purchase when 3 or more Soda/Juice iterns are purchased in a single visit. ShoppingCart[1]
Info [coupens,3] 10% off next gas purchase when total is over 575, ShoppingCart[1]
Info [coupons,BO] 51.649800 cashBack bonus earned today, new cashBack balance is 510.889800. ShoppingCart[1]
Info [use__cashBack1] cashback.bonus has been deducted from the total, Mew total = 571600200, Today's savings = 510.889800. ShoppingCart[1]

To enable this function, add a line to the br ms. properti es as:
comcorticon.reactor.rul estatenent. netadata=true

After deployment, testing execution of the Decision Service in the Studio and in the Web Console shows that
the metadata is exposed in the response, as shown for the Web Console:

Response

r
1
"severity": "Warning”,
"entityReference™ "ShoppingCar,_id_1",
"text’: "[Checks, 1]Vl need to see your 1D,
" _metadata™: {
"#ype" "#RuleMessage"”

¥

"severity": "Infa",

"entityReference™ "ShoppingCar,id_1",

"text”: "[coupons,BO] $0.179600 cashBack bonus earned today, new cashBack balance is $9.419600.",
" _metadata™: {

"#ype" "#RuleMessage"”

3

While this can be useful in tracing deployment problems, the metadata will remain in production until you shut
off the feature and generate a new decision service.

Identify the breakpoint

To understand why your rules are producing incorrect results, it is important to know where in the Rulesheet
or Ruleflow the rules stop behaving as expected. At some point, the rules stop acting normally and start acting
abnormally; they break. After you identify where the rule breaks, the next step is to determine why it breaks.

An important tool to help identify the breakpoint is the Ruletest’'s message box. By choosing values for Post
and Al i as columns in the Rule Messages window, you can generate a trace or log of the rules that fire during
execution. The message box in a Ruletest displays those messages in the order that they were generated by
Corticon Server. In other words, the order of the messages in the box (top to bottom) corresponds to the order
in which the rules were fired by Corticon Server. While messages in the message box can also be sorted by
severity or entity by clicking the header of those columns, clicking the Message column header will always
sequence according to the order in which the rules fired. Inserting attribute values into rule statements can
also provide good insight into rule operation. But beware; a non-existent entity inserted into a rule statement
prevents the rule from firing, becoming the cause of another failure!

Progress Corticon: Rule Modeling: Version 6.3

Use Corticon Studio to reproduce the behavior

Disable/Enable
Disabling and then re-enabling individual Condition/Action rows, entire rule columns, Filter rows, and even
whole Rulesheets is a powerful way to isolate problems:

* Rulesheet elements - Right-click active Condition or Action row headers, column headers, or Filter row
headers to display a pop-up menu containing enable/disable options. Disabled rows and columns will be
shaded in gray on the Rulesheet.

Figure 230: Rulesheet with Rule Column 2 disabled.

(5 Lntied.ers X W

Canditions 1] 1 z
a | Cargo.weight = 150000 ., 200000 =
b Cargo.volume - - < 300
C
d
Ackions 4
Posk Message(s) = =
A Cargo.packaging Conkainer Pallet
B
Overrides
r’LI Rule Skatements &3 Rule Messages
Ref ID Post Alias Text
1 Info | Cargo Cargo weighing bebween 150,000 and 200,000 pounds must be packaged in a container
z Info | Cargo Zargo with a kotal volume less than 300 cubic wards must be packaged on a pallet

* Ruleflow objects - Select objects on a Ruleflow canvas, and then click the Disable/Enable toolbar button

#

Figure 231: Ruleflow with coupons object disabled

to toggle the disabled objects to dark gray. Redo the action to re-enable the object.

chiecks COoUpons use_cashBack

Be sure to save these changes before running a Ruletest to ensure the changes take effect.

Disable and re-enable Rulesheet elements and Ruleflow objects until the strange or unexpected behavior
stops.

At the breakpoint

At the point at which abnormal behavior begins, what results is the breakpoint rule producing?

Progress Corticon: Rule Modeling: Version 6.3 333

Chapter 13: Troubleshooting Corticon Studio problems

* No results at all: The breakpoint rule should fire (given the data in the Ruletest) but does not. Proceed to
the No Results section.

* Incorrect results: The breakpoint rule does fire, but without the expected result. Proceed to the Incorrect
Results section.

No results

Failure of a rule to produce any results indicates that the rule is telling the rule engine to do something it cannot
do. (This assumes, of course, that the rule should fire under normal circumstances.) Frequently, this means
the engine tries to perform an operation on a term that does not exist or is not defined at the time of rule
execution. For example, trying to:

* Increment or decrement an attribute (using the += or - = operators, respectively) whose value does not exist
(in other words, has a nul | value).

* Post a message to an entity that does not exist, either because it was not part of the Ruletest to begin with,
or because it was deleted or re-associated by prior rules.

* Post a message with an embedded term from the Vocabulary whose value does not exist in the Ruletest,
or was deleted by prior rules.

* Create (using the . new operator) a collection child element where no parent exists, either because it was
not part of the Ruletest to begin with, or because it was deleted or re-associated by prior rules.

* Trying to forward-chain: using the results of one expression as the input to another within the same rule.
For example, if Action row B in a given rule derives a value that is required in Action row C, then the rule
may not fire. Both Actions must be executable independently in order for the rule to fire. If forward-chaining
is required in the decision logic, then the chaining steps should be expressed as separate rules.

Incorrect results in Studio

After the breakpoint rule is isolated, it is often helpful to copy the relevant logic into another Rulesheet for more
focused testing. See the Rule Language Guide to ensure you have expressed your rules correctly. Be sure to
review the usage restrictions for the operators in question.

If, after isolating and verifying the suspicious expression syntax, you are unable to fix the problem, please call
Progress Corticon Technical Support. As always, be prepared to send the product version used, and the set
of Corticon files (. ecore, . ers, . erf,and. ert) that will enable us to reproduce the problem.

Partial rule firing

A Condition/Action rule column might partially fire, meaning Action A is executed but Action B is not. If Action
A cannot execute, then Action B will not execute either, even if there is nothing wrong with Action B by itself.
An Action containing any one of the problems listed above is sufficient to prevent a rule from firing, even if all
other Actions in the rule are valid.

There are two exceptions to this rule:
Nonconditional actions

In the special Nonconditional rule column, column 0, each Action row in column O acts as its own separate,
independent rule, so Action row A may fire even if Action row B does not.

Partial execution of rules with relationships and null attributes

334 Progress Corticon: Rule Modeling: Version 6.3

Use Corticon Studio to reproduce the behavior

When a relationship is null, the rule does not fire. When an attribute is null, and the relationship aspects of the
rule can be evaluated, the rule fires partially: The actions related to the association do fire but the action related
to a null attribute does not. Consider a Rulesheet and test on the Cargo sample where the Ai r cr af t information
is set from its ID, and the total cargo weight computed. If there is no associated Ai rcraft. fli ght Pl an or
Aircraft.flightPlan. cargo in the test, then the rule does not execute (even though those associations
are not referenced in the Rulesheet's Conditions section). However, if the associations exist but the attribute
Aircraft. flightPlan.cargo.vol une is null, then the rule does fire partially. All the Aircraft values are
computed, but the weight is not computed from the null value of the attribute.

How to initialize null attributes

Attributes that are used in calculations must have a non-null value to prevent test rule failure. More specifically,
attributes used on the right-hand-side of equations (that is, an attribute on the right side of an assignment
operator, such as = or +=) are initialized prior to performing calculations. It is not necessary for attributes on
the left-hand-side of an equation to be initialized — they are assigned the result of the calculation. For example,
when you calculate Force=Mass*Acceleration, you must provide values for Mass and Acceleration. Force is
the result of a valid calculation.

Initialization of attributes is often performed in Nonconditional rules, or in rules expressed in Rulesheets that
execute beforehand. That was often because an attribute that was set to Transient mode could not be added
as input to Ruletests. The limitation was removed: You can add Transients to the Input column of a Ruletest.
Then, as stated, you must provide a value to such attributes in their input locations in Ruletests to enable valid
firing of the rule.

How to handle nulls in compare operations

Unless the application that formed the request ensured that a value was provided before submission, one (or
both) of the attributes used in a comparison test might have a null value. You might need to define rules to
handle such cases. An example that describes the workaround for these cases uses the following Vocabulary:

(] Rule Viocabulary &3

=] DateTest
E|J FilingLinit
™ preferredDate
i - theDate
== Person
- theDate

Here are two scenarios:

1. Two dates are passed from the application and one of them is null. When given therule * [| f
FilingUnit.theDate is null] or [[FilingUnit.theDate = Null] and
[FilingUnit.theDate >= Person.theDate]]’, then the appropriate action triggers.

2. In Actions, one date value is set to another date's value that happens to be null. If the date is null, then it is
used in the subsequent Rulesheets in their Conditions section. However, because the value is null, a warning
is generated in the Corticon logs.

Progress Corticon: Rule Modeling: Version 6.3 335

Chapter 13: Troubleshooting Corticon Studio problems

For the first scenario, the logic in subsequent Rulesheets needs to determine whether a value is null, so it can
apply appropriate actions. The following Rulesheet shows that you can avoid the error message by only setting
the preferred date when you have a non-null filing date or person date.

Conditions 1] 1 2 3 4 5
a | Filinglnit, theDate = null T F T F F
b | Person.theDate = null F T T F F
c FilingJnit,thelCate == Person,theDate - - - T F
d
e L
f

Actions q |

Post Messagels) EA i EA % | EA
& | FilingUnit, preferredCate = Filinglnit, theDate
B FilingUnit.preferredDate = Person.theDate
.
(]

Overrides

D Fule Statements &4 L Rule Messages '-:J Matural Language\l = Prnperties\l E_] Histurﬂ

Ref Post Alias Textk
1 Wearning | FilingUnit Filing unit date is null - use person date as the preferred date
z Warning | Person Person date is null - use filing unit date as the prefered date
3 Yinlation | FilingUnit Both dakes are null - unable ko determing preferred date
4 Info FilinglInik Filing data is greater than or equal ko the person date - use filing date
5 Info FilingUnik Filimg date is less than person date - use person date

Note: If null values would prevent subsequent rules from continuing reasonable further processing, then
perhaps validation sheets should be used before rule processing to check the data, and then terminate execution
of the decision if the data is bad. That could be accomplished by setting an attribute that can be tested in the
filter section of subsequent Rulesheets. Then, every subsequent Rulesheet is assured of dealing only with
clean data.

For the scenario where both values being compared are null, you could set the resulting value to a default
value or to null, as shown:

Conditions 0 i 2 3 4 5
a | FilingUnit, theDate = null T F T F F
b | Person.theDate = null F T T F F
c |FilingUnit, theDate == Person.theDate - - - T F
d
Actions 1 |
Post Message(s) =4 A EA EA EA
& | FilingUnit.preferredDate = FilingUnit. theDate
B | FilingUnit.preferredDate = Persan. theDate
C | FilingUnit, preferredDate = null
D
Cwverrides
- Rule Statements 53 &1 Rule Messages | L) Natural Language} ==| Prnpertieﬂ B Histcry\l
Ref Post Alias Text
1 Warning | Filinglinit Filing unit date is null - use person date as the preferred date
2 Warning | Person Person date is null - use filing unit date as the prefered date
[3 Violation Filinglnit Both dates are null - set preferred date to null
4 Info FilingLimit Filing data is greater than ar equal to the person date - use filing date
5 Info FilingLInit Filing date is less than person date - use persan date

336 Progress Corticon: Rule Modeling: Version 6.3

Studio license expiration

As highlighted, Rule 3 explicitly sets the preferred date to null when both incoming dates are null.

Studio license expiration

If your license indicates that it has expired, contact your Progress Corticon representative to obtain an updated
license file. Corticon Studio alerts the user at startup, and then limits functionality:

Figure 232: License expiration alert at Studio startup

License Warning @
Progress Corticon license file has expired. The system is now in Read
! Only mode,

How to compare and report on Rulesheet differences

When the execution of your rules is not producing the expected results and your not sure what changed,
Corticon Studio provides difference reports to help identify changes. Two versions of a Rulesheet can have
modest changes, yet it can be difficult to see all the differences during a visual inspection of the two Rulesheets.
Reporting about differences between Rulesheets provides help in debugging mistaken rule changes, and
inconsistent rule definitions, for example:

* Diagnosing a Ruletest failure: When a Ruletest fails because of changes in newer Rulesheets, you can
use Rulesheet difference reports to determine what changed, and then make changes to a Rulesheet to fix
bad rules, or to indicate changes to make to your Ruletest expected results.

* Resolving merge conflicts: When using a source control system such as git, you may encounter situations
where you want to commit a Rulesheet that someone else has changed, and discover a merge conflict.
Using Rulesheet difference analysis and reports, you can see what changed and decide how to manually
merge the differences so you can commit your changes.

To compare two versions of a Rulesheet:

1. Right-click within a Rulesheet, and then choose the menu command Compare Rulesheets.

2. The Compare Rulesheets dialog box opens, as shown:

Progress Corticon: Rule Modeling: Version 6.3 337

Chapter 13: Troubleshooting Corticon Studio problems

& Compare Rulesheets O >
Compare Rulesheets \
Choose the Rulesheet you want to compare to A

Rulesheet 1: Tuterial/Tutorial-Done/Cargo.ers

Rulesheet 2: | Choworkspace\Tutorial\Tutorial-Donet\ CargoReefer.ers Browse
Report Type: | DetailedRulesheetDifferences ~
Report Style: | Corticon Blue ~
Output Folder: | Cfwork_dir/Studio/Reports | Browse

Rulesheet 1 is the Rulesheet currently in the editor.

Locate Rulesheet 2, a variation of Rulesheet 1, typically produced earlier in development or by another
developer.

Choose a preferred Report Type.

5. Choose a preferred Report Style: The CSS stylesheet to use for the report. The basic stylesheets are

7.

Corticon Blue and Corticon Green.

Choose a preferred Output Folder: The location where the report will be stored on disk. The default location
is [CORTI CON_WORK DI R] / St udi o/ Report s. You can create a root location such as

C:\ CorticonStudi oReports andthen append subfolder names to sort out your projects, tasks, clients,
or versions.

Click Finish.

Customized difference reports

Advanced users might want to create alternative report types and styles:

The type files are located at [CORTI CON_WORK_DI R] \ St udi o\ Report s\ XSLT\ in folders according to
the asset types. You can copy the files to use as templates or change them to create report types that are
then offered in the Report Type drop-down list for the asset type.

The style files are located at [CORTI CON_WORK_ DI R] \ St udi o\ Repor t s\ CSS\ . You can copy a stylesheet
file to use as a template to create custom report styles that are then offered in the Report Style drop-down
list.

Reading a differences report

The Rulesheet difference report evaluates what's changed -- additions, deletions, and modifications as well as
items set as disabled. Presentation differences—colors, fonts, natural language, and widths—between the
Rulesheets are ignored.

A report lists all the data in both Rulesheets. Items that are the same in both Rulesheets are not highlighted
while those that are different are highlighted. The reason could be because the item changed. These need to
be researched to see if they pair with an item on the other Rulesheet that has a variation of the item in that
location.

338

Progress Corticon: Rule Modeling: Version 6.3

How to compare and report on Rulesheet differences

Examples of how differences are reported

The following examples use the basic tutorial's Cargo Rulesheet as the Rulesheet to which variations are

compared:
Bg *Cargo.ers &3 = O
Conditions 0 1 2 3 4 s
a Cargo.weight <= 20000 - = 20000
b Cargowvolume - = 30 <=30
c
Acticns L oA
Post Message(s) i | i | EA
A | Cargo.container standard oversize heavyweight
B W

Cheerrides 1

Example: Extra condition

E@ *Cargoers 3 = B8
Conditions 0 1 2 3 4 »
a | Cargo.weight <= 20000 - = 20000 -
b | Cargoweolume - =30 == 30 -
¢ | Cargo.needsRefrigeration - - - T
d
Actions < > oA
Post Message(s) EA B G4 %
A | Cargo.container standard oversize heawvyweight recfer
B
Owerrides {1, 4 i1, 3}

Conditions a and b are matched; however, Rulesheet 2 has an extra Condition, c.

Conditions
Rulesheet1 Rulesheet2
a. Cargo.weight 3. Cargo.weight
b. Cargo.volume b. Cargo.volume
c. Cargo.needsRefrigeration

Progress Corticon: Rule Modeling: Version 6.3 339

Chapter 13: Troubleshooting Corticon Studio problems

Example:One match that is in sequence and one that is out of sequence

Bg *Cargo.ers &3

Conditions

Cargowveolume
Cargo.weight

CRN = o B =l = 1]

Acticns
Post Message(s)
A | Cargo.container

=]

{ o |

0 1 2 3 4
- =30 == 30
<= 20000 - = 20000
i
| B %
standard owversize heavyweight
Owverrides 1

There are a few differences illustrated in this example:

* In-sequence match: Condition ¢ in Rulesheet 1 matches condition b in Rulesheet 2.

* Out-of-sequence match: Condition d in Rulesheet 1 is marked as different because Condition a in Rulesheet
2 is out of sequence, and is marked as different.

¢ Extra: Condition: ¢ in Rulesheet 2 is extra, and therefore different.

* Empty Condition Rows: Rulesheet1 has two empty Condition rows a and b are highlighted.

Conditions
Rulesheest1

Ruleshest2

a.
b.
c. Cargo.volume

d. Cargo.weight

b. Cargo.volume

a. Cargo.weight

c. Cargo.needsRefrigeration

340

Progress Corticon: Rule Modeling: Version 6.3

TestYourself questions for Troubleshooting rulesheets and ruleflows

Example: A Condition is disabled

B@ *Cargo.ers &3 = O

Conditions 0 1 2 3 4

a

b

c Cargowvelume - = 30 <=30

d | Cargoweight <= 20000 - = 20000
Acticns < >
Post Message(s) B B G4

A | Cargo.container standard oversize heawvyweight

E

C

Owverrides 1

When the state of the condition is different, the conditions are matched, but marked as different, as shown.
Condition c is disabled in Rulesheet 1; it is highlighted but matched.

Conditions

Rulesheetl Rulesheet2

a.

b.

c. Cargo.volume Disabled b. Cargo.volume

d. Cargo.weight
a. Cargo.weight

c. Cargo.needsRefrigeration

TestYourself questions for Troubleshooting rulesheets
and ruleflows

Note: Try this test, and then go to TestYourself answers for Troubleshooting rulesheets on page 360 to correct
yourself.

1. reproduce the behavior in a Corticon Studio as when executed on .Troubleshooting is based
on the principle that Rulesheets behave the same way when tested in

2. Troubleshooting is based on the principle that Rulesheets behave theThe first step in troubleshooting a
suspected rule problem is to reproduce the behavior in a Corticon Studio (test).

3. If the Rulesheet executes correctly in Corticon Studio, then where does the problem most likely occur?

4. Which of the following problems requires you to contact Progress Corticon Support for help?

Fatal Error Null Pointer Exception Reactor Error Expired License

Progress Corticon: Rule Modeling: Version 6.3 341

Chapter 13: Troubleshooting Corticon Studio problems

The specific rule where execution behavior begins acting abnormally is called the

True or False. When a rule fires, some of its Actions may execute and some may not.
What Corticon Studio tools help you to identify the Rulesheet's breakpoint?
Rulesheet is

A disabled rule:

© ® N o o

Executes in a Corticon Studio Test but not on the Corticon Server
Executes on the Corticon Studio but not in a Corticon Studio Test

Executes in both Corticon Studio Tests and on the Corticon Server

e 0o T ®

Executes neither in a Corticon Studio Test nor on the Corticon Server

10. Where are the Corticon Studio logging features set?
11. Where are the Corticon Studio override properties set?

12 True or False. The Corticon Server license file needs to be located everywhere the Corticon Server is
installed.

13. If you are reporting a possible Corticon Studio bug to Corticon Support, what minimum information is needed
to troubleshoot?

14. Which of the following cannot be disabled?
a. a Condition row
an Action row
a Filter row
a leaf of the Scope tree
a Nonconditional row (that is, an Action row in Column 0)
a rule column

a Rulesheet

S@ ™9 a0 T

a Ruleflow

342 Progress Corticon: Rule Modeling: Version 6.3

A

Studio properties and settings

Corticon Studio provides properties that specify property names and default values of user-configurable
behaviors.

The settings file br ns. properti es is installed at the root of [CORTI CON_WORK DI R] for each Corticon
Studio installation. If you install Corticon Studio and Corticon Server on one machine and accept the default
colocating paths, one br ms. pr operti es file is installed to be shared by Studio and Server:

(C:) » Users » geaefens » Progress » CorticonWork 6.3

.

Marme

cdd
Compile
corticon
etc
Graphs
license
logs
Reports
Samples
SER

STU

Progress Corticon: Rule Modeling: Version 6.3 343

Appendix A: Studio properties and settings

About the brms.properties file
* ltis good practice to back up the file before you start to make changes.
* When installed separately, the Studio and Server br ns. properti es files are identical.

* If you delete the file, it does not get re-created if you restart. However, because these are overrides to
default properties, there is no loss of features or functionality when the file is not present.

* Inthe absence of a br ms. pr operti es file, you can simply list the property settings in a text file, and then
save it to its proper location as br ns. properti es.

* An update of the installation preserves a modified br ns. pr operti es file, and adds the default file if none
is present.

Enabling settings listed in the default brms.properties file

The file lists properties that users commonly want to change. Each group of properties provides descriptive
comments and the commented default name=value pair.

To specify a preferred value for a listed property, edit the file, remove the# tag from the beginning of a property's
line, and then add your preferred value after the equals sign (=). For example, to express a preference for
decimal values displayed and rounded to two places instead of the six places preset for this property, locate
the line:

#deci mal scal e=6
Change the line to:

deci mal scal e=2

Add unlisted settings to brms.properties file

Some locations in the documentation tell you about other property settings that you might want to add to the
settings file. Or, you might be directed by technical support or your Progress representative to add or change
settings to provide certain behaviors or functions.

For example, to change the interval of diagnostic readings from five minutes to two minutes, add the following
line to the br ms. properti es file—it does not matter where in the file as long as it is on a separate line:

comcorticon. server. D agnosti cWait Ti me=120000

If you add the same property more than once in the settings file, the last instance takes precedence.

Save and apply the revised Studio property settings

When your changes are complete, you can choose to save the settings file with its default name and location,
but you could save a copy with a useful name, such as debuggi ngLogSet ti ngsbrns. properties.

344 Progress Corticon: Rule Modeling: Version 6.3

In Studio, you can save multiple settings files, and then use Studio's Preferences to specify the Override
Properties File for the br ms. properti es file to use, as shown:

& Preferences O *
type filter text Progress Corticon v
General

General Progress Corticon Settings:
Ant g g

Help
Install/Update Override Properties File: | Browse...
lava

Model Validation

Mylyn License File: | Browse...
Progress Corticon

Run/Debug License Information:

Team

Progress Corticon Studio
Viewruleflow Diagram Version: 6.3.0.0 -b12159

Licensed to: Evaluation - Tech Preview
Expires in 82 days.

Restore Defaults Apply

Apply and Close Cancel

Note: The overrides and license specified are stored in the Studio Workspace. If you change the Workspace,
then those overrides or defaults take effect.

For the revised settings to take effect, save the edited file, and then restart the Corticon Studio.

Note: Property settings you listin your br ns. pr oper ti es file replace the corresponding properties that have
default settings. They do not append to an existing list. For example, if you want to add a new Dat eTi ne mask
to the built-in list, be sure to include all the masks you intend to use, not just the new one. If your
brms. properti es file contains only the new mask, then it is the only mask that Corticon uses.

The following properties are settings you can apply to your Corticon Studio installation by adding the properties
and appropriate values as lines in its br ns. properti es file, and then restarting Studio.

GENERAL

Decimal scale sets the default precision for Decimal values. All Decimal values are rounded to the specified
number of decimal places. The default value is 6. For example, 4. 6059556 is rounded, displayed, and returned
as 4.605957. Inthe br ns. properti es file, set the Studio Test's decimal scale:

deci mal scal e=2

When the Decimal scale is set to 2, the rounded value is 4. 61.

To property sets the default character encoding for objects, such as Vocabulary, Rulesheet, and Ruletest XML
files. Examples: UTF-8, UTF-16, ISO-8859-1, US-ASCII. Default value is UTF-8.

com corticon. encodi ng. st andar d=UTF- 8

Progress Corticon: Rule Modeling: Version 6.3 345

Appendix A: Studio properties and settings

Control of cross-asset validation behavior. The default setting, false, causes cross-asset validation to occur
immediately whenever any change is made. Consider an example where a Vocabulary Editor and three
associated Rulesheet Editors are open simultaneously. If this setting is false, a Vocabulary update will cause
the Rulesheets to revalidate themselves in real time. This dynamic validation provides instant feedback but
carries a performance cost. The alternative setting, true, causes cross-asset validation to be deferred until the
associated editor is activated. In the prior example, a Vocabulary update will trigger only Vocabulary validation
rules. Rulesheet Editors will not automatically revalidate themselves until they are activated. This setting can
improve performance at the expense of immediate feedback. Default value is false.

comcorticon. resource. validate.on. activation=fal se

RULESHEETS

Specifies the number of rows that are added to the end of a Rulesheet section when Rulesheet > Add Rows
to End is selected from the Corticon Studio menubar or popup menu. Default is 10.

com corticon. designer.corticon.insertrowstoend=10

Specifies the number of columns that are added to the end of a Rulesheet section when Rulesheet > Add
Columns to End is selected from the Corticon Studio menubar or popup menu. Default is 10.

com corticon. designer.corticon.insertcol umstoend=10

When there are any null attributes on the right hand side of a clone assignment expression, the assignment
does not occur because it will not override the cloned value. If the null result is preferred, add this property set
to t r ue so that the null checks are removed. Be aware that using this setting on a Studio machine should be
applied on any other machine that will work on a related project, and that Decision Services created when the
property is t r ue have the setting embedded in the Decision Service. Default is f al se.

comcorticon.reactor.rul ebuil der. Di sabl eNul | Checki ngOnd one=f al se

RULETESTS

Specifies how the Rule Messages are displayed in the Tester after execution based on the data in the columns.
The options are Execut i onOr der, Severity, and Enti ty. Default value is Execut i onOr der .

comcorticon.tester.result.nessages. sorti ng=Executi onO der

Option to specify how many variable substitutions could be applied to an ADC PreparedStatement. The restriction
on how many PreparedStatement variables is controlled by the Database Driver. Different Databases have
different maximums.

Default value is 1000

comcorticon. server. adc. prepar edst at enent s. naxvari abl es=1000

Specifies whether String attribute values should be trimmed in the Tester Expected tree. When set to f al se,
suppresses trimming of leading and trailing whitespaces.

346

Progress Corticon: Rule Modeling: Version 6.3

Default value is t r ue.

comcorticon.tester.trinmstringval ues=true

By default, Corticon Studio uses the Corticon Server's REST API to run ruletests against a remote server. You
can change this property to use the SOAP API by setting the following property to XML. Note that setting this
property to XML will disable the Rule Trace Viewer. Default value is JSON:

comcorticon.tester.ccserver. execute. formt=JSON

When using the SOAP API and testing against an IIS server you also need to set this property for Corticon
Studio (Default value is JAVA):

comcorticon.studio.client.soap.clienttype=I1S

Sets the Studio Test's XML messaging style:Hi er (hierarchical), Fl at , or Aut odet ect Default value is Hi er .

com corticon. desi gner.tester.xnm nmessagi ngstyl e=H er

RULEFLOWS: Packaging

Corticon Studio uses the following properties when compiling assets into a Decision Service through the
“Package and Deploy” wizard. (Corticon Server utilities also use these properties when compiling a Decision
Service.)

Compile option: This property lets you configure memory settings for compiling the Rule Assets into an EDS
file.

Default value is - Xms256m - Xnx1g

com corticon.ccserver.conpil e. menorysettings=- Xms256m - Xnx1g

Compile option: Add the Rule Asset's Report to the compiled EDS file. By having the Report inside the EDS
file, any user can get the report for a deployed Decision Service through an in-process or a SOAP call to the
Corticon Server. Including the Report in the EDS file will increase the EDS file significantly.

Default value is false

com corticon. server.conpil e. add. report=true

Compile option: Add the Rule Asset's WSDL to the compiled EDS file. By having the WSDL inside the EDS
file, any user can get the WSDL for a deployed Decision Service through an in-process or a SOAP call to the
Corticon Server. Including the WSDL in the EDS file will increase the EDS file significantly.

Default value is false

comcorticon. server.conpil e. add. wsdl =true

Progress Corticon: Rule Modeling: Version 6.3 347

Appendix A: Studio properties and settings

Note: In prior releases, the default action was to automatically produce the WSDL and reports to add to the
EDS. Given the techniques to produce WSDL and reports without having them in the EDS, the option to
suppress the WSDL and reports in packaging unless explicitly requested, results in smaller packages and
better compilation performance.

GRAPHIC VISUALIZER

Sets the font type and size used by the Graphic Visualizer. Default values are Hel veti ca- Narrow. ttc and
9, respectively.

comcorticon.crm . Crml GaphVi sual i zer. f ont name=Hel veti ca-Narrow.ttc
comcorticon.crm.Crml GaphVisualizer.fontnane.ja=nsgothic.ttc
comcorticon.crm . Crml GaphVi sual i zer. fontsi ze=9

348 Progress Corticon: Rule Modeling: Version 6.3

Answers to TestYourself questions

Check out your results from the tests at the end of each section.

For details, see the following topics:

* TestYourself answers for Building the vocabulary

* TestYourself answers for Rule scope and context

* TestYourself answers for Rule writing techniques and logical equivalents
* TestYourself answers for Collections

* TestYourself answers for Rules containing calculations and equations

* TestYourself answers for Rule dependency and inferencing

* TestYourself answers for Filters and preconditions

* TestYourself answers for Recognizing and modeling parameterized rules
* TestYourself answers for Writing rules to access external data

* TestYourself answers for Logical analysis and optimization

¢ TestYourself answers for Ruleflow versioning and effective dating

* TestYourself answers for Troubleshooting rulesheets

Progress Corticon: Rule Modeling: Version 6.3 349

Appendix B: Answers to TestYourself questions

TestYourself answers for Building the vocabulary

Show me this set of test questions.

1. Any three of the following:

a. Provides terms that represent business “things”

b. Provides terms that are used to hold transient (temporary) values within Corticon Studio

c. Provides a federated data model that consolidates entities and attributes from various enterprise data

resources

d. Provides a built-in library of literal terms and operators that can be applied to entities and attributes

e. Defines a schema that supplies the contract for sending data to and from a Corticon Decision Service

2. False. The Vocabulary may include transient terms that are used only in rules and that don’t exist in the

data model.

3. False. Terms in the data model that are not used by rules do not need to be included in the Vocabulary.

4. False. A Vocabulary may be created before its corresponding object or data model exists.

5. The Vocabulary is an abstract model, meaning many of the real complexities of an underlying data model
are hidden so that the rule author can focus on only those terms relevant to the rules.

. The UML model that contains the same types of information as a Vocabulary is called a Class Diagram

6
7. Entities, Attributes, Associations
8. hairCol or

9. yellow

10. Attributes

1. Bool ean, DateTi me, Deci mal,
12 blue and yellow

13. orange and yellow

I nt eger,

14. A Transient Vocabulary term is used when the term is needed to hold a temporary value that is not required

to be stored in external data.

15. Associations are bidirectional by default

16. cardinality

17.
18. El

19. Target . source. attri bute

20. target

PurchaseOrder
customerdame
orderDate
total&mount

Lineltem

partdumber
gjuantity
unitPrice
totalPrice

350

Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Rule scope and context

Yocabulary |

o

=] Lineltem

— =] partMumber

— =] quantity

— =] tokalPrice

— =] unitPrice

— 3 purchaseOrder (PurchaseOrder)
=] PurchaseOrder

— =] customerhame

— =] orderDate

— =] kokalamount

— - lineltem (Linelterm)

2

23. Design vocabulary, identify terms, separate terms, assemble and relate terms, diagram vocabulary model
in Studio

24 a

25. operators

26. Rule Language Guide

27. False. Custom Data Types must be based on the 7 base data types. They extend the 7 base data types.
28. b. May match other Custom Data Type Names

2. True

30. val ue < 10

3. True

32 No

3B." Ai rbus’

34. Attribute values are pre-populated in drop-down lists based on the enumerated values.

35. Allow you to re-use entities by bundling or creating a subset within the Vocabulary. (Technically equivalent
to packages in Java or namespaces in XML.)

36. True
37. True

38. All entities have native attributes, but Bi cyl e = 100% native. The others have 1 native attribute each and
3 inherited. Entities with inherited attributes are Mbunt ai nBi ke, RoadBi ke, TandenBi ke

39. cadence, gear, or speed
40. True

TestYourself answers for Rule scope and context

Show me this set of test questions.
1. 7 root-level entities are present

2. All terms are allowed except DVD. act or

Progress Corticon: Rule Modeling: Version 6.3 351

Appendix B: Answers to TestYourself questions

3. Movi e. suppli er
4. a. Movi e. oscar
b. Movi e.rol es

Actor.roles

a o

DVD. suppl i er
Movi e. dVD. extr as

o

Act or.rol es. novi e. oscar

5. Actor.rol es. novi e

6. Since the association between Act or and Rol e is bidirectional, you can use both Act or. rol es and
Rol es. act or in our rules.

7. Movi e and Awar d

8. From Movi e to Awar d: gol dend obe and oscar . From Awar d to Movi e: two unique role names exist
for this perspective too, but are not visible in the Vocabulary diagram.

9. The Awar d entity could be split into two separate entities, or an attribute could be added to Awar d to identify
the type of award.

10. Using roles helps to clarify rule context.

11. unique

12 True

13. All examples shown are Boolean expressions

14. You can use Movi e if it is the root term, or DVD. novi e if DVD is the root term The root term can either be
Movi e or DVD. No conditions in the rule prevent either one from being the root term

15. You can use Movi e. dVDif Movi e is the root term, or DVD if it is the root term. The root term can either be
Movi e or DVD. No conditions in the rule prevent either one from being the root term

16. False. Both Movi e and DVD terms in this example are root terms with no relationship to each other.
17. Once for the Movi e satisfying the rule conditions and its associated DVD
18. Twice: once for each DVD (that is, the cross product of the DVDs and the Movies satisfying the rule conditions)
19. a. High
b. Low
c. Low for each DVD
d. Twice: once for each DVD
e. Four: each of the 2 rules fired 2 times
f. cross product

no, each rule should only fire once for the DVD associated with the Movie

;5 @

change the Movie and DVD terms to share the same scope, starting either with Movie as the root term
(Movi e and Movi e. dVD) or DVD as the root term (DVD and DVD. novi €)

20. False. Aliases are only required to be used in certain circumstances, but they can be used at any time and
provide a good way of simplifying rule expressions.

21. Scope is another way of defining a specific context or perspective in the Vocabulary

352 Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Rule writing techniques and logical equivalents

22 Be updated

23. False. Each alias must be unique and cannot have the same spelling as any term in the Vocabulary.

TestYourself answers for Rule writing techniques and
logical equivalents

Show me this set of test questions.

Preconditions act as master rules for all other rules in the same Rulesheet that share the same scope
An expression that evaluates to a Tr ue or Fal se value is called a Boolean expression.

True

False. The requirement for complete Values sets only applies to Condition rows.

The special term other can be used to complete any Condition row values set.

not

{T. F}

All except Ent i t y. bool ean=F are equivalent; however, some expressions are more clear than others!

© ® N O DN

Enti ty. bool ean is probably the best choice because it is the simplest and most straightforward. The
other two choices use double negatives which are harder for most people to understand.

-
o

.a. OKas is

b. If the value range is supposed to contain Integer values, then a does not belong. If the range is supposed

to contain String values then 1 and a need to be surrounded by single quotes as in {*1’..’a’, other}

The special word other can’t be used as a range endpoint.

a o

The range contains overlaps between 5 and 10, but this is acceptable in v5.

o

The range contains an overlap at 10, but this is acceptable in v5.
f. Thisis an incomplete set and should be {‘red’, ‘green’, ‘blue’, other}
g. The range contains overlaps between 3 and 15, but this is acceptable in v5.

1. False. The term other may not be used in Action row Values sets since Actions can only assign specific
values.

12 The Rulesheet would be modeled as shown:

Progress Corticon: Rule Modeling: Version 6.3 353

Appendix B: Answers to TestYourself questions

E MewRules.ers &3 =0
Scope Conditions 0 1 2 3 4 5 -
=1 Part [part] - & |parttagCelor ‘blue’ ‘red’ ‘yellow' ‘green’ other
+xl Filters b Xz
[=| discount 3 Actions d il E
B inStock Post Message(s) EA EA EA B i
8 tagColor _ A partdiscount 010 015 0.20 0.25 0.05
s B
Filters C
175 partinStock=T - =
= partunstac - Overrides
| Rule Statements &% | I Rule Messages =8
Ref |ID |Post Alias Text Rule Name =
1 Info part If the part is in stock and it has a blue tag, then the part's discount is 10%
2 Info part If the part is in stock and it has a red tag, then the part's discount is15%
3 Info part If the part is in steck and it has a yellow tag, then the part's discount is 20%
4 Info part If the part is in stock and it has a green tag, then the part's discount is 25%
5 Info part If the part is in stock and it has any other tag, then the part's discount is 5%
’l 1 3
13. True

14. False. Nonconditional rules are governed by preconditions on the same Rulesheet only if they share the
same scope as the preconditions.

TestYourself answers for Collections

Show me this set of test questions.

1. Children of a Parent entity are also known as elements of a collection.

2. False. A collection can contain root-level entities.

3. True

4. True

5. Refer to the Rule Language Guide for a full list and description of all collection operators.

6. Rule Language Guide

7. Order total is equal to the sum of the line item prices on the order.

8. ltems

9. one-to-many (1->%)

10. It is not an acceptable replacement because the use of any collection operator requires that the collection

be represented by an alias.

11. Set the navigability of the association between Or der and Li nel t emto Order->lineltem. In other words,
make the association one-directional from Or der to Li nel t em

12 Optional, convenient
13. A collection alias is not required in this case because no collection operator is being applied to the collection.
14. - >for Al |

15. - >exi st s

354 Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Rules containing calculations and equations

16. a. arol es ->size > 3 where aroles is an alias for Actor.roles

b. ndvd - >i seEnpty where mdvd is an alias for Movie.dVD
ndext ras - >exi st s(del et edScenes=T) where mdextras is an alias for Movie.dVD.extras
nggl obes - >exi st s(w n=T) where mgglobes is an alias for Movie.goldenGlobe

nrol es ->size > 15 where mroles is an alias for Movie.roles

ol

nmdvd. quant it yAvai | abl e - >sum >= 100 where mdvd is an alias for Movie.dVD

nmdvd. quanti t yAvai |l abl e ->sum < 2 where mdvd is an alias for Movie.dVD

;5 «

nmdsuppliers ->size > 1 where mdsuppliers is an alias for Movie.dVD.supplier

17. Actor, Distributor, DVDExtras
18. Actor, Movie

19. The - >f or Al | operator tests whether all elements of a collection satisfy a condition. The - >exi st s
operator tests whether at least one element of a collection satisfies a condition.

20. The - >not Enpt y operator tests whether a collection is not empty, meaning there is at least one element
in the collection. The - >i sEnpt y operator tests whether a collection is empty, meaning there are no
elements in the collection.

21. To ensure that the system knows precisely which collection (or copy) you are referring to in your rules,use
a unique alias to refer to each collection.

TestYourself answers for Rules containing
calculations and equations

Show me this set of test questions.
1. comparison in Preconditions and Conditions, assignment in Nonconditionals and Actions
2. The results of the equations are:
a. 10
b. 13
c. 22
d. 24
e. 0
3. This assignment is not valid because an Integer attribute cannot contain the digits to the right of the decimal
point in a Decimal attribute value.
4. The data types are:
Integer
String
Boolean

Decimal

® 2 0 T ®

Boolean

Progress Corticon: Rule Modeling: Version 6.3 355

Appendix B: Answers to TestYourself questions

f. Boolean

g. Boolean

5. The validity of the assignments are:
a. valid
b. invalid
c. valid

valid

valid

-0 o

invalid

g. valid

6. The part of Corticon Studio that checks for syntactical problems is called the Parser.

7. False. Although the Parser in Corticon Studio is very effective at finding syntactical errors, it is not perfect
and cannot anticipate all possible combinations of the rule language.

8. This Filter tests if the difference between the current year and the year a movie was released is more than
10 years.

9. This Condition tests if the total quantity of DVDs available divided by the number of DVD versions of a movie
is less than or equal to 50,000 or greater than 50,000. This same calculation could be performed by using
the - >avg operator.

10. If the average quantity available of a DVD is greater than 50,000 for a movie that is more than 10 years old,
then flag the movie with a warning.

11. The sections of a Rulesheet that accept equations and calculations are:
Scope: False

Rule statements: False

Condition rows: True

Action rows: True

Column 0: True

Condition cells: False

Action cells: False

S@ ™o o0 T

Filters: True

TestYourself answers for Rule dependency and
inferencing

Show me this set of test questions.
1. Inferencing involves only a single pass through rules while looping involves multiple passes.

2. Aloop that does not end by itself is known as an infinite loop.

3. Aloop that depends logically on itself is known as a single-rule or trivial loop.

356 Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Filters and preconditions

4. False. The Rulesheet must have looping enabled in order for the loop detector to notice mutual dependencies.
5. False. The Check for Logical Loops tool can only detect and highlight loops, not fix them.

6. No, looping is neither required nor wanted for these rules. Normal inferencing will ensure the correct sequence
of execution of these rules.

7. Yes, having this Rulesheet configured to Process All Logical Loops enables an infinite loop between rule
1 and rule 2 for DVDs meeting the conditions for that rule.

8. Rule 1 would change the DVD’s price tier value to Medium, and then rule 2 and rule 1 would execute in an
infinite loop, incrementing the DVD’s quantity available by 25,000 repeatedly until terminating after the
maxloop property setting number of iterations.

9. Process all logical loops
10. Process multi-rule loops only

1. A dependency network determines the sequence of rule execution and is generated when a Rulesheet is
saved.

TestYourself answers for Filters and preconditions

Show me this set of test questions.
1. True
2. False - precondition behavior is optional

3. True - a filter will only “apply” to other rules that share the same scope. This means that other rules acting
on data outside the filter's scope will be unaffected.

AND'ed

False. Preconditions/Filters are not stand-alone rules.
c

a

No

© ® N o g M

True

10. full

1. full filter only

12 precondition AND full filter

13.fand d

14 a

15. Oscars:
a. Movie 1, DVD 1; Oscars 1, 2, 3,4, 5
b. Movie 1; DVD 1; Oscars 1, 2, 3,4, 5
c. Movie 1; DVD 1; Oscar 2
d. Movie 1; DVD 1; Oscars 1, 2, 3,4, 5
e. Movie 1; DVD 1; Oscars 1, 2
f. none

Progress Corticon: Rule Modeling: Version 6.3 357

Appendix B: Answers to TestYourself questions

g. none
h. Movie 1; DVD 1; Oscars 1, 2, 3,4, 5
i. Movie 1;DVD 1; Oscars 1, 2, 3,4,5
j. Movie 1; DVD 1; Oscars 1, 2, 3,4, 5
k. none
. Movie 1; DVD 1; Oscars 1, 2, 3,4, 5
m. none
n. none
o. Movie 1; DVD 1; Oscars 1, 2, 3,4, 5

TestYourself answers for Recognizing and modeling
parameterized rules

Show me this set of test questions.

1. When several rules use the same set of Conditions and Actions, but different values for each, we say that
these rules share a common pattern.

Another name for the different values in these expressions is parameter.
False. It is usually easier to model them as Conditions and Actions that use values sets.
You may accidentally introduce ambiguities into your rules.

X customers buy more than $Y of product each year

o a kb wbd

Type of customer: {* Pl ati num, ‘CGold, ‘Silver’, ‘Bronze’} andspendamount:

{25000. . 50000, (50000..75000], (75000..10000], =>100000}.Depending on how the rules
are modeled, one of these values sets will be part of a Condition and should be completed with the special
word ot her .

7. These parameters can be maintained in the values sets of an individual Rulesheet, which is easy to perform,
but makes reuse more difficult. They can be maintained as Custom Data Types (Enumerated) in the
Vocabulary, which makes reuse easier.

TestYourself answers for Writing rules to access
external data

Show me this set of test questions.
1. Rule scope determines which data is processed during rule execution.

2. So a database-enabled Rulesheet does not inadvertently retrieve all the corresponding data in a database,
which could be a lot of data!l

3. ltis extended to the database.

4. True. Only root-level entities need to be extended. All other entities are extended automatically because
their scope is reduced enough to not be as concerned about massive amounts of retrieved data.

358 Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Logical analysis and optimization

5. See the Data Integration Guide.
6. No. In general, the rule modeler does not need to worry about where data is stored.

7. Yes. The exception is when rules are written using root-level terms. If the Rulesheet is database-enabled,
then these root-level terms may need to be extended to the database.

TestYourself answers for Logical analysis and
optimization

Show me this set of test questions.

1. They have the same Conditions but different Actions.

2. All combinations of possible values from the Conditions' values sets are covered in rules on the Rulesheet.

3. No, not all ambiguous rules are wrong or need to be resolved before deployment. Ambiguities can exist in
Rulesheets when there are rules that are completely unrelated to each other. In those cases, it may be
appropriate for both rules to fire if the Conditions for both are met.

4. No, not all incompletenesses are wrong or need to be resolved before deployment. Incomplete Rulesheets
may be missing combinations of Conditions that cannot or should not occur in real data. In those cases,
rules for such combinations may not make sense at all.

5. Conflict Checker: second icon; Compression Tool: fifth icon; Expansion Tool: first icon; Collapse Tool: third
icon; Conflict Filter: sixth icon.

6. An ambiguity can be resolved by making the Actions match for both rules, or by setting an override for one
of the rules.

7. False. Defining an override does not specify an execution sequence, but rather specifies that the rule with
the override always fires instead of the rule being overridden when the Conditions they share are satisfied.

8. False. The Completeness Checker auto-completes the Condition's value set prior to inserting missing
rules. This ensures that the Rulesheet, post-application of the Completeness Check, is truly complete.

9. The Completeness Checker detects Rulesheet incompleteness caused by an incomplete values set because
it automatically completes the value set before inserting missing columns.

10. Yes. One rule can override multiple other rules by holding the Ctrl key to multi-select overrides from the
drop-down.

11. No, overrides are not transitive and must be specified directly between all applicable rules.

12 No, rules created by the Completeness Checker may be made up of combinations of Conditions that cannot
or should not occur in real data. In those cases, rules for such combinations may not make sense at all.

13. A dash specifies that the Condition should be ignored for this rule.

14. False. The Expansion Tool merely expands a Rulesheet so that all subrules are visible. The results can be
reversed by using the Collapse Tool.

15. True. It may be reversible using Undo, or by manually removing redundant subrules after expansion.
16. 64 (4 x4 x 4)

17. It is not necessary to assign actions for a rule column if that combination of conditions cannot or should not
exist in real data. It is a good practice to disable columns added by the Completeness Check that you
determine need no Actions.

18. They can be disabled, deleted, or left as-is with no Actions (but being left as-is is not recommended because
it will cause activity that can impact performance).

Progress Corticon: Rule Modeling: Version 6.3 359

Appendix B: Answers to TestYourself questions

19. Compression Tool

20. The compression performed by the Completeness Checker is designed to reduce a large set of missing

rules into the smallest set of non-overlapping columns, while the compression performed by the Compression
Tool is designed to reduce the number of rules into the smallest set of general rules (i.e. create columns
with the most dashes).

21. Even very large databases may not contain all possible combinations of data necessary to verify Rulesheet

completeness. In short, the databases may be incomplete themselves.

22 Renumber the rules and potentially ask you to consolidate Rule Statements if duplicate row numbers result

from the renumbering.

23. Subsumation occurs when the Compression Tool detects that a more general rule expression includes the

logic of a more specific rule expression. In this case, the more specific rule can be removed.

TestYourself answers for Ruleflow versioning and
effective dating

Show me this set of test questions.

© 9 0N =

False. Ruleflow Effective and Expiration dates may be assigned singly.

False. Ruleflow Effective and Expiration dates may be assigned singly.

False. Ruleflow Version numbers are optional.

Ruleflow > Properties, or click on the Properties window in Corticon Studio.
False. A Ruleflow Version number can only be raised, not lowered.

False. Ruleflow Effective and Expiration dates are optional.

TestYourself answers for Troubleshooting rulesheets

Show me this set of test questions.

1.

© % N o g R~

Troubleshooting is based on the principle that Rulesheets behave the same way when tested in Corticon
Studio as when executed on Corticon Server.

The first step in troubleshooting a suspected rule problem is to reproduce the behavior in a Corticon Studio
Ruletest.

In the integration with Corticon Server.

All of them!

The specific rule where execution behavior begins acting abnormally is called the breakpoint.
True. Partial rule firing is allowed.

Disabling Rulesheets; Filters, Nonconditions, Conditions, Action rows; or rule columns

A dark gray-colored Rulesheet tab indicates that Rulesheet has been disabled.

d

10. In the br ms. pr operti es file at [CORTI CON_WORK DI R] root.
1. In the br ms. properti es file at [CORTI CON_WORK DI R] root.

360

Progress Corticon: Rule Modeling: Version 6.3

TestYourself answers for Troubleshooting rulesheets

12 True.

13. Vocabulary (. ecor e), Rulesheet (. er s), and a Ruletest (. ert) and the Ruleflow (. er f) if any. We also
need to know the Corticon Studio version you are using.

14.d and h

Progress Corticon: Rule Modeling: Version 6.3 361

Appendix B: Answers to TestYourself questions

362 Progress Corticon: Rule Modeling: Version 6.3

	Copyright
	Table of Contents
	Introduction to Corticon rule modeling
	Build the Vocabulary
	Generate a Vocabulary
	Use JSON Schema to generate a vocabulary
	Use JSON to generate a vocabulary

	Build a Vocabulary by hand
	Step 1: Design the Vocabulary
	Step 2: Identify the terms
	Step 3: Separate the generic terms from the specific
	Step 4: Assemble and relate the terms
	Step 5: Diagram the Vocabulary
	Step 6: Model the Vocabulary in Corticon Studio

	Populate a Vocabulary from a Datasource
	Step 1: How Datasources are transformed into a Corticon Vocabulary
	Step 2: The Vocabulary generation process for RDBMS sources
	Step 3: The Vocabulary generation process from REST sources
	Step 4: Verify and update the generated Vocabulary

	Extend a Vocabulary
	Custom Data Types
	Constraint Expressions
	How to use non-enumerated Custom Data Types in Rulesheets and Ruletests

	Enumerations
	How enumeration labels and values behave
	Enumerations defined in the Vocabulary
	Enumerations retrieved from a database

	How to use Custom Data Types
	Use Custom Data Types in a Vocabulary
	Use enumerated Custom Data Types in Rulesheets
	Use enumerated Custom Data Types in Ruletests
	Use IN operator with an enumerated list

	How to relax enforcement of Custom Data Types

	Domains
	Domains in a Rulesheet
	Domains in a Ruletest

	Support for inheritance

	TestYourself questions for Build the vocabulary

	Rule scope and context
	Rule scope
	Aliases
	Scope and perspectives in the vocabulary tree
	How to use roles
	Technical aside

	TestYourself questions for Rule scope and context

	Rule writing techniques
	How to work with rules and filters in natural language
	Filters versus conditions
	Qualify rules with ranges and lists
	Ranges and lists in conditions and filters
	Value ranges in condition and filter expressions
	Value lists in condition and filter expressions

	Ranges and value sets in condition cells
	Boolean condition versus values set
	Exclusionary syntax
	How to use other in condition cells

	Numeric value ranges in conditions
	String value ranges in condition cells
	Value sets in condition cells
	Variables as condition cell values
	DateTime, date, and time value ranges in condition cells
	Inclusive and exclusive ranges
	Value ranges that overlap
	Alternatives to value ranges

	How to use standard Boolean constructions
	How to embed attributes in posted rule statements
	How to include apostrophes in strings
	TestYourself questions for Rule writing techniques and logical equivalents

	Collections
	How Corticon Studio handles collections
	How to visualize collections
	A basic collection operator
	How to filter collections
	How to use aliases to represent collections
	Sorted aliases
	Advanced collection sorting syntax
	Statement blocks
	Using sorts to find the first or last in grandchild collections
	Singletons
	Special collection operators
	Universal quantifier
	Existential quantifier
	Another example using the existential quantifier

	Aggregations that optimize EDC database access
	TestYourself questions for Collections

	Rules containing calculations and equations
	Operator precedence and order of evaluation
	Data type compatibility and casting
	Data type of an expression
	Defeating the parser
	Manipulating data types with casting operators

	Supported uses of calculation expressions
	Calculation as a comparison in a precondition
	Calculation as an assignment in a noncondition
	Calculation as a comparison in a condition
	Calculation as an assignment in an action

	Unsupported uses of calculation expressions
	TestYourself questions for Rules containing calculations and equations

	Rule dependency in chaining and looping
	Forward chaining
	Rulesheet processing modes of looping
	Types of loops

	Looping controls in Corticon Studio
	How to identify loops
	The loop detection tool
	How to remove loops
	How to terminate infinite loops

	Looping examples
	Determine the next working day when given a date
	Remove duplicated children in an association

	How to use conditions as a processing threshold
	TestYourself questions for Rule dependency chaining and looping

	Filters and preconditions
	What is a filter
	Full filters
	Limiting filters
	Database filters

	What is a precondition
	Summary of filter and preconditions behaviors
	Performance implications of the precondition behavior

	How to use collection operators in a filter
	Location matters
	Multiple filters on collections

	Filters that use OR
	TestYourself questions for Filters and preconditions

	How to recognize and model parameterized rules
	Parameterized rule where a specific attribute is a variable or parameter within a general business rule
	Parameterized rule where a specific business rule is a parameter within a generic business rule
	How to populate an AccountRestriction table from a sample user interface
	TestYourself questions for Recognizing and modeling parameterized rules

	How to write rules to access external data
	A scope refresher
	Quick steps for setting up the Cargo sample
	Enable database access for rules using root-level entities
	Test the Rulesheet with database access disabled
	Test the Rulesheet with database access enabled
	Optimize aggregations that extend to database

	Precondition and filters as query filters
	Filter query qualification criteria
	Operators supported in query filters
	How to use multiple filters in filter queries

	Insert new records in a middle table
	Integrate EDC Datasource data into rule output
	TestYourself questions for how to write rules to access external data

	Logical analysis and optimization
	Test, validate, and optimize your rules
	Scenario testing
	Rulesheet analysis and optimization

	Traditional methods of analyzing logic
	Flowcharts
	Test suites

	Validate and test Rulesheets in Corticon Studio
	How to expand rules
	The conflict checker
	The completeness checker
	Automatically determine the complete values set
	Automatically compress the new columns
	Handle limitations of the completeness checker
	Let the expansion tool work for you with tabular rules
	Memory management

	Logical loop detection

	Test rule scenarios in the Ruletest Expected panel
	How to navigate in Ruletest Expected comparison results
	Review test results when using the Expected panel
	Output results match expected exactly
	Different values output than expected
	Fewer values output than expected
	More values output than expected
	All Expected panel problems

	Techniques that refine rule testing
	Set selected attributes to ignore validation
	Use key attributes to improve difference detection in Ruletests
	Set how whitespace is handled
	Numerical equivalence

	How to optimize Rulesheets
	The compress tool
	How to produce characteristic Rulesheet patterns
	Compression creates subrule redundancy
	Effect of compression on Corticon Server performance

	Precise location of problem markers in editors
	TestYourself questions for Logical analysis and optimization

	Advanced Ruleflow techniques and tools
	How to use a Ruleflow in another Ruleflow
	Conditional branching in Ruleflows
	Example of branching based on a Boolean
	Example of branching based on an enumeration
	Logical analysis of a branch container
	How branches in a Ruleflow are processed

	How to generate Ruleflow dependency graphs
	Ruleflow versions and effective dates
	TestYourself questions for Ruleflow versions and effective dates

	Troubleshooting Corticon Studio problems
	Where did the problem occur
	Use Corticon Studio to reproduce the behavior
	Observe constraint violations or severe errors
	Analyze Ruletest results
	Trace rule execution
	Identify the breakpoint
	At the breakpoint
	No results
	Incorrect results in Studio

	Partial rule firing
	How to initialize null attributes
	How to handle nulls in compare operations

	Studio license expiration
	How to compare and report on Rulesheet differences
	TestYourself questions for Troubleshooting rulesheets and ruleflows

	Studio properties and settings
	Answers to TestYourself questions
	TestYourself answers for Building the vocabulary
	TestYourself answers for Rule scope and context
	TestYourself answers for Rule writing techniques and logical equivalents
	TestYourself answers for Collections
	TestYourself answers for Rules containing calculations and equations
	TestYourself answers for Rule dependency and inferencing
	TestYourself answers for Filters and preconditions
	TestYourself answers for Recognizing and modeling parameterized rules
	TestYourself answers for Writing rules to access external data
	TestYourself answers for Logical analysis and optimization
	TestYourself answers for Ruleflow versioning and effective dating
	TestYourself answers for Troubleshooting rulesheets

