
Corticon
Rule Language

Copyright

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress
®

software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo UI, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Apache and Kafka are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. Any other marks contained herein may be trademarks of their
respective owners.

Please refer to the NOTICE.txt or Release Notes – Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Last updated with new content: Corticon 6.3.1

Updated: 2022/09/23

3Progress Corticon: Rule Language: Version 6.3

Progress Corticon: Rule Language: Version 6.34

Copyright

Table of Contents

Introduction to Corticon Rule Language...9
Rule structure..10
Basic data types..10
Truth values..11
Collection operators..11
Language operators..11
Vocabulary used in this Language Guide...12

How to access rule operators...13

Usage restrictions..15

Rule operators..17
Attribute operators..18

Boolean..18
Date..19
DateTime..22
Decimal..27
Integer..30
String..34
Time...38

Entity and Association operators..40
Entity..41
Collection...41
Sequence...44

General terms...45

Rule operator details and examples...47
Absolute value..51
Add numbers...52
Add strings..53
Add days...54
Add hours..55
Add minutes..56
Add months...57
Add seconds...58

5Progress Corticon: Rule Language: Version 6.3

Contents

Add years..60
Associate elements...61
At...63
Average...64
CellValue...65
Character at..69
Clone...70
Concatenate..73
Contains..75
Day..76
Day of week..77
Day of year..79
Days between...80
Decrement...81
Disassociate elements..82
Divide..83
Div...84
Ends with...85
Equals ignoring case...86
Equals when used as an assignment...88
Equals when used as a comparison...89
Equals when using Strings..90
Exists...91
Exponent...93
False...94
First...95
First NUMBER...97
Floor..99
For all..100
Get Milliseconds ...102
Greater than..103
Greater than or equal to..105
Hour..106
Hours between..107
In LIST...109
In RANGE...111
Increment..113
Index of...114
Is integer...116
Is empty...117
Iterate..118
Last...119
Last NUMBER...120
Less than...123
Less than or equal to..125

Progress Corticon: Rule Language: Version 6.36

Contents

Logarithm BASE 10..126
Logarithm BASE X..127
Lowercase...128
Matches...130
Maximum value...131
Maximum value COLLECTION...132
Minimum value..134
Minimum value COLLECTION..135
Minute...136
Minutes between...137
Mod...138
Month..139
Months between..141
Multiply..142
Natural logarithm...143
New...145
New unique...146
Not...149
Not empty..150
Not equal to...151
Now...153
Null..154
Other...156
Or..157
Random...159
Regular expression to replace String..160
Remove element...162
Replace elements...165
Replace String..167
Round..168
Second..169
Seconds between...170
Size of collection...171
Size of string...173
Sorted by...174
Sorted by descending...176
Starts with...179
SubSequence...180
Substring...181
Subtract...183
Sum...184
Today...185
To date Casting a dateTime to a date...186
To dateTime Casting a date to a dateTime...187
To dateTime Casting a string to a dateTime...188

7Progress Corticon: Rule Language: Version 6.3

Contents

To dateTime Casting a time to a dateTime...189
To dateTime Timezone offset..190
To decimal...192
To integer..193
To string...196
To time Casting a dateTime to a time..197
Trend...198
Trim spaces...200
True...201
Uppercase...202
Week of month..203
Week of year...204
Year...205
Years between..207

Appendix A: Standard Boolean constructions.......................................209
Boolean AND..209
Boolean NAND..212
Boolean OR...212
Boolean XOR..213
Boolean NOR..214
Boolean XNOR...215

Appendix B: Character precedence in Unicode and Java Collator.......217

Appendix C: Precedence of rule operators...221

Appendix D: Formats for Date Time and DateTime properties..............225

Progress Corticon: Rule Language: Version 6.38

Contents

1
Introduction to Corticon Rule Language

Graphical modeling languages and tools (UML, ER, ORM, for example) are not sufficiently precise for
specifications. Additional constraints on the objects in the model must also be defined. While natural languages
are easily used by individuals without a programming background, they are often ambiguous. On the other
hand, formal programming languages are precise, but not easily used by business analysts and other
non-programmers.

The Corticon Rule Language has been developed to resolve this dilemma. Based on the Object Constraint
Language (OCL, an extension of the Universal Modeling Language specification 1.1), the Corticon Rule
Language (CRL) is designed to enable non-programmers to express rules clearly and precisely without the
use of procedural programming languages. More information on OCL may be found at www.uml.org.

Note: A preferred user language might use different separator symbols than those documented for decimal
values, list ranges, and dates.

For details, see the following topics:

• Rule structure

• Basic data types

• Truth values

• Collection operators

• Language operators

• Vocabulary used in this Language Guide

9Progress Corticon: Rule Language: Version 6.3

http://www.uml.org/

Rule structure
In traditional programming languages (or logic systems), most rules are expressed via IF/THEN structures.
The IF clause contains a conditional expression and the THEN clause contains actions the rule should perform
if all conditions have been met. This IF/THEN structure is expressed as Conditions and Actions in the Rulesheet
user interface of Corticon Studio. For more information on building and organizing rules in Corticon Studio, see
the Corticon Studio Tutorial: Basic Rule Modeling.

Basic data types
The proper expression and execution of rules in Corticon rules is dependent on the type of data involved. Each
attribute in the Corticon Vocabulary has a data type, meaning that it has restrictions on the type of data it can
contain. Corticon standard data types are as follows:

DescriptionData Type

Any combination of alphanumeric characters, of any length,String

A whole number, including zero and negative numbers, to the maximum values
for a 64-bit long signed integer (-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807)

Integer

A number containing a decimal point, including zero and negative numbers to the
limits of double precision (see IEEE_754 for details.)

Decimal

Values are true and false. T and F can also be used.Boolean

Values must be entered for both date and time.DateTime

A value with only date information. No Time information is allowed.Date

Value with only time information. No Date information is allowed.Time

In this guide, the data types Integer and Decimal are often referred to by the generic term <Number>.Wherever
<Number> is used, either Integer or Decimal data types may be used.

Syntax such as <DateTime> indicates that data must conform to the data type shown in angle brackets (<..>).
For this example, you might enter 9/13/2013 2:00:00 PM EST. Do not type the angle brackets themselves.

See Formats for Date Time and DateTime properties on page 225 for further details on formatting DateTime,
Date, and Time information.

Progress Corticon: Rule Language: Version 6.310

Chapter 1: Introduction to Corticon Rule Language

https://en.wikipedia.org/wiki/IEEE_754

Truth values
This guide uses the notation <Expression> to refer to some combination of terms from the Vocabulary that
resolves or evaluates to a single “truth value”. A truth value is the Boolean value (true or false) assigned
to an expression upon evaluation by the rule engine. For example, the expression Patient.name=‘John’
has a truth value of true whenever the patient's name is John. If it is not John, then the truth value of this
expression is false.

Collection operators
Many of the operators provided in the Corticon Rule Language deal exclusively with collections of entities.
When using collection operators, the expression must use aliases to represent the collection(s) operated on
by the collection operator(s). A complete discussion of aliases is included in theRule Modeling Guide. Reminders
are included throughout this manual wherever collection operators are referenced.

Language operators
The Corticon Rule Language operators can be grouped into various classifications as shown in Categories of
rule operators. Each operator is subsequently described in detail in the Rule operator details and examples
section of this document. That section includes a detailed description of the operator, its syntax, usage
restrictions, and an example in a Corticon Rulesheet and Ruletest.

11Progress Corticon: Rule Language: Version 6.3

Truth values

Vocabulary used in this Language Guide
This guide uses a generic Vocabulary in all its examples. The Vocabulary contains four entities, each of which
contains the same attribute names and types. Attribute names reflect their data types. For example, integer1
has a data type of Integer. This generic Vocabulary provides sufficient flexibility to create examples using all
operators and functions in the Corticon Rule Language. Entity1 is shown expanded in the following figure:

Figure 1: Vocabulary used in Corticon Language Guide examples

Progress Corticon: Rule Language: Version 6.312

Chapter 1: Introduction to Corticon Rule Language

2
How to access rule operators

The Studio tools for accessing operators provide icons with decorations, and tooltips.

Icons
Rule Operators are assigned icons which provide the user with information about their usage. The following
table describes these icons:

ExamplesPurposeWhere FoundIcon

null, true, otherindicates special values or
constants

General, Literals category

now, todayindicates system values
that are automatically
retrieved upon rule
execution.

General, Functions
category

notthis special “unary”
operator icon is used only
with not

Operators, Boolean
category

day, round, containsindicates the operator
uses a period “.” to attach
to its operand. Most
operators with this icon
typically fell into the
previous “function”
category.

Operators, all categories

13Progress Corticon: Rule Language: Version 6.3

ExamplesPurposeWhere FoundIcon

equals, multiplyindicates the operator is
used between two
operands. Most operators
with this icon typically fell
into the previous
“comparison” category.

Operators, all categories

sum, sizeindicates the operator is
used with collections or
sequences. Also indicates
an alias must be used to
represent the collection
operated on.

Operators, Collection &
Sequence categories

-indicates the operator has
been added to the
Vocabulary using the
extension framework
described in Corticon
Extensions Guide.

Extended Operators

Tool tips
In Corticon Studio, moving the mouse over a Vocabulary operator and pausing, or hovering for a moment,
causes a dynamic tool tip text box to display. This tool tip contains information about operator syntax, return
data type, and description, all of which are supplied in more detail in this set of topics. For questions not
answered by the tool tip, refer to the detailed operator descriptions in this publication. The following figure
shows a typical tool tip for the date operator .monthsBetween:

Figure 2: Typical Rule Operator Tool Tip

Progress Corticon: Rule Language: Version 6.314

Chapter 2: How to access rule operators

3
Usage restrictions

The following illustrations show the general usage restrictions for the various types of Vocabulary terms
depending on where they are used in a Rulesheet. This table indicates, for example, that entities (terms from
the Vocabulary) may be used in any section of the Rulesheet. Rule Operators, however, are restricted to only
three sections.

15Progress Corticon: Rule Language: Version 6.3

Note: Some operators have specific restrictions that vary from this general table – see each operator's usage
restrictions for details of these exceptions.

Figure 3: Vocabulary usage restrictions in Rulesheet sections

Figure 4: Sections of Rulesheet that correlate with usage restrictions

Progress Corticon: Rule Language: Version 6.316

Chapter 3: Usage restrictions

4
Rule operators

Rule operators are a structured listing of the verbs that you can apply to the nouns in the Vocabulary. Corticon
Studio presents its rule operators in logical groups.

17Progress Corticon: Rule Language: Version 6.3

Rule Operators are classified based on the data type(s) of the terms to which the operator may be applied
(known as the “operand”).

Figure 5: Rule Operator categories

When you open an operator group and hover over an operator, a help window shows its syntax, and details
about that operator:

For details, see the following topics:

• Attribute operators

• Entity and Association operators

• General terms

Attribute operators
The Corticon Rule Language supports attribute operators categorized as Boolean, DateTime, Date, Time,
Decimal, Integer, and String.

Boolean
Corticon's Boolean attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Progress Corticon: Rule Language: Version 6.318

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns a value of true if <Expression1> has
the same value as <Expression2>.

Boolean<Expression1> = <Expression2>

Equals (used as an assignment)

Assigns the truth value of <Expression1> to
<Boolean1>

Boolean<Boolean1> = <Expression1>

Not Equal To

Returns a value of true if <Expression1> does
not have the same truth value as <Expression2>

Boolean<Expression1> <> <Expression2>

Or

Returns a value of true if either <Expression1>
or <Expression2> evaluates to true. This
operator can be used only in Actions and
Preconditions/Filters.

Boolean<Expression1> or <Expression2> or…

And

Returns a value of true if both <<Boolean1> and
<Boolean2 are true. This operator can be used
only in Actions and Preconditions/Filters.

Boolean<<Boolean1> and <Boolean2>

Not

Returns the negation of the truth value of
<Expression>

Booleannot <Expression>

Note: See also related information in the topics Precedence of rule operators on page 221 and Standard
Boolean constructions on page 209..

Date
Corticon's Date attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <Date1> is the same as
<Date2>.

Boolean<Date1> = <Date2>

Equals (used as an assignment)

Assigns the value of <Date2> to <Date1>DateTime<Date1> = <Date2>

19Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Not Equal To

Returns a value of true if <Date1> does not equal
<Date2>

Boolean<Date1> <> <Date2>

Less than

Returns a value of true if <Date1> is less than
<Date2>

Boolean<Date1> < <Date2>

Greater than

Returns a value of true if <Date1> is greater than
or equal to <Date2>

Boolean<Date1> > <Date2>

Less than or Equal to

Returns a value of true if <Date1> is less than or
equal to <Date2>

Boolean<Date1> <= <Date2>

Greater than or Equal to

Returns a value of true if <Date1> is greater than
or equal to <Date2>

Boolean<Date1> >= <Date2>

In (Range)

Returns a value of true if attributeReference
is in the range of Date values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Year

Returns the century/year portion of <Date> as a
four digit Integer

Integer<Date>.year

Month

Returns the month in <Date> as an Integer
between 1 and 12

Integer<Date>.month

Day

Progress Corticon: Rule Language: Version 6.320

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns the day portion of <Date> as an Integer
between 1 and 31

Integer<Date>.day

Add years

Adds the number of years in <Integer> to the
number of years in <Date>

Date<Date>.addYears(<Integer>)

Add months

Adds the number of months in <Integer> to the
number of months in <DateTime>

Date<Date>.addMonth(<Integer>)

Add days

Adds the number of days in <Integer> to the
number of days in <Date>

Date<Date>.addDays(<Integer>)

Years between

Returns the Integer number of years between
<Date1> and <Date2>. This function returns a
positive number if <Date2> is later than <Date1>.

Integer<Date1>.yearsBetween(<Date2>)

Months between

Returns the Integer number of months between
<Date1> and <Date2>. If the month and year
portions of <Date1> and <Date2> are the same,
the result is zero. This function returns a positive
number if <Date2> is later than <Date1>.

Integer<Date1>.monthsBetween(<Date2>)

Days between

Returns the Integer number of days between
<Date1> and <Date2>. If the two dates differ by
less than a full 24-hour period, the value is zero.
This function returns a positive number if <Date2>
is later than <Date1>.

Integer<Date1>.daysBetween(<Date2>)

Day of Week

Returns an Integer corresponding to day of the
week, with Sunday equal to 1, in <Date>.

Integer<Date>.dayOfWeek

Week of Year

Returns an Integer from 1 to 52, equal to the week
number within the year in <Date>

Integer<Date>.weekOfYear

Day of Year

21Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Returns an Integer from 1 to 366, equal to the day
number within the year in <Date>

Integer<Date>.dayOfYear

Week of Month

Returns an Integer from 1 to 6, equal to the week
number within the month in <DateTime> or
<Date>. A week begins on Sunday and ends on
Saturday.

Integer<Date>.weekOfMonth

To String

Converts DateTime to a String with date and time
information

String<Date>.toString

To DateTime

Returns a DateTime where the date portion is
equal to the value of <Date> and the time portion
is equal to 00:00:00 in the system’s local timezone

DateTime<Date>.toDateTime

To DateTime with Timezone Offset

Returns a DateTime where the date portion is
equal to the value of <Date> and the time portion
is equal to 00:00:00 in the timezone specified by
the value of <string>

DateTime<Date>.toDateTime (<string>)

getMilliseconds

Returns the internal date/time, namely the number
of milliseconds that have transpired since the
epoch 1/1/1970 00:00:00 GMT.

Integer<Date>.getMilliseconds

nextDay

Returns the Date that represents the date that
follows this Date instance.

Date<Date>.nextDay

DateTime

Note: A DateTime data typemust contain both date information and time information. Applying a DateTime
operator to a DateTime attribute should always produce a result. Be sure to use the data type that suits your
needs.

Corticon's DateTime attribute operators are as follows:

Progress Corticon: Rule Language: Version 6.322

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <DateTime1> is the
same as <DateTime2>, including both the Date
and the Time portions

Boolean<DateTime1> = <DateTime2>

Equals (used as an assignment)

Assigns the value of <DateTime2> to
<DateTime1>

DateTime<DateTime1> = <DateTime2>

Not Equal To

Returns a value of true if <DateTime1> does not
equal <DateTime2>

Boolean<DateTime1> <> <DateTime2>

Less than

Returns a value of true if <Date1> is less than
<Date2>

Boolean<DateTime1> < <DateTime2>

Greater than

Returns a value of true if <DateTime1> is greater
than or equal to <DateTime2>

Boolean<DateTime1> > <DateTime2>

Less than or Equal to

Returns a value of true if <DateTime1> is less
than or equal to <DateTime2>

Boolean<DateTime1> <= <DateTime2>

Greater than or Equal to

Returns a value of true if <DateTime1> is greater
than or equal to <DateTime2>

Boolean<DateTime1> >= <DateTime2>

In (Range)

Returns a value of true if attributeReference
is in the range of DateTime values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

23Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Year

Returns the century/year portion of <DateTime>
as a four digit Integer

Integer<DateTime>.year

Month

Returns the month in <DateTime> as an Integer
between 1 and 12

Integer<DateTime>.month

Day

Returns the day portion of <DateTime> as an
Integer between 1 and 31

Integer<DateTime>.day

Hour

Returns the hour portion of <DateTime>. The
returned value is based on a 24-hour clock.

Integer<DateTime>.hour

Minute

Returns the minute portion of <DateTime> as an
Integer between 0 and 59

Integer<DateTime>.min

Second

Returns the seconds portion of <DateTime> as
an Integer between 0 and 59

Integer<DateTime>.sec

Add years

Adds the number of years in <Integer> to the
number of years in <DateTime>

Date<DateTime>.addYears (<Integer>)

Add months

Adds the number of months in <Integer> to the
number of months in <DateTime>

Date<DateTime>.addMonths (<Integer>)

Add days

Adds the number of days in <Integer> to the
number of days in <DateTime>

Date<DateTime>.addDays (<Integer>)

Add hours

Adds the number of hours in <Integer> to the
number of hours in the Time portion of
<DateTime>

Date<DateTime>.addHours (<Integer>)

Progress Corticon: Rule Language: Version 6.324

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Add minutes

Adds the number of minutes in <Integer> to the
number of minutes in the Time portion of
<DateTime>

Date<DateTime>.addMinutes (<Integer>)

Add seconds

Adds the number of seconds in <Integer> to the
number of seconds in the Time portion of
<DateTime>

Date<DateTime>.addSeconds (<Integer>)

Years between

Returns the Integer number of years between
<DateTime1> and <Date2>. This function returns
a positive number if <DateTime2> is later than
<DateTime1>.

Integer<DateTime1>.yearsBetween
(<DateTime2>)

Months between

Returns the Integer number of months between
<DateTime1> and <DateTime2>. If the month
and year portions of <DateTime1> and
<DateTime2> are the same, the result is
zero. This function returns a positive number if
<DateTime2> is later than <DateTime1>.

Integer<DateTime1>.monthsBetween
(<DateTime2>)

Days between

Returns the Integer number of days between
<DateTime1> and <DateTime2>. If the two dates
differ by less than a full 24-hour period, the value
is zero. This function returns a positive number if
<DateTime2> is later than <DateTime1>.

Integer<DateTime1>.daysBetween
(<DateTime2>)

Hours between

Returns the Integer number of hours between
<DateTime1> and <DateTime2>. If the two dates
differ by less than a full hour, the value is zero.
This function returns a positive number if
<DateTime2> is later than <DateTime1>.

Integer<DateTime1>.hoursBetween
(<DateTime2>)

Minutes between

Returns the Integer number of minutes between
<DateTime1> and <DateTime2>. This function
returns a positive number if <DateTime2> is later
than <DateTime1>.

Integer<DateTime1>.minsBetween
(<DateTime2>)

Seconds between

25Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Returns the Integer number of seconds between
<DateTime1> and <DateTime2>. This function
returns a positive number if <DateTime2> is later
than <DateTime1>.

Integer<DateTime1>.secsBetween (<DateTime2>)

Day of Week

Returns an Integer corresponding to day of the
week, with Sunday equal to 1, in <DateTime>.

Integer<DateTime>.dayOfWeek

Week of Year

Returns an Integer from 1 to 52, equal to the week
number within the year in <DateTime>

Integer<DateTime>.weekOfYear

Day of Year

Returns an Integer from 1 to 366, equal to the day
number within the year in <DateTime>

Integer<DateTime>.dayOfYear

Week of Month

Returns an Integer from 1 to 6, equal to the week
number within the month in <DateTime> or
<Date>. A week begins on Sunday and ends on
Saturday.

Integer<DateTime>.weekOfMonth

To Date

Returns the date portion only of DateTimeDate<DateTime>.toDate

To Time

Returns the time portion only of DateTimeTime<DateTime>.toTime

To String

Converts DateTime to a String with date and time
information

String<DateTime>.toString

getMilliseconds

Returns the internal date/time, namely the number
of milliseconds that have transpired since the
epoch 1/1/1970 00:00:00 GMT.

Integer<DateTime>.getMilliseconds

toZulu

Returns an ISO-8601-compliant date-time as a
String.

String<DateTime>.toZulu

Progress Corticon: Rule Language: Version 6.326

Chapter 4: Rule operators

Decimal
In this section, wherever the syntax includes <Number>, either Integer or Decimal data types may be used.

Corticon's Decimal attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <Number1> is the same
as <Number2>.

Boolean<Number1> = <Number2>

Equals (used as an assignment)

Assigns the value of <Number2> to the value of
<Number1>.

Number<Number1> = <Number2>

Not Equal To

Returns a value of true if <Number1> is not equal
to <Number2>.

Boolean<Number1> <> <Number2>

Less than

Returns a value of true if <Number1> is less than
<Number2>.

Boolean<Number1> < <Number2>

Greater than

Returns a value of true if <Number1> is greater
than <Number2>.

Boolean<Number1> > <Number2>

Less than or Equal to

Returns a value of true if <Number1> is less than
or equal to <Number2>.

Boolean<Number1> <= <Number2>

Greater than or Equal to

Returns a value of true if <Number1> is greater
than or equal to <Number2>.

Boolean<Number1> >= <Number2>

In (Range)

Returns a value of true if attributeReference
is in the range of Decimal values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

27Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Add

Returns the sum of <Number1> and <Number2>.
The resulting data type is the more expansive of
either <Number1> or <Number2>. For example,
if an Integer value is added to a Decimal value,
the resulting value will be a Decimal. See
Precedence of rule operators on page 221.

Number<Number1> + <Number2>

Subtract

Subtracts <Number2> from <Number1>. The
resulting data type is the more expansive of either
<Number1> or <Number2>. See Precedence of
rule operators on page 221.

Number<Number1> - <Number2>

Multiply

Returns the product of <Number1> and
<Number2>. The resulting data type is the more
expansive of either <Number1> or
<Number2>. See Precedence of rule operators
on page 221.

Number<Number1> * <Number2>

Divide

Divides <Number1> by <Number2>. The resulting
data type is the more expansive of either
<Number1> or <Number2>. See Precedence of
rule operators on page 221.

Number<Number1> / <Number2>

Exponent

Raises <Number1> to the power of <Number2>.
The resulting data type is the more expansive of
either <Number1> or <Number2>. See
Precedence of rule operators on page 221.

Number<Number1> ** <Number2>

Increment

Increments <Number1> by <Number2>. The data
type of <Number1> must accommodate the
addition of <Number2>. See Precedence of rule
operators on page 221.

Number<Number1> += <Number2>

Decrement

Progress Corticon: Rule Language: Version 6.328

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Decrements <Number1> by the value of
<Number2>. The data type of <Number1> must
accommodate the addition of <Number2>. See
Precedence of rule operators on page 221.

Number<Number1> -= <Number2>

Absolute Value

Returns the absolute value of <Number>. If the
<Number> is positive, <Number> itself is returned;
if <Number> is negative, the negation of
<Number> is returned.

Decimal<Decimal>.absVal

Floor

Returns the largest (closest to positive infinity)
Integer that is not greater than <Number>.

Integer<Decimal>.floor

Round

Rounds <Decimal> to the nearest Integer.Decimal<Decimal>.round

Round(n)

Rounds <Decimal> to the number of decimal
places specified by <Integer>.

Decimal<Decimal>.round(<Integer>)

To Integer

Converts an attribute of type Decimal to type
Integer. Decimals will have the decimal point and
fraction (those digits to the right of the decimal
point) truncated.

Integer<Decimal>.toInteger

To String

Converts an attribute of type Decimal to type stringString<Decimal>.toString

Maximum Value

Returns the greater of <Decimal> and <Number>.Number<Decimal>.max(<Number>)

Minimum Value

Returns the lesser of <Decimal> and <Number>.Number<Decimal>.min(<Number>)

Logarithm (base 10)

Returns the logarithm (base 10) of <Decimal>.
<Decimal> may not be zero.

Decimal<Decimal>.log

Logarithm (base x)

29Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Returns the logarithm (base <Decimal2>) of
<Decimal1>. <Decimal1> may not be zero.

Decimal<Decimal1>.log(<Decimal2>)

Natural Logarithm

Returns the logarithm (base e) of
<Decimal>.<Decimal> may not be zero.

Decimal<Decimal>.ln

Random

Returns a random decimal between minRange
and maxRange.

Decimal<Decimal>.random

truncate

Truncates "this" Decimal value to an integer by
removing the fractional portion.

Integer<Decimal>.truncate

fraction

Extracts the fraction portion of "this" Decimal.Decimal<Decimal>.fraction

movePoint(places)

Moves the Decimal value's point moved n places
where n can be a positive (moves right) or negative
(moves left) value.

Decimal<Decimal>.movePoint
(places:Integer)

Integer
In this section, wherever the syntax includes <Number>, either Integer or Decimal data types may be used.

Corticon's Integer attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <Number1> is the same
as <Number2>.

Boolean<Number1> = <Number2>

Equals (used as an assignment)

Assigns the value of <Number2> to the value of
<Number1>. The data type of <Number1> must
be expansive enough to accommodate
<Number2>.

Number<Number1> = <Number2>

Not Equal To

Progress Corticon: Rule Language: Version 6.330

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns a value of true if <Number1> is not equal
to <Number2>.

Boolean<Number1> <> <Number2>

Less than

Returns a value of true if <Number1> is less than
<Number2>.

Boolean<Number1> < <Number2>

Greater than

Returns a value of true if <Number1> is greater
than <Number2>.

Boolean<Number1> > <Number2>

Less than or Equal to

Returns a value of true if <Number1> is less than
or equal to <Number2>.

Boolean<Number1> <= <Number2>

Greater than or Equal to

Returns a value of true if <Number1> is greater
than or equal to <Number2>.

Boolean<Number1> >= <Number2>

In (Range)

Returns a value of true if attributeReference
is in the range of Integer values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Add

Returns the sum of <Number1> and <Number2>.
The resulting data type is the more expansive of
either <Number1> or <Number2>. For example,
if an Integer value is added to a Decimal value,
the resulting value will be a Decimal. See
Precedence of rule operators on page 221.

Number<Number1> + <Number2>

Subtract

31Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Subtracts <Number2> from <Number1>. The
resulting data type is the more expansive of either
<Number1> or <Number2>. See Precedence of
rule operators on page 221.

Number<Number1> - <Number2>

Multiply

Returns the product of <Number1> and
<Number2>. The resulting data type is the more
expansive of either <Number1> or
<Number2>. See Precedence of rule operators
on page 221.

Number<Number1> * <Number2>

Divide

Divides <Number1> by <Number2>. The resulting
data type is the more expansive of either
<Number1> or <Number2>. See Precedence of
rule operators on page 221.

Number<Number1> / <Number2>

Increment

Increments <Number1> by <Number2>. The data
type of <Number1> must accommodate the
addition of <Number2>. See Precedence of rule
operators on page 221.

Number<Number1> += <Number2>

Decrement

Decrements <Number1> by the value of
<Number2>. The data type of <Number1> must
accommodate the addition of <Number2>. See
Precedence of rule operators on page 221.

Number<Number1> -= <Number2>

Absolute value on page 51.

Returns the absolute value of <Integer>. If the
<Integer> is positive, <Integer> itself is
returned; if <Integer> is negative, the negation
of <Integer> is returned.

Number<Integer>.absVal

To Decimal

Converts an attribute of type Integer to type
Decimal.

Decimal<Integer>.toDecimal

To String

Converts an attribute of type Integer to type String.String<Integer>.toString

Maximum Value

Progress Corticon: Rule Language: Version 6.332

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns the greater of <Integer1> and
<Integer2>.

Integer<Integer1>.max(<Integer2>)

Minimum Value

Returns the lesser of <Integer1> and
<Integer2>.

Integer<Integer1>.min(<Integer2>)

Div

Returns the whole number of times that
<Integer2> fits within <Integer1> - any
remainder is discarded.

Integer<Integer1>.div(<Integer2>)

Mod

Returns the whole number remainder that results
from dividing <Integer1> by <Integer2>. If the
remainder is a fraction, then zero is returned.

Integer<Integer1>.mod(<Integer2>)

Logarithm (base 10)

Returns the logarithm (base 10) of
<Integer>. <Integer> may not be zero.

Decimal<Integer>.log

Logarithm (base x)

Returns the logarithm (base <Decimal>) of
<Integer>. <Integer> may not be zero.

Decimal<Integer>.log(<Decimal>)

Natural Logarithm

Returns the natural logarithm (base e) of
<Number>. <Integer> may not be zero.

Decimal<Integer>.ln

Random

Returns a random integer between minRange and
maxRange.

Integer<Integer>.random

isProbablePrime(certainty)

Returns true if this Integer is probably prime; false
if definitely is not prime.

Boolean<Integer>.isProbablePrime
(certainty:Integer)

gcd(val)

Returns the greatest common divisor of the
absolute value of this and the absolute value of
val.

Integer<Integer>.gcd(val:Integer)

33Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

negate

Returns the negative value of this integer.Integer<Integer>.negate

String
Corticon's String attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <String1> exactly
matches <String2>. Both case and length are
examined to determine equality. See Character
precedence in Unicode and Java Collator on
page 217 for character precedence.

Boolean<String1> = <String2>

Equals (used as an assignment)

Assigns the value of <String2> to the value of
<String1>.

String<String1> = <String2>

Not Equal to

Returns a value of true if <String1> is not equal
to <String2>.

Boolean<String1> <> <String2>

Less than

Returns a value of true if <String1> is less than
<String2>. See Character precedence in
Unicode and Java Collator on page 217 for
character precedence.

Boolean<String1> < <String2>

Greater than on page 103

Returns a value of true if <String1> is greater
than <String2>. See Character precedence in
Unicode and Java Collator on page 217 for
character precedence.

Boolean<String1> > <String2>

Less than or Equal to

Returns a value of true if <String1> is less than
or equal to <String2>. See Character
precedence in Unicode and Java Collator on
page 217 for character precedence.

Boolean<String1> <= <String2>

Greater than or Equal to

Progress Corticon: Rule Language: Version 6.334

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns a value of true if <String1> is greater
than or equal to <String2>. See Character
precedence in Unicode and Java Collator on
page 217 for character precedence.

Boolean<String1> >= <String2>

In (Range)

Returns a value of true if attributeReference
is in the range of String values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Adding Strings

Concatenates <String1> to <String2>.
Alternative syntax.

String<String1> + <String2>

Size

Returns the number of characters in <String>.String<String>.size

Concatenate

Concatenates <String1> to <String2>.String<String1>.concat(<String2>)

Uppercase

Converts all characters <String> to uppercase.String<String>.toUpper

Lowercase

Converts all characters in <String> to
lowercase.

String<String>.toLower

To DateTime

Converts the value in <String> to data type
DateTime ONLY if all characters in <String>
correspond to a valid DateTime mask (format)

DateTime<String>.toDateTime

To Decimal

35Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Converts an attribute of type String to data type
Decimal ONLY if all characters in <String> are
numeric and contain not more than one decimal
point. If any non-numeric characters are present
(other than a single decimal point or leading
minus sign), no value is returned.

Decimal<String>.toDecimal

To Integer

Converts an attribute of type String to type
Integer ONLY if all characters in <String> are
numeric. If any non-numeric characters are
present, no value is returned.

Integer<String>.toInteger

Substring

Returns that portion of <String> between
character positions <Integer1> and
Integer2>.

String<String>.substring
(<Integer1>,<Integer2>)

Equals Ignoring Case

Returns a value of true if <String1> is the same
as <String2>, irrespective of case.

Boolean<String1>.equalsIgnoreCase
(<String2>)

Starts with

Returns a value of true if the <String1> begins
with the characters specified in <String2>.

Boolean<String1>.startsWith (<String2>)

Ends with

Evaluates the contents of <String1> and
returns a value of true if the String ends with the
characters specified in <String2>.

Boolean<String1>.endsWith (<String2>)

Contains

Evaluates the contents of <String1> and
returns a value of true if it contains the exact
characters defined by <String2>

Boolean<String1>.contains (<String2>)

Equals

Returns a value of true if <String1> is the same
as <String2>.

Boolean<String1>.equals (<String2>)

Index Of

Progress Corticon: Rule Language: Version 6.336

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns the beginning character position number
of <String2> within <String1>, if <String1>
contains <String2>. If it does not, the function
returns a value of zero.

Integer<String1>.indexOf (<String2)

Replace String

Returns a new String where the instances of the
String to be replaced are replaced by the value
of the replacement String.

String<String>.replaceString(stringToBeReplaced,replacementString)

Regular expression replace String

Returns a new String where the Strings matching
the regular expression are replaced by the
replacement String.

String<String>.regexReplaceString(regularExpression,replacementString)

Matches

Returns true if the regular expression matches
the String.

Boolean<String>.matches(regularExpression:String)

containsBlanks

Determines whether the specified String contains
any blanks.

Boolean<String>.containsBlanks

characterAt(index)

Returns the character at the specified position
in the String.

String<String>.characterAt(index:Integer)

isInteger

Determines whether "this" String contains only
integer digits.

Note: This operator examines each character
in a string to determine whether it is in the range
0 to 9. Therefore, the operator returns true
when the entire string evaluates as a positive
integer, and falsewhen aminus sign is the first
character of a string that would evaluate as a
negative integer. A new extended operator could
be created if the string as a whole is to be
evaluated as true whether positive or negative
(for example, by allowing the first character to
be a minus sign.)

Boolean<String>.isInteger

trimSpaces

37Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Trims leading and trailing spaces from "this"
String.

String<String>.trimSpaces

charsIn(validSet)

Determines whether "this" String contains only
characters specified in the validSet.

Boolean<String>.charsIn(validSet:String)

Time
Corticon's Time attribute operators are as follows:

DescriptionReturnsName and Syntax

Equals (used as a comparison)

Returns a value of true if <Time1> is the same as
<Time2>, including both the Date and the Time
portions

Boolean<Time1> = <Time2>

Equals (used as an assignment)

Assigns the value of <Time2> to <Time1>DateTime<Time1> = <Time2>

Not Equal To

Returns a value of true if <Time1> does not equal
<Time2>

Boolean<Time1> <> <Time2>

Less than

Returns a value of true if <Time1> is less than
<Time2>

Boolean<Time1> < <Time2>

Greater than

Returns a value of true if <Time1> is greater than
<Time2>

Boolean<Time1> > <Time2>

Less than or Equal to

Returns a value of true if <Time1> is less than or
equal to <Time2>

Boolean<Time1> <= <Time2>

Greater than or Equal to

Returns a value of true if <Time1> is greater than
or equal to <Time2>

Boolean<Time1> >= <Time2>

Progress Corticon: Rule Language: Version 6.338

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

In (Range)

Returns a value of true if attributeReference
is in the range of Time values from..to, and
where opening and closing parentheses (
)indicate exclusion of that limit and square
brackets [] indicate inclusion of that limit.

BooleanattributeReference in [
|(rangeExpression)|]

In (List)

Returns a value of true if attributeReference
is in the comma-delimited list of literal values,
defined enumeration values, or - if in use -
enumeration labels.

BooleanattributeReference in
{listExpression}

Hour

Returns the hour portion of <Time>. The returned
value is based on a 24-hour clock.

Integer<Time>.hour

Minute

Returns the minute portion of <Time> as an
Integer between 0 and 59

Integer<Time>.min

Second

Returns the seconds portion of <Time> as an
Integer between 0 and 59

Integer<Time>.sec

Add hours

Adds the number of hours in <Integer> to the
number of hours in the Time portion of <Time>

Date<Time>.addHours (<Integer>)

Add minutes

Adds the number of minutes in <Integer> to the
number of minutes in the Time portion of <Time>

Date<Time>.addMinutes (<Integer>)

Add seconds

Adds the number of seconds in <Integer> to the
number of seconds in the Time portion of <Time>

Date<Time>.addSeconds (<Integer>)

Hours between

39Progress Corticon: Rule Language: Version 6.3

Attribute operators

DescriptionReturnsName and Syntax

Returns the Integer number of hours between
<Time1> and <Time2>. If the two times differ by
less than a full hour, the value is zero. This function
returns a positive number if <Time2> is later than
<Time1>.

Integer<Time1>.hoursBetween (<Time2>)

Minutes between

Returns the Integer number of minutes between
<Time1> and <Time2>. This function returns a
positive number if <Time2> is later than <Time1>.

Integer<Time1>.minsBetween (<Time2>)

Seconds between

Returns the Integer number of seconds between
<Time1> and <Time2>. This function returns a
positive number if <Time2> is later than <Time1>.

Integer<Time1>.secsBetween (<Time2>)

To String

Converts <Time> to a String with date and time
information

String<Time>.toString

To DateTime

Returns a DateTime where the time portion is
equal to the value of <Time> and the date portion
is equal to the epoch.

DateTime<Time>.toDateTime

getMilliseconds

Returns the internal date/time, namely the number
of milliseconds that have transpired since the
epoch 1/1/1970 00:00:00 GMT.

Integer<Time>.getMilliseconds

getTimeName

Returns a String that states whether the time is
morning, afternoon, or evening.

String<Time>.getTimeName

Entity and Association operators
The Corticon rule language supports Entity and Association operators categorized as Entity, Collection, and
Sequence.

Progress Corticon: Rule Language: Version 6.340

Chapter 4: Rule operators

Entity
Corticon's Entity operators are as follows:

DescriptionReturnsName and Syntax

New

Creates a new instance of <Entity>. Expressions
(optional to assign attribute values) in square
brackets [..] must be written in the form: attribute
= value.

Entity<Entity> .new [<Expression1>,…]

New Unique

Creates a new instance of <Entity> only if the
instance created is unique as defined by optional
<Expression1>,…

Entity<Entity> .newUnique
[<Expression1>,…]

Clone

Creates a new instance of <Entity> with the
same attributes and their respective values.
Expressions (optional to override attribute values)
in square brackets [..] must be written in the form:
attribute = value.

Entity<Entity>.clone [<Expression1>,…]

Remove

Deletes the entity from memory and from the
resultant XML document. Children can be removed
as well when set to (true, or retained after
moving to root (false). Blank or no value
defaults to true.

Entity< Entity>.remove [(true)|(false)]

Collection
Corticon's Collection operators are as follows:

DescriptionReturnsName and Syntax

Replace element(s)

replaces all elements in <Collection1> with
elements of <Collection2> or with <Entity>,
provided the new associations are allowed by the
Business Vocabulary.

modifies a
collection<Collection1> = <Collection2>

<Collection1> = <Entity>

Associate element(s)

41Progress Corticon: Rule Language: Version 6.3

Entity and Association operators

DescriptionReturnsName and Syntax

Associates all elements of <Collection2> or
<Entity> with <Collection1>. Every
<Collection> must be expressed as a unique
alias.

modifies a
collection<Collection1> += <Collection2>

<Collection1> += <Entity>

Disassociate element(s)

Disassociates all elements of <Collection2>
from <Collection1>. Does not delete the
disassociated elements. Every <Collection>
must be expressed as a unique alias.

modifies a
collection

<Collection1> -= <Collection2>

Is empty

Returns a value of true if <Collection> contains
no elements

Boolean<Collection> ->isEmpty

Not empty

Returns a value of true if <Collection> contains
at least one element.

Boolean<Collection> ->notEmpty

Exists

Returns a value of true if <Expression> holds
true for at least one element of <Collection>

Boolean<Collection> ->exists (<Expression>)

For all

Returns a value of true if every <Expression>
holds true for every element of <Collection>

Boolean<Collection> ->forAll (<Expression>)

Sorted by

Sequences the elements of <Collection> in
ascending order, using the value of <Attribute>
as the index. <Collection> must be expressed
as a unique alias.

converts a
collection
into a
sequence

<Collection> ->sortedBy (<Attribute>)

Sorted by descending

Sequences the elements of <Collection> in
descending order, using the value of
<Attribute> as the index. <Collection>must
be expressed as a unique alias.

converts a
collection
into a
sequence

<Collection> ->sortedByDesc
(<Attribute>)

Iterate

Executes <Expression> for every element in
<Collection>. <Collection> must be
expressed as a unique alias.

<Collection> ->iterate(<Expression>)

Progress Corticon: Rule Language: Version 6.342

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Size of collection

Returns the number of elements in
<Collection>. <Collection> must be
expressed as a unique alias.

Integer<Collection> ->size

Sum

Sums the values of the specified <attribute>
for all elements in <Collection>. <attribute>
must be a numeric data type.

Number<Collection.attribute> ->sum

Average

Averages all of the specified attributes in
<Collection>. <Collection> must be
expressed as a unique alias. <attribute> must
be a numeric data type

Number<Collection.attribute> ->avg

Minimum

Returns the lowest value of <attribute> for all
elements in <Collection>. <attribute>must
be a numeric data type

Number<Collection.attribute> ->min

Maximum

Returns the highest value of <attribute> for all
elements in <Collection>. <attribute>must
be a numeric data type

Number<Collection.attribute> ->max

toSet

Returns a single String that is the set of Strings in
this collection.

StringCollection.toSet

allContain(lookFor)

Determines whether all the strings in this collection
contain the lookFor String

BooleanCollection.allContain
(lookFor:String)

uniqueCount

Returns the count of the unique Strings in this
collection.

IntegerCollection.uniqueCount

43Progress Corticon: Rule Language: Version 6.3

Entity and Association operators

Sequence
Sequence operators act on collections that have already been ordered by a sorting operator (see sortedBy
and sortedByDesc). In other words, sequence operators operate on collections that have been turned into
sequences. The notation <Sequence> used below, is shorthand for a completed sorting operation. For example:

<Collection> -> sortedBy(<Attribute>)

produces a <Sequence>, in this case the elements of <Collection> arranged in ascending order using
<Attribute> as the index. This <Sequence> can then be used with one of the sequence operators described
below. The design of the Object Constraint Language (upon which the Corticon Rule Language is based),
allows for the “chaining” of operators, so a collection operator and a sequence operator can be used in the
same expression to produce a sequence and identify a particular element of that sequence in the same step.
For example:

<Entity.attribute1> = <Collection> ->sortedBy(<Attribute3>) ->first.<Attribute2>

performs the following:

1. Sorts <Collection> in ascending order according to <Attribute3>, turning it into a <Sequence>

2. Locates the first element of <Sequence>

3. Reads the value of <Attribute2> of the first element

4. Assigns the value of <Attribute2> of the first element to <Entity.attribute1>

Corticon's Sequence operators are as follows:

DescriptionReturnsName and Syntax

At

Returns the element at position <Integer>.
<Sequence> must be expressed as a unique
alias.

Entity<Sequence> ->at(<Integer>)

First

Returns the first element of <Sequence>.
<Sequence> must be expressed as a unique
alias.

Entity<Sequence> ->first

Last

Returns the last element of <Sequence>.
<Sequence> must be expressed as a unique
alias.

Entity<Sequence> ->last

SubSequence

Returns a Sequence containing all elements of
<Sequence> between the positions integer1
and integer2.

Entity<Sequence>
->subSequence(integer1,integer2)

First(number)

Progress Corticon: Rule Language: Version 6.344

Chapter 4: Rule operators

DescriptionReturnsName and Syntax

Returns a Sequence containing elements of
<Sequence> from the first element to integer;
in other words, ->first(x) is effectively
>subSequence(1,x)

Entity<Sequence> ->first(integer)

Last(number)

Returns a Sequence containing elements of
<Sequence> between the end position of the
collection and integer; in other words, in a
sequence of n elements, ->last(x) is
effectively >subSequence(n-x+1,n)

Entity<Sequence> ->last(integer)

Trend

Returns a 4-character string, INCR, DECR,
CNST, or NONE depending on the trend of
<Attribute> within <Sequence>.

String<Attribute> -> <Sequence>.trend

mavg(elements)

Returns a single decimal value that is the
average of the number of elements specified.

Decimal<Sequence.decimal>
.mavg(elements:Integer)

Sorted Alias: next

Operates against a Sorted Alias (a special
cached Sequence) inside a filter expression.
The Rulesheet is set into a Ruleflow that iterates
to bind the alias in each successive invocation
to the next element in the sequence. For more
information, see the topic "Sorted Alias" in the
Collections chapter of the Corticon Studio: Rule
Modeling Guide..

->next

General terms
Corticon's General operators are categorized as Literals and Functions.

Literals
Literal Terms can be used in any section of the Rulesheet, except Scope and Rule Statements. Exceptions
to this general statement exist – see individual literals for detailed usage restrictions.

Corticon's Literals operators are as follows:

DescriptionReturnsName and Syntax

Null

45Progress Corticon: Rule Language: Version 6.3

General terms

DescriptionReturnsName and Syntax

The null value corresponds to one of three different
scenarios:

• the absence of an attribute in a Ruletest
scenario

• the absence of data for an attribute in a
Ruletest scenario

• an object that has a value of null

nonenull

True

Represents Boolean value trueBooleantrue or T

False

Represents the Boolean value falseBooleanfalse or F

Other

When included in a condition’s Values set, other
represents any value not explicitly included in the
set, including null.

anyother

CellValue

cellValue is a variable whose value is determined
by the rule Column that executes

anycellValue

Functions
Corticon's Functions operators are as follows:

DescriptionReturnsName and Syntax

Now

Returns the current system date and time when
the rule is executed.

Datenow

Today

Returns the current system date when the rule is
executed.

Datetoday

Progress Corticon: Rule Language: Version 6.346

Chapter 4: Rule operators

5
Rule operator details and examples

The following pages describe each operator in greater detail. Each Rule Operator has the following sections

1. Syntax – Describes the standard syntax used with this operator. In this section, as in the previous summary
tables, the angle bracket convention <..> is used to indicate what types of terms and their data types can
be used with the operator. When using the operator with real terms from the Vocabulary, do not include the
angle brackets.

2. Description – Provides a plain-language description of the operator's purpose and details of its use. Important
reminders, tips, or cautions are included in this section.

3. Usage Restrictions – Describes what limitations exist for this operator, and where an operator may not be
used in a Rulesheet. Such limitations are rare, but important to a good understanding of Corticon Studio.

4. Example – Shows an example of each operator in a Rulesheet. A screenshot of the example Rulesheet is
provided, with portions of the Rulesheet not used by the example collapsed or truncated for clarity. The
example also includes sample input and output data for Ruletest scenarios run against the Rulesheet.

The entire list of operators is presented in alphabetic order.

For details, see the following topics:

• Absolute value

• Add numbers

• Add strings

• Add days

• Add hours

• Add minutes

47Progress Corticon: Rule Language: Version 6.3

• Add months

• Add seconds

• Add years

• Associate elements

• At

• Average

• CellValue

• Character at

• Clone

• Concatenate

• Contains

• Day

• Day of week

• Day of year

• Days between

• Decrement

• Disassociate elements

• Divide

• Div

• Ends with

• Equals ignoring case

• Equals when used as an assignment

• Equals when used as a comparison

• Equals when using Strings

• Exists

• Exponent

• False

• First

• First NUMBER

• Floor

• For all

• Get Milliseconds

• Greater than

Progress Corticon: Rule Language: Version 6.348

Chapter 5: Rule operator details and examples

• Greater than or equal to

• Hour

• Hours between

• In LIST

• In RANGE

• Increment

• Index of

• Is integer

• Is empty

• Iterate

• Last

• Last NUMBER

• Less than

• Less than or equal to

• Logarithm BASE 10

• Logarithm BASE X

• Lowercase

• Matches

• Maximum value

• Maximum value COLLECTION

• Minimum value

• Minimum value COLLECTION

• Minute

• Minutes between

• Mod

• Month

• Months between

• Multiply

• Natural logarithm

• New

• New unique

• Not

• Not empty

49Progress Corticon: Rule Language: Version 6.3

• Not equal to

• Now

• Null

• Other

• Or

• Random

• Regular expression to replace String

• Remove element

• Replace elements

• Replace String

• Round

• Second

• Seconds between

• Size of collection

• Size of string

• Sorted by

• Sorted by descending

• Starts with

• SubSequence

• Substring

• Subtract

• Sum

• Today

• To date Casting a dateTime to a date

• To dateTime Casting a date to a dateTime

• To dateTime Casting a string to a dateTime

• To dateTime Casting a time to a dateTime

• To dateTime Timezone offset

• To decimal

• To integer

• To string

• To time Casting a dateTime to a time

• Trend

Progress Corticon: Rule Language: Version 6.350

Chapter 5: Rule operator details and examples

• Trim spaces

• True

• Uppercase

• Week of month

• Week of year

• Year

• Years between

Absolute value
SYNTAX
<Number>.absVal

DESCRIPTION
Returns the absolute value of <Number>. If the <Number> is positive, <Number> itself is returned; if <Number>
is negative, the negation of <Number> is returned.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .absVal to produce the absolute value of decimal2 and assign it to decimal1

SAMPLE RULETEST
A sample Ruletest provides decimal2 values for three different scenarios of Entity1. Input and Output
panels are shown below.

51Progress Corticon: Rule Language: Version 6.3

Absolute value

Add numbers
SYNTAX
<Number1> + <Number2>

DESCRIPTION
Adds <Number1> to <Number2>. The resulting data type is the more expansive of those of <Number1> and
<Number2>. For example, if you are adding an Integer value and a Decimal value, the resulting value will be
a Decimal. See Precedence of rule operators on page 221.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses the add numbers operation to add the value of decimal2 to the value of integer1
and assign the result to decimal1

Progress Corticon: Rule Language: Version 6.352

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides an integer1 value of 300which is added to the value of decimal2 and assigned
to the value of decimal1 for three instances of Entity1. Input and Output panels are shown below.

Add strings
SYNTAX
<String1> + <String2>

DESCRIPTION
Adds <String1> to <String2>. This has the same effect as using the .concat operator. However, the “+”
syntax permits concatenation of more than two String values without nesting, as shown in the example below.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses add strings operation to add the String AAA to string2 to ZZZ and assign the
result to string1

53Progress Corticon: Rule Language: Version 6.3

Add strings

SAMPLE RULETEST

Add days
SYNTAX
<DateTime>.addDays(<Integer>)

<Date>.addDays(<Integer>)

DESCRIPTION
Adds the number of days in <Integer> to the number of days in <DateTime> or <Date>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .addDays to add 45 days to the value of dateTime2 and assign the result to
dateTime1.

Progress Corticon: Rule Language: Version 6.354

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below. Notice the month portion of dateTime1 also changes accordingly.

Add hours
SYNTAX
<DateTime>.addHours(<Integer>)

<Time>.addHours(<Integer>)

DESCRIPTION
Adds the number of hours in <Integer> to the number of hours in the Time portion of <DateTime> or <Time>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

55Progress Corticon: Rule Language: Version 6.3

Add hours

RULESHEET EXAMPLE
This sample Rulesheet uses the . addHours to add 30 hours to the value of dateTime2 and assign the result
to dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below.

Add minutes
SYNTAX
<DateTime>.addMinutes(<Integer>)

<Time>.addMinutes(<Integer>)

DESCRIPTION
Adds the number of minutes in <Integer> to the number of minutes in the Time portion of <DateTime> or
<Time>.

Progress Corticon: Rule Language: Version 6.356

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses the . addMinutes add 90 minutes to the value of dateTime2 and assign the
result to dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below.

Add months
SYNTAX
<DateTime>.addMonths(<Integer>)

<Date>.addMonths(<Integer>)

DESCRIPTION
Adds the number of months in <Integer> to the number of months in <DateTime> or <Date>.

57Progress Corticon: Rule Language: Version 6.3

Add months

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses . addMonths in a Nonconditional rule to add 10months to the value of dateTime2
and assign the result to dateTime1.

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below. Notice the year portion of dateTime1 also changes accordingly.

Add seconds
SYNTAX
<DateTime>.addSeconds(<Integer>)

<Time>.addSeconds(<Integer>)

Progress Corticon: Rule Language: Version 6.358

Chapter 5: Rule operator details and examples

DESCRIPTION
Adds the number of seconds in <Integer> to the number of seconds in the Time portion of <DateTime> or
<Time>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .addSeconds in a Nonconditional rule to add 90 seconds to the value of
timeOnly2 and assign the result to timeOnly1.

SAMPLE RULETEST
A sample Ruletest provides values of timeOnly2 for three instances of Entity1. Input and Output panels
are shown below. Notice how the time “wraps” around to the beginning of the day, even though Time data type
does not include date information.

59Progress Corticon: Rule Language: Version 6.3

Add seconds

Add years
SYNTAX
<DateTime>.addYears(<Integer>)

<Date>.addYears(<Integer>)

DESCRIPTION
Adds the number of years in <Integer> to the number of years in the Date portion of <DateTime> or <Date>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .addYears in a Nonconditional rule to add 10 years to the value of dateOnly2
and assign the result to dateOnly1.

SAMPLE RULETEST
A sample Ruletest provides values of dateOnly2 for three instances of Entity1. Input and Output panels
are shown below.

Progress Corticon: Rule Language: Version 6.360

Chapter 5: Rule operator details and examples

Associate elements
SYNTAX
<Collection1> += <Collection2>

<Collection1> += <Entity>

DESCRIPTION
Associates all elements of <Collection2> or a single element named <Entity> with <Collection1>,
provided such an association is allowed by the Vocabulary. Every collection must be uniquely identified with
an alias or role.
If the cardinality of the association between the parent entity of <Collection> and the <Entity> being
added is “one-to-one” (a straight line icon beside the association in the Rule Vocabulary), then this associate
element syntax is not used. Instead, replace element syntax is used, since the collection can contain only one
element, and any element present will be replaced by the new element.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: associate
element may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage
restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses associate element to associate an element of collection2 to collection1
when boolean1 value of any element in collection2 is true. Note that the Action is not associating all
elements in collection2 with collection1, only those elements within collection2 that satisfy the
condition.

61Progress Corticon: Rule Language: Version 6.3

Associate elements

SAMPLE RULETEST: HIER
A sample Ruletest provides two examples of Entity2 with boolean1 values, and a single Entity1. Input
and Output panels shows the association embedded in the parent entity:

SAMPLE RULETEST: FLAT
Setting two properties in the Studio's brms.properties file enables a Flat payload:

com.corticon.tester.ccserver.execute.format=XML
com.corticon.designer.tester.xmlmessagingstyle=Flat

After restarting Studio, running the same sample Ruletest shows the association dropping to the root with an
href entity:

Progress Corticon: Rule Language: Version 6.362

Chapter 5: Rule operator details and examples

At
SYNTAX
<Sequence> ->at(<Integer>).<Attribute1>

DESCRIPTION
Returns the value of <Attribute1> for the element at position <Integer> in <Sequence>. Another operator,
such as ->sortedBy, must be used to transform a <Collection> into a <Sequence> before ->at may be
used. <Sequence> must be expressed as a unique alias. See "Advanced collection sorting syntax" in the Rule
Modeling Guide for more examples of usage.

<Attribute1> may be of any data type.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->at(2) to identify the second element of the sequence created by applying sortedBy
to collection1. Once identified, the value of the string1 attribute belonging to this second element is
evaluated. If the value of string1 is Joe, then boolean1 attribute of Entity1 is assigned the value of true.

63Progress Corticon: Rule Language: Version 6.3

At

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

Average
SYNTAX
<Collection.attribute> ->avg

DESCRIPTION
Averages the values of all of the specified attributes in <Collection>. <Collection> must be expressed
as a unique alias. <attribute> must be a numeric data type.

Progress Corticon: Rule Language: Version 6.364

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->avg to average the integer1 values of all elements in collection2, then
assigns the resulting value to decimal1 in Entity1. Note the use of the alias collection2 to represent
the collection of Entity2 elements associated with Entity1.

SAMPLE RULETEST
A sample Ruletest provides integer1 values for three elements in collection2. The following illustration
shows Input and Output panels:

CellValue
SYNTAX
Various, see Examples below

65Progress Corticon: Rule Language: Version 6.3

CellValue

DESCRIPTION
When used in an expression, cellValue performs text replacement where the value is determined by the rule
Column that executes. Using cellValue in a Condition or Action expression eliminates the need for multiple,
separate Rows to express the same logic.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: cellValue
may only be used in Condition and Action Rows (sections 3 and 5 in Sections of Rulesheet that correlate with
usage restrictions).

RULESHEET EXAMPLE 1
This sample Rulesheet uses cellValue to increment integer1 by the amount in the Action Cell of the rule
Column that fires. An equivalent Rulesheet which does not use cellValue is also shown for comparison purposes.

Equivalent Rulesheet without using cellValue:

SAMPLE RULETEST 1
A sample Ruletest provides two examples of boolean1. The following table shows Input and Output panels.

Progress Corticon: Rule Language: Version 6.366

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE 2
The following Rulesheet uses cellValue to evaluate whether collection1 includes at least one member with
a string1 value of the entry in the Conditions Cell of the rule Column.

SAMPLE RULETEST 2
A sample Ruletest provides three examples of collection1 – each member has a string1 value. Input
and Output panels are shown below.

67Progress Corticon: Rule Language: Version 6.3

CellValue

RULESHEET EXAMPLE 3
The following Rulesheet uses cellValue to create a new member of collection1 with string1 value equal
to the Action Cell in the rule Column that fires.

Progress Corticon: Rule Language: Version 6.368

Chapter 5: Rule operator details and examples

SAMPLE RULETEST 3
A sample Ruletest provides string1 values for three examples. The following illustration shows Ruletest Input
and Output panels. Notice that each collection1 already has one element prior to executing the test. This
simply ensures the results will be displayed in hierarchical style.

Character at
SYNTAX
<String>.characterAt(index:Integer)

DESCRIPTION
Returns the character at the specified position in the String.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This action-only operator parses the specified string, and then returns that character to the return character
string.

69Progress Corticon: Rule Language: Version 6.3

Character at

SAMPLE RULETEST
A sample Ruletest provides three elements that point out (1) the expected behavior, (2) the result when the
character is not alphanumeric, and (3) a null when there is no character at that position in the String.

Clone
SYNTAX
<Entity>.clone[<Expression1>,<Expression2>…]

DESCRIPTION
Copies the specified Entity and its attribute values to a new Entity where Expressions (in the form
attribute=value) override the corresponding cloned attribute values. The new Entity has no associations.
Where an Entity specifies an Entity Identity, that identity is not copied to its clone entity. For each Entity in
Collection, the operator creates a duplicate of Entity. The implementation is a shallow clone -- associations
are not duplicated.

Note: If the cloned entity is database-enabled and contains primary keys, the primary key values must be
specified in the qualifier clause or an exception will occur. If an Entity uses a Datastore Identity as its Identity
Strategy, a new identifier is created by the database for each clone.

Progress Corticon: Rule Language: Version 6.370

Chapter 5: Rule operator details and examples

Null values in the attribute set expressions - When there are any null attributes on the right hand side of a
clone assignment expression, the assignment does not occur. For example, in A.clone[attr=B.attr]
where B.attr is null, it will not override the value of the cloned A.attr. There are cases where the null
result is preferred. In a Studio's brms.properties you can add the property
com.corticon.reactor.rulebuilder.DisableNullCheckingOnClone=true so that the null checks
are removed. In the example, the value of the cloned A.attr will be null. Be aware that using this setting
on a Studio machine should be applied on any other machine that will work on a related project.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: clone may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with
usage restrictions).

Nested clone calls are not supported, such as E1.clone[assoc1 += E1.assoc1.clone[…]].

RULESHEET EXAMPLE
The following Rulesheet uses .clone to create a new Entity2 element when the value of qtyOrdered in
Entity1 is greater than the qtyShipped value. An alias is not required by the .clone operator, because it
is possible to create a new entity at the root level, without inserting it into a collection.

SAMPLE RULETEST
A sample Ruletest provides two collections of Entity1. Input, Output, and Expected panels are as follows:

71Progress Corticon: Rule Language: Version 6.3

Clone

RULESHEET EXAMPLE: COLLECTION
The following Rulesheet uses .clone to create a new Entity2 element in collection1 when Entity1 has
a non-zero qtyOrdered value.

Progress Corticon: Rule Language: Version 6.372

Chapter 5: Rule operator details and examples

SAMPLE RULETEST: COLLECTION
A sample Ruletest provides three collections of Entity1. Input and Output panels are illustrated below:

Concatenate
SYNTAX
<String1>.concat(<String2>)

DESCRIPTION
Concatenates <String1> to <String2>, placing <String2> at the end of <String1>

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

73Progress Corticon: Rule Language: Version 6.3

Concatenate

RULESHEET EXAMPLE
This sample Rulesheet uses .concat to create string1 by combining string1 and string2 from
Entity1.entity2.

SAMPLE RULETEST
A sample Ruletest provides three examples of string1 and string2. Input and Output panels are shown
below.

Progress Corticon: Rule Language: Version 6.374

Chapter 5: Rule operator details and examples

Contains
SYNTAX
<String1>.contains(<String2>)

DESCRIPTION
Evaluates <String1> and returns a value of true if it contains or includes the exact (case-sensitive) characters
specified in <String2>.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE 1
The following uses .contains to evaluate whether string1 includes the characters silver and assigns a
value to boolean1 for each outcome.

SAMPLE RULETEST 1
A sample Ruletest provides string1 values for three examples. Input and Output panels are shown below.
Note case sensitivity in these examples. Posted messages are not shown.

75Progress Corticon: Rule Language: Version 6.3

Contains

Day
SYNTAX
<DateTime>.day

<Date>.day
`

DESCRIPTION
Returns the day portion of <DateTime> or <Date> as an Integer between 1 and 31.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .day to assign a value to string1 and post a message.

Progress Corticon: Rule Language: Version 6.376

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides dateTime1 values for three examples. Input and Output panels are shown below.
Posted messages are not shown.

Day of week
SYNTAX
<DateTime>.dayOfWeek

<Date>.dayOfWeek

77Progress Corticon: Rule Language: Version 6.3

Day of week

DESCRIPTION
Returns an Integer between 1 and 7, corresponding to the table below:

day of the weekreturned Integer

Sunday1

Monday2

Tuesday3

Wednesday4

Thursday5

Friday6

Saturday7

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .dayOfWeek to assign a value to boolean1.

Progress Corticon: Rule Language: Version 6.378

Chapter 5: Rule operator details and examples

SAMPLE RULETEST

Day of year
SYNTAX
<DateTime>.dayOfYear

<Date>.dayOfYear

DESCRIPTION
Returns an Integer from 1 to 366, equal to the day number within the year.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .dayOfYear to assign a value to string1.

79Progress Corticon: Rule Language: Version 6.3

Day of year

SAMPLE RULETEST

Days between
SYNTAX
<DateTime1>.daysBetween(<DateTime2>)

<Date1>.daysBetween(<Date2>)

DESCRIPTION
Returns the Integer number of days between DateTimes or Dates. This function calculates the number of
milliseconds between the date values and divides that number by 86,400,000 (the number of milliseconds in
a day). Any fraction is truncated, leaving an Integer result. If the two dates differ by less than a full 24-hour
period, the value returned is zero. A positive Integer value is returned when <DateTime2> occurs after
<DateTime1>.

USAGE RESTRICTIONS
TheOperators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions

RULESHEET EXAMPLE
The following Rulesheet uses .daysBetween to determine the number of days that have elapsed between
dateTime1 and dateTime2, compare it to the values in the Condition cells, and assign a value to string1.

Progress Corticon: Rule Language: Version 6.380

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Decrement
SYNTAX
<Number1> -= <Number2>

DESCRIPTION
Decrements <Number1> by the value of <Number2>. The data type of <Number1> must accommodate the
subtraction of <Number2>. In other words, an Integer may not be decremented by a Decimal without using
another operator (such as .toInteger or Floor on page 99) to first convert the Decimal to an Integer.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: decrement
may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage restrictions).

81Progress Corticon: Rule Language: Version 6.3

Decrement

RULESHEET EXAMPLE
This sample Rulesheet uses decrement to reduce integer1 by the value of integer2 when boolean1 is
false.

SAMPLE RULETEST
A sample Ruletest provides three examples of integer1, integer2, and boolean1. Input and Output panels
are shown below.

Disassociate elements
SYNTAX
<Collection1> -= <Collection2>

DESCRIPTION
Disassociates all elements of <Collection2> from <Collection1>. Elements are not deleted, but once
disassociated from <Collection1>, they are moved to the root level of the data. <Collection1> must be
expressed as a unique alias. Contrast this behavior with remove, which deletes elements entirely.

Progress Corticon: Rule Language: Version 6.382

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
TheOperators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: disassociate
element may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage
restrictions).

RULESHEET EXAMPLE
This sample Rulesheet removes those elements from collection1 whose boolean1 value is true.

SAMPLE RULETEST
A sample Ruletest provides a collection with three elements. The illustration shows Input and Output panels:

Divide
SYNTAX
<Number1>/<Number2>

DESCRIPTION
Divides <Number1> by <Number2>. The resulting data type is the more expansive of those of <Number1>
and <Number2>.

83Progress Corticon: Rule Language: Version 6.3

Divide

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses divide to divide decimal1 by integer1 and assign the resulting value to
decimal2

SAMPLE RULETEST
A sample Ruletest provides decimal1 and integer1 values for three examples. Input and Output panels
are shown below.

Div
SYNTAX
<Integer1>.div(<Integer2>)

Progress Corticon: Rule Language: Version 6.384

Chapter 5: Rule operator details and examples

DESCRIPTION
Returns an Integer equal to the whole number of times that <Integer2> divides into <Integer1>. Any
remainder is discarded.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .div to calculate the whole number of times 3 divides into integer2, and assigns
the resulting value to integer1 .

SAMPLE RULETEST
A sample Ruletest provides integer2 values for three examples. Input and Output panels are shown below.

Ends with
SYNTAX
<String1>.endsWith(<String2>)

85Progress Corticon: Rule Language: Version 6.3

Ends with

DESCRIPTION
Evaluates <String1> and returns a value of true if it ends with the characters specified in <String2>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .endsWith to evaluate whether string1 ends with the characters ville and
assigns a different value to string2 for each outcome.

SAMPLE RULETEST
A sample Ruletest provides string1 values for three examples. Input and Output panels are shown below.

Equals ignoring case
SYNTAX
<String1>.equalsIgnoreCase(<String2>)

Progress Corticon: Rule Language: Version 6.386

Chapter 5: Rule operator details and examples

DESCRIPTION
Returns a value of true if <String1> is the same as <String2>, irrespective of case.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .equalsIgnoreCase to compare the values of string1 and string2, and assign
a value to boolean1 based on the results of the comparison.

SAMPLE RULETEST
A sample Ruletest provides the plane type for three sets of string1 and string2. Input and Output panels
are shown below. Notice how these results differ from those shown in the equals example.

87Progress Corticon: Rule Language: Version 6.3

Equals ignoring case

Equals when used as an assignment
SYNTAX

<Boolean1> = <Expression1>Boolean

<DateTime1> = <DateTime2>DateTime*

<Number1> = <Number2>Number

<String1> = <String2>String

DESCRIPTION

Assigns the truth value of <Expression1> to <Boolean1>.Boolean

Assigns the value of <DateTime2> to <DateTime1>.DateTime*

Assigns the value of <Number2> to <Number1>. Automatic casting (the process of
changing a value's data type) will occur when assigning an Integer data type to a Decimal
data type. To assign a Decimal value to an Integer value, use the .toInteger operator.

Number

Assigns the value of <String2> to <String1>.String

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: equals
used as an assignment may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate
with usage restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses equals twice: in an Action row to assign a value to decimal1, and in an Action
row to assign a value to string1 based on the value of boolean1.

Progress Corticon: Rule Language: Version 6.388

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides two examples of boolean1. Input and Output panels are shown below:

Equals when used as a comparison
SYNTAX

<Expression1> = <Expression2>Boolean

<DateTime1> = <DateTime2>DateTime*

<Number1> = <Number2>Number

<String1> = <String2>String

DESCRIPTION

Returns a value of true if <Expression1> is the same as <Expression2>.Boolean

Returns a value of true if <DateTime1> is the same as <DateTime2>, including both
the Date and the Time portions

DateTime*

Returns a value of true if <Number1> is the same as <Number2>. Different numeric
data types may be compared in the same expression.

Number

Returns a value of true if <String1> is the same as <String2>. Both case and length
are examined to determine equality. Corticon Studio uses the ISO character precedence
in comparing String values. See Character precedence in Unicode and Java Collator
on page 217.

String

*includes DateTime, Date, and Time data types

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses equals to Ruletest whether decimal1 equals decimal2, and assign a value
to string1 based on the result of the comparison.

89Progress Corticon: Rule Language: Version 6.3

Equals when used as a comparison

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Equals when using Strings
SYNTAX
<String1>.equals(<String2>)

DESCRIPTION
Returns a value of true if <String1> is exactly the same as <String2>, including character case. This is
alternative syntax to equals (used as a comparison).

USAGE RESTRICTIONS
The Operators row in the table Summary Table of Vocabulary Usage Restriction applies. No special exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .equals to compare the contents of string1 and string2, and assign a value
to boolean1 as a result.

Progress Corticon: Rule Language: Version 6.390

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides three sets of string1 and string2. Input and Output panels are shown
below. Notice how these results differ from those shown in the .equalsIgnoreCase example.

Exists
SYNTAX
<Collection> ->exists(<Expression1>,<Expression2>,…)

<Collection> ->exists(<Expression1> or <Expression2> or …)

DESCRIPTION
Returns a value of true if <Expression> holds true for at least one element of <Collection>. <Collection>
must be expressed as a unique alias. Multiple <Expressions> are optional, but at least one is required.

91Progress Corticon: Rule Language: Version 6.3

Exists

Both AND (indicated by commas between <Expressions>) and OR syntax (indicated by or between
<Expressions>) are supported within the parentheses (..). However, take care to ensure invariant
expressions are not inadvertently created. For example:

<Collection> -> exists(integer1=5, integer1=8)

will always evaluate to false because no integer1 value can be both 5 AND 8 simultaneously.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->exists to check for the existence of an element in collection1 whose
string1 value equals New, and assigns a value to decimal1 based on the results of the test. Note the use
of unique alias collection1 to represent the collection of Entity2 associated with Entity1.

SAMPLE RULETEST
A sample Ruletest provides 2 separate collections of Entity2 elements and Entity1.decimal1 values. Input
and Output panels are shown below.

Progress Corticon: Rule Language: Version 6.392

Chapter 5: Rule operator details and examples

Exponent
SYNTAX
<Number1> ** <Number2>

DESCRIPTION
Raises <Number1> by the power of <Number2>. The resulting data type is the more expansive of those of
<Number1> and <Number2>. To find a root, <Number2> can be expressed as a decimal value, such as 0.5
for a square root, or -- for greater accuracy in larger roots -- in decimal format within parentheses, such as
**(1.0/3.0) for a cube root.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses exponent to raise integer1 and integer2 by the power of 2 and 0.5,
respectively, and assign the resulting value to decimal1 and decimal2, respectively.

93Progress Corticon: Rule Language: Version 6.3

Exponent

SAMPLE RULETEST
A sample Ruletest provides decimal1 and integer1 values for three examples.

False
SYNTAX
false or F

DESCRIPTION
Represents the Boolean value false. Recall from discussion of truth values that an <expression> is evaluated
for its truth value, so the expression Entity1.boolean1=false evaluates to true only when
boolean1=false. But since boolean1 is Boolean and has a truth value all by itself without any additional
syntax, we could simply state not Entity1.boolean1, with the same effect. Many examples in the

Progress Corticon: Rule Language: Version 6.394

Chapter 5: Rule operator details and examples

documentation use explicit syntax like boolean1=true or boolean2=false for clarity and consistency, even
though boolean1 or not boolean2 are equivalent, respectively, to the explicit syntax.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions applies. No special exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses false in a Filter row to test whether boolean1 is false, and perform the
Nonconditional computation if it is. As discussed above, the alternative expression not Entity1.boolean1
is logically equivalent.

SAMPLE RULETEST
A sample Ruletest provides three examples. Assume decimal2=10.0 and integer1=5 for all examples. Input
and Output panels are shown below:

First
SYNTAX
<Sequence> ->first.<attribute1>

95Progress Corticon: Rule Language: Version 6.3

First

DESCRIPTION
Returns the value of <attribute1> of the first element in <Sequence>. Another operator, such as ->sortedBy,
must be used to transform a <Collection> into a <Sequence> before ->first may be used. <Sequence>
must be expressed as a unique alias. See "Advanced collection sorting syntax" in the Rule Modeling Guide
for more examples of usage.

<attribute1> may be of any data type.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->first to identify the first element of the sequence created by applying ->sortedBy
to collection1. Once identified, the value of the string1 attribute belonging to this first element is evaluated.
If the value of string1 is Joe, then boolean1 attribute of Entity1 is assigned the value of true.

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

Progress Corticon: Rule Language: Version 6.396

Chapter 5: Rule operator details and examples

First NUMBER
SYNTAX
<Sequence> ->first(integer)

DESCRIPTION
Returns a ->subSequence of the first integer entities in the collection <Sequence>. Another operator, such as
->sortedBy or ->sortedByDesc, must be used to transform a <Collection> into a <Sequence> before
->first can be used. <Sequence> must be expressed as a unique alias. If integer is larger than the number
of entities in the collection, all the entities in the collection are returned. See "Advanced collection sorting syntax"
in the Rule Modeling Guide for more examples of usage.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: last(x)
may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage restrictions).

RULESHEET EXAMPLE
This sample Rulesheet uses ->first(2) to select the first two elements of the sequence created by applying
->sortedBy to collection2. Once identified, the first 2 entities will be returned as the sequence collection3.

97Progress Corticon: Rule Language: Version 6.3

First NUMBER

SAMPLE RULETEST
A sample Ruletest provides a collection of five elements, each with a decimal1 value. Input and Output panels
are shown below.

Note: The selected entities and their values are highlighted to improve readability.

RULESHEET EXAMPLE: USING DESCENDING SORT
Sometimes it is easier to understand this type of action when you sort the data in descending order; when
thinking of the "the top three sales figures", the first three largest values are what is intended. In this example,
the action uses ->sortByDesc to order the collection largest-to-smallest and then moves the top 2 entities
to the result sequence:

Progress Corticon: Rule Language: Version 6.398

Chapter 5: Rule operator details and examples

SAMPLE RULETEST: USING DESCENDING SORT
The sample Ruletest shows the two entities with the highest values are copied to the results sequence:

Note: The selected entities and their values are highlighted to improve readability.

Floor
SYNTAX
<Decimal>.floor

DESCRIPTION
Returns the Decimal closest to zero from <Decimal>. .floor may also be thought of as a truncation of
<Decimal>.

99Progress Corticon: Rule Language: Version 6.3

Floor

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The Rulesheet uses .floor to assign decimal values to decimal that are closer to zero than the input decimal2
values.

SAMPLE RULETEST
A sample Ruletest provides three decimal2 values. Input and Output panels are shown below:

Note: Notice how these results differ from those shown in the Round example.

For all
SYNTAX
<Collection> ->forAll(<Expression1>, <Expression2>,…)

Progress Corticon: Rule Language: Version 6.3100

Chapter 5: Rule operator details and examples

<Collection> ->forAll(<Expression1> or <Expression2> or …)

DESCRIPTION
Returns a value of true if every <Expression> holds true for every element of <Collection>. <Collection>
must be expressed as a unique alias. Multiple <Expressions> are optional, but at least one is required.

Both AND (indicated by commas between <Expressions>) and OR syntax (indicated by or between
<Expressions>) is supported within the parentheses (..). However, take care to ensure invariant expressions
are not inadvertently created. For example:

<Collection> -> forAll(integer1=5, integer1=8)

will always evaluate to false because no single integer1 value can be both 5 AND 8 simultaneously, let
alone all of them.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->forAll to check for the existence of an element in collection1whose string1
value equals New, and assigns a value to decimal1 based on the results of the test. Note the use of unique
alias collection1 to represent the collection of Entity2 associated with Entity1.

SAMPLE RULETEST
A sample Ruletest provides 2 separate collections of Entity2 elements and Entity1.decimal1 values.
The following illustration shows Input and Output panel

101Progress Corticon: Rule Language: Version 6.3

For all

Get Milliseconds
SYNTAX
<DateTime>.getMilliseconds

DESCRIPTION
Returns the number of milliseconds elapsed since the epoch: January 1, 1970.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .getMilliSeconds in a Nonconditional rule to evaluate the number of milliseconds
between the epoch and dateTime1, and return the number as integer1.

Progress Corticon: Rule Language: Version 6.3102

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides values of dateTime2 for three instances of Entity1. Input and Output panels
are shown below.

Greater than
SYNTAX

<DateTime1> > <DateTime2>DateTime*

<Number1> > <Number2>Number

<String1> > <String2>String

103Progress Corticon: Rule Language: Version 6.3

Greater than

DESCRIPTION

Returns a value of true if <DateTime1> is greater
than or equal to <DateTime2>. This is equivalent to
<DateTime1> occurring “after” <DateTime2>

DateTime*

Returns a value of true if <Number1> is greater than
<Number2>. Different numeric data types may be
compared in the same expression.

Number

Returns a value of true if <String1> is greater than
<String2>. Studio uses Character precedence in
Unicode and Java Collator on page 217 to determine
character precedence.

String

*includes DateTime, Date, and Time data types

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions applies, with the following exception: greater
thanmay also be used in Conditional Value Sets & Cells (section 5 in Sections of Rulesheet that correlate with
usage restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses greater than to test whether string1 is greater than string2, and assign
today's date to dateTime1 if it is. See today for an explanation of this literal term.

SAMPLE RULETEST
A sample Ruletest provides three examples. Input and Output panels are shown below:

Progress Corticon: Rule Language: Version 6.3104

Chapter 5: Rule operator details and examples

Greater than or equal to
SYNTAX

<DateTime1> >= <DateTime2>DateTime*

<Number1> >= <Number2>Number

<String1> >= <String2>String

DESCRIPTION

Returns a value of true if <DateTime1> is greater
than or equal to <DateTime2>. This is equivalent to
<DateTime1> occurring on or after <DateTime2>

DateTime*

Returns a value of true if <Number1> is greater than
or equal to <Number2>. Different numeric data types
may be compared in the same expression.

Number

Returns a value of true if <String1> is greater than
or equal to <String2>. Corticon Studio uses
Character precedence in Unicode and Java Collator
on page 217 to determine character precedence.

String

*includes DateTime, Date, and Time data types

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions applies, with the following exception: greater
than or equal to may also be used in Conditional Value Sets & Cells (section 5 in Sections of Rulesheet that
correlate with usage restrictions).

105Progress Corticon: Rule Language: Version 6.3

Greater than or equal to

RULESHEET EXAMPLE
The following Rulesheet uses greater than or equal to to test whether string1 is greater than or equal to
string2, and assign today's date to dateTime1 if it is. See today for an explanation of this literal term.

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Hour
SYNTAX
<DateTime>.hour

<Time>.hour

DESCRIPTION
Returns the hour portion of <DateTime> or <Time>. The returned value is based on a 24-hour clock. For
example, 10:00 PM (22:00 hours) is returned as 22.

Progress Corticon: Rule Language: Version 6.3106

Chapter 5: Rule operator details and examples

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .hour to evaluate dateTime1 and assign the hour value to integer1.

SAMPLE RULETEST
A sample Ruletest provides three examples of dateTime1. Input and Output panels are shown below. Notice
that the hour returned is dependent upon the timezone of the machine executing the rule. The hour returned
is independent of the machine running the Ruletest and only depends on the locale/timezone of the data itself.

Hours between
SYNTAX
<DateTime1>.hoursBetween(<DateTime2>)

107Progress Corticon: Rule Language: Version 6.3

Hours between

DESCRIPTION
Returns the Integer number of hours between any two DateTimes or Times. The function calculates the number
of milliseconds between the two values and divides that number by 3,600,000 (the number of milliseconds in
an hour). The decimal portion is then truncated. If the two dates differ by less than a full hour, the value is
zero. This function returns a positive number if <DateTime2> is later than <DateTime1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .hoursBetween to determine the number of hours that have elapsed between
dateTime1 and dateTime2, compare it to the Values set, and assign a value to string1.

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Progress Corticon: Rule Language: Version 6.3108

Chapter 5: Rule operator details and examples

In LIST
SYNTAX

<Date1> in {<Date2>,<Date3>,...}Date

<DateTime1> in {<DateTime2>,<DateTime3>,...}DateTime

<Decimal1> in {<Decimal2>,<Decimal3>,...}Decimal

<Integer1> in {<Integer2>,<Integer3>,...}Integer

<String1> in {<String2>,<String3>,...}String

<Time1> in {<Time2>,<Time3>,...}Time

DESCRIPTION
Returns the value true if the attribute type is contained in the set of valid values for the attribute.

USAGE RESTRICTIONS
• The set of values is always enclosed in braces: { }

• For integer and decimal data types, a list of literals or enumerated values without labels requires that the
values are not in single quotes, such as {3,1,2}.

• For date and String data types, a list of literals or enumerated values without labels requires that the values
are in single quotes, such as {'B','A','C'}.

• The list can be in any order.

• Duplicate values or labels in a list are tolerated.

When enumerated datatypes with labels are used:

• The labels are listed without delimiters, such as {B,A,C}

• Values and labels can be mixed, such as {A,B,'C_value'}.

Note: While literal values in the enumeration table are accepted in a list, only existing label values will be
exposed and accepted as valid.

The Operators row of the table in Vocabulary Usage Restriction does not apply. The in operator can be used
in Conditions and Filters, but not in Actions.

109Progress Corticon: Rule Language: Version 6.3

In LIST

RULESHEET EXAMPLE
The example's Vocabulary defined an enumerated list:

The following Rulesheet uses in to filter certain labels to be tested against request data:

SAMPLE TEST
A sample Ruletest provides examples. Input and Output panels are shown below.

Progress Corticon: Rule Language: Version 6.3110

Chapter 5: Rule operator details and examples

In RANGE
SYNTAX

<Date1> in (<earlierDate2>..<laterDate3>)Date

<DateTime1> in (<earlierDateTime2>..<laterDateTime3>)DateTime

<Decimal1> in (<smallerDecimal2>..<largerDecimal3>)Decimal

<Integer1> in (<smallerInteger2>..<largerInteger3>)Integer

<String1> in (<startString2>..<endString3>)String

<Time1> in (<earlierTime2>..<laterTime3>)Time

A square bracket on either end of the expression indicates that the start or end value is to be included in the
range.

DESCRIPTION
Returns the value true if the attribute type is contained in the range of valid values for the attribute.

USAGE RESTRICTIONS
• For integer and decimal data types, the range of values are not in single quotes. For example, (1..3)).

• For date and String data types, the range of values are in single quotes. For example, ('A'..'C')).

111Progress Corticon: Rule Language: Version 6.3

In RANGE

The Operators row of the table in Vocabulary Usage Restriction does not apply. The in operator can be used
in Conditions and Filters, but not in Actions.

RULESHEET EXAMPLE
The following Rulesheet uses in ranges for three data types OR'ed together in a filter to be tested against
request data:

SAMPLE TEST
A sample Ruletest provides examples. Input and Output panels are shown below.

Progress Corticon: Rule Language: Version 6.3112

Chapter 5: Rule operator details and examples

Increment
SYNTAX
<Number1> += <Number2>

DESCRIPTION
Increments <Number1> by the value of <Number2>. The data type of <Number1> must accommodate the
addition of <Number2>. In other words, an Integer may not be incremented by a Decimal without using another
operator (such as .toInteger or Floor on page 99.floor) to first convert the Decimal to an Integer.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: increment
may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage restrictions).

RULESHEET EXAMPLE
This sample Rulesheet uses increment to increment integer1 by the value of integer2 when boolean1
is true.

113Progress Corticon: Rule Language: Version 6.3

Increment

SAMPLE RULETEST
A sample Ruletest provides three examples of integer1, integer2, and boolean1. Input and Output panels
are shown below.

Index of
SYNTAX
<String1>.indexOf(<String2>)

DESCRIPTION
Determines if <String2> is contained within <String1> and returns an Integer value equal to the beginning
character position of the first occurrence of <String2> within <String1>. If <String1> does not contain
<String2>, then a value of 0 (zero) is returned. This operator is similar to .contains but returns different
results. A 0 result from .indexOf is equivalent to a false value returned by the .contains operator.

Progress Corticon: Rule Language: Version 6.3114

Chapter 5: Rule operator details and examples

If <String1> contains more than one occurrence of <String2>, .indexOf returns the first character position
of the first occurrence. For example: If <String1> holds the String value ‘Mississippi’ and <String2>
holds the String value ‘ss’, then the .indexOf operator returns 3. The second occurrence of ‘ss’ beginning
at position 6 is not identified.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .indexOf to evaluate whether string1 includes the characters silver and
assigns a value to integer1 corresponding to the beginning character position of the first occurrence.

SAMPLE RULETEST
A sample Ruletest provides string1 values for three examples. Input and Output panels are shown below.
Notice sensitivity to case in example 1.

115Progress Corticon: Rule Language: Version 6.3

Index of

Is integer
SYNTAX
<String>.isInteger

DESCRIPTION
Returns true if string is an integer

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses isInteger.

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a string11 value. Input and Output
panels are shown below.

Progress Corticon: Rule Language: Version 6.3116

Chapter 5: Rule operator details and examples

Is empty
SYNTAX
<Collection> ->isEmpty

DESCRIPTION
Returns a value of true if <Collection> contains no elements (that is, has no children). ->isEmpty does
not check for an empty or null value of an attribute, but instead checks for existence of elements within the
collection. As such, a unique alias must be used to represent the <Collection> being tested.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->isEmpty to determine if collection1 has any elements. Note the use of
unique alias collection1 to represent the collection of Entity2 associated with Entity1.

SAMPLE RULETEST
A sample Ruletest provides two example collection1. The following illustration shows Input and Output
panels

117Progress Corticon: Rule Language: Version 6.3

Is empty

Iterate
SYNTAX
<Collection> ->iterate(<Expression>)

DESCRIPTION
Executes <Expression> for every element in <Collection>. <Collection> must be expressed as a
unique alias.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: ->iterate may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with
usage restrictions).

RULESHEET EXAMPLE
This sample Rulesheet uses ->iterate to assign the value of test to string1 in every element in
collection1 . See ->exists for more information on this operator.

Progress Corticon: Rule Language: Version 6.3118

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides three elements in collection1. Input and Output panels are shown below.

Last
SYNTAX
<Sequence> ->last.<Attribute1>

DESCRIPTION
Returns the value of <Attribute1> of the last element in <Sequence>. Another operator, such as ->sortedBy,
must be used to transform a <Collection> into a <Sequence> before ->last may be used. <Sequence>
must be expressed as a unique alias. <Attribute1> may be of any data type. See "Advanced collection
sorting syntax" in the Rule Modeling Guide for more examples of usage.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->last to identify the last element of the sequence created by applying ->sortedBy
to collection1. Once identified, the value of the string1 attribute belonging to this last element is evaluated.
If the value of string1 is Joe, then boolean1 attribute of Entity1 is assigned the value of true.

119Progress Corticon: Rule Language: Version 6.3

Last

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

Last NUMBER
SYNTAX
<Sequence> ->last(integer)

Progress Corticon: Rule Language: Version 6.3120

Chapter 5: Rule operator details and examples

DESCRIPTION
Returns a ->subSequence of the last integer entities in the collection <Sequence>. Another operator, such as
->sortedBy or ->sortedByDesc, must be used to transform a <Collection> into a <Sequence> before
->last can be used. <Sequence> must be expressed as a unique alias. If integer is larger than the number of
entities in the collection, all the entities in the collection are returned. See "Advanced collection sorting syntax"
in the Rule Modeling Guide for more examples of usage.

USAGE RESTRICTIONS
The Operators row of the table in Vocabulary usage restrictions does not apply. Special exceptions: last(x)
may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage restrictions).

RULESHEET EXAMPLE
This sample Rulesheet uses ->last(2) to select the last two elements of the sequence created by applying
->sortedBy to collection2. Once identified, the last 2 entities will be returned as the sequence collection3.

SAMPLE RULETEST
A sample Ruletest provides a collection of five elements, each with a decimal1 value. Input and Output panels
are shown below.

121Progress Corticon: Rule Language: Version 6.3

Last NUMBER

Note: The selected entities and their values are highlighted to improve readability.

RULESHEET EXAMPLE: SAME COLLECTION
In this example, the action uses the same collection for the source and the target:

SAMPLE RULETEST: SAME COLLECTION
The sample Ruletest shows the last 2 entities are retained in the collection, and the extraneous entities are
moved out of the collection to root level:

Progress Corticon: Rule Language: Version 6.3122

Chapter 5: Rule operator details and examples

Note: Using the same collection as the source and the target is an important consideration because the original
collection cannot be accessed again, and another iteration using this operator would likely produce a different
result.

Less than
SYNTAX

<DateTime1> < <DateTime2>DateTime*

<Number1> < <Number2>Number*

<String1> < <String2>String

DESCRIPTION

Returns a value of true if <DateTime1> is less than
<DateTime2>. This is equivalent to <DateTime1>
occurring “before” <DateTime2>

DateTime*

Returns a value of true if <Number1> is less than
<Number2>. Different numeric data types may be
compared in the same expression.

Number

Returns a value of true if <String1> is less than
<String2>. Corticon Studio uses Character
precedence in Unicode and Java Collator on page 217.

String

*includes DateTime, Date, or Time data types

123Progress Corticon: Rule Language: Version 6.3

Less than

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies, with the following
exception: less than may also be used in Conditional Value Sets & Cells (section 5 in Sections of Rulesheet:
Numbers Correlate with Table Above).

RULESHEET EXAMPLE
The following Rulesheet uses less than to test whether string1 is less than string2, and assign today's
date to dateTime1 if it is. See today for an explanation of this literal term.

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Progress Corticon: Rule Language: Version 6.3124

Chapter 5: Rule operator details and examples

Less than or equal to
SYNTAX

<DateTime1> <= <DateTime2>DateTime*

<Number1> <= <Number2>Number*

<String1> <= <String2>String

DESCRIPTION

Returns a value of true if <DateTime1> is less than
or equal to <DateTime2>. This is equivalent to
<DateTime1> occurring “on or before” <DateTime2>

DateTime*

Returns a value of true if <Number1> is less than or
equal to <Number2>. Different numeric data types
may be compared in the same expression.

Number

Returns a value of true if <String1> is less than or
equal to <String2>. Corticon Studio uses Character
precedence in Unicode and Java Collator on page 217.

String

*includes DateTime, Date, or Time data types

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies, with the following
exception: less than or equal to may also be used in Conditional Value Sets & Cells (section 5 of Sections
of Rulesheet that correlate with usage restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses less than or equal to to test whether string1 is less than or equal to string2,
and assign today's date to dateTime1 if it is. See today for an explanation of this literal term.

125Progress Corticon: Rule Language: Version 6.3

Less than or equal to

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Logarithm BASE 10
SYNTAX
<Number>.log

DESCRIPTION
Returns a Decimal value equal to the logarithm (base 10) of <Number>. If <Number> is equal to 0 (zero) an
error is returned when the rule is executed.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon: Rule Language: Version 6.3126

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses .log to calculate the logarithm (base 10) of integer1 and assign it to decimal1.

SAMPLE RULETEST
A sample Ruletest provides results for three examples of integer1. Input and Output panels are shown below:

Note: In a case where the rule encounters log(0), it throws an exception that halts execution. That's because
the value of log(0) is undefined. If the rule is executing against multiple entities, the arbitrary order of execution
might be different on subsequent runs before execution is halted.

Logarithm BASE X
SYNTAX
<Number>.log(<Decimal>)

DESCRIPTION
Returns a Decimal value equal to the logarithm (base <Decimal>) of <Number>. If <Number> is equal to 0
(zero) an error is returned when the rule is executed.

127Progress Corticon: Rule Language: Version 6.3

Logarithm BASE X

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .log to calculate the logarithm (base 7.0) of integer1 and assign it to decimal1.

SAMPLE RULETEST
A sample Ruletest provides results for three examples of integer1. Input and Output panels are shown below:

Note: In a case where the rule encounters log(0), it throws an exception that halts execution. That's because
the value of log(0) is undefined. If the rule is executing against multiple entities, the arbitrary order of execution
might be different on subsequent runs before execution is halted.

Lowercase
SYNTAX
<String>.toLower

Progress Corticon: Rule Language: Version 6.3128

Chapter 5: Rule operator details and examples

DESCRIPTION
Converts all characters in <String> to lowercase characters.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toLower to convert string1 to lowercase, compare its value with string2,
and assign a value to boolean1 based on the results of the comparison.

SAMPLE RULETEST
A sample Ruletest provides three examples of string1 and string2. Input and Output panels are shown
below:

129Progress Corticon: Rule Language: Version 6.3

Lowercase

Matches
SYNTAX
<String>.matches(regularExpression:String)

DESCRIPTION
Returns true if the regular expression matches the String.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLES
This sample Rulesheet uses matches in non-conditional actions:

Action A: Determine whether a String is a valid identifier - A String must contain an item identification with
the following pattern:

1. Characters 1-5: alphabetic.

2. Characters 6-10: numeric.

3. Character 11: alphabetic.

Action B: Check whether an email address is valid - An email address must have alphanumeric characters
and certain special characters before and after an @ and a dot.

SAMPLE RULETEST
A sample Ruletest provides various valid and invalid Strings that are evaluated by the two regular expression
examples.

Progress Corticon: Rule Language: Version 6.3130

Chapter 5: Rule operator details and examples

Maximum value
SYNTAX
<Number1>.max(<Number2>)

DESCRIPTION
Returns either <Number1> or <Number2>, whichever is greater.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .max to compare the values of decimal1 and decimal2, and integer1 and
integer2, and posts a message based on their size relative to 5.0 and 8, respectively.

131Progress Corticon: Rule Language: Version 6.3

Maximum value

SAMPLE RULETEST
A sample Ruletest provides four examples, two using decimal1 and decimal2, and two using integer1
and integer2 as input data.

Maximum value COLLECTION
SYNTAX
<Collection.attribute> -> max

Progress Corticon: Rule Language: Version 6.3132

Chapter 5: Rule operator details and examples

DESCRIPTION
Returns the highest value of <attribute> for all elements in <Collection>. <attribute> must be a
numeric data type. <Collection> must be expressed as a unique alias.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses ->max to identify the highest value of decimal1 in all elements of collection1,
then assign it to Entity1.decimal1.

SAMPLE RULETEST
A sample collection contains five elements, each with a value of decimal1.

133Progress Corticon: Rule Language: Version 6.3

Maximum value COLLECTION

Minimum value
SYNTAX
<Number1>.min(<Number2>)

DESCRIPTION
Returns either <Number1> or <Number2>, whichever is smaller.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .min to compare the values of decimal1 and decimal2, and integer1 and
integer2, and posts a message based on their size relative to 5.0 and 8, respectively.

SAMPLE RULETEST
A sample Ruletest provides four examples, two using decimal inputs, and two using integers.

Progress Corticon: Rule Language: Version 6.3134

Chapter 5: Rule operator details and examples

Minimum value COLLECTION
SYNTAX
<Collection.attribute> -> min

DESCRIPTION
Returns the lowest value of <attribute> for all elements in <Collection>. <attribute> must be a
numeric data type. <Collection> must be expressed as a unique alias.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses ->min to identify the lowest value of decimal1 in all elements of collection1,
then assign it to Entity1.decimal1.

135Progress Corticon: Rule Language: Version 6.3

Minimum value COLLECTION

SAMPLE RULETEST
A sample collection contains five elements, each with a value of decimal1.

Minute
SYNTAX
<DateTime>.min

<Time>.min

DESCRIPTION
Returns the minute portion of <DateTime> or <Time> as an Integer between 0 and 59. This operator cannot
be used with Date attributes because no time information is present.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon: Rule Language: Version 6.3136

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses .min to evaluate dateTime1 and assign the minute value to integer1.

SAMPLE RULETEST
A sample Ruletest provides three examples of dateTime1. Input and Output panels are shown below:

Minutes between
SYNTAX
<DateTime1>.minsBetween(<DateTime2>)

<Time1>.minsBetween(<Time2>)

DESCRIPTION
Returns the Integer number of minutes between DateTimes or between Times. The function calculates the
number of milliseconds between the two dates and divides that number by 60,000 (the number of milliseconds
in a minute). The decimal portion is then truncated. If the two dates differ by less than a full minute, the returned
value is zero. This function returns a positive number if <DateTime2> is later than <DateTime1>.

137Progress Corticon: Rule Language: Version 6.3

Minutes between

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .minsBetween to determine the number of minutes that have elapsed between
dateTime1 and dateTime2, compare it to the Values set, and assign a value to string1.

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below. Notice the different masks (formats) used for the DateTime data.

Mod
SYNTAX
<Integer1>.mod(<Integer2>)

Progress Corticon: Rule Language: Version 6.3138

Chapter 5: Rule operator details and examples

DESCRIPTION
Returns the whole number remainder that results from dividing <Integer1> by <Integer2>. If the remainder
is a fraction, then 0 (zero) is returned.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet > uses .mod to calculate the whole number remainder resulting from the division of
integer2 by 3. The result is assigned to integer1.

SAMPLE RULETEST
A sample Ruletest provides three examples of integer2. Input and Output panels are shown below.

Month
SYNTAX
<DateTime>.month

139Progress Corticon: Rule Language: Version 6.3

Month

<Date>.month

DESCRIPTION
Returns the month in <DateTime> or <Date> as an Integer between 1 and 12.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .month to evaluate dateTime1 and dateOnly1 and assign the month value
to integer1 and integer2, respectively.

SAMPLE RULETEST
A sample Ruletest provides three examples of dateTime1 or dateOnly1. Input and Output panels are shown
below. The month returned is independent of the machine running the Ruletest and only depends on the
locale/timezone of the data itself.

Progress Corticon: Rule Language: Version 6.3140

Chapter 5: Rule operator details and examples

Months between
SYNTAX
<DateTime1>.monthsBetween(<DateTime2>)

<Date1>.monthsBetween(<Date2>)

DESCRIPTION
Returns the Integer number of months between DateTimes or between Dates. The month and year portions
of the date data are subtracted to calculate the number of elapsed months. The day portions are ignored. If
the month and year portions are the same, the result is zero. This function returns a positive number if
<DateTime2> is later than <DateTime1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .monthsBetween to determine the number of months that have elapsed between
dateTime1 and dateTime2, compare it to the values in the Condition Cells, and assign a value to string1.

141Progress Corticon: Rule Language: Version 6.3

Months between

SAMPLE RULETEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below. Notice the variations in date masks (formats).

Multiply
SYNTAX
<Number1> * <Number2>

DESCRIPTION
Multiplies <Number1> by <Number2>. The resulting data type is the more expansive of those of <Number1>
and <Number2>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon: Rule Language: Version 6.3142

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
This sample Rulesheet uses multiply to multiply integer1 and integer2 and compare the result to 100

SAMPLE RULETEST
A sample Ruletest provides three examples of integer1 and integer2. Input and Output panels are shown
below.

Natural logarithm
SYNTAX
<Number>.ln

143Progress Corticon: Rule Language: Version 6.3

Natural logarithm

DESCRIPTION
Returns a Decimal value equal to the natural logarithm (base e) of <Number>. If <Number> is equal to 0 (zero),
an error is returned when the rule is executed. This error will halt execution for all data present.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .ln to calculate the natural logarithm of decimal2 and assign it to decimal1.

SAMPLE RULETEST
A sample Ruletest provides results for three examples of decimal2. Input and Output panels are shown below:

Note: In a case where the rule encounters 0.ln, it throws an exception that halts execution. That's because
the value of 0.ln is undefined. If the rule is executing against multiple entities, the arbitrary order of execution
might be different on subsequent runs before execution is halted.

Progress Corticon: Rule Language: Version 6.3144

Chapter 5: Rule operator details and examples

New
SYNTAX
<Entity>.new[<Expression1>,<Expression2>…]

DESCRIPTION
creates a new <Entity> with attribute values defined by optional <Expression>. Expressions (when present)
should be written as assignments in the form: attribute = value. The attribute used in <Expression> (when
present) must be an attribute of <Entity>.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: newmay only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with usage
restrictions).

RULESHEET EXAMPLE
The following Rulesheet uses .new to create a new Entity2 element in collection1 when Entity1 has
a string1 value equal to 'PO 123-ABC'. An alias is not required by the .new operator, because it is possible
to create a new entity at the root level, without inserting it into a collection. The collection1 alias used here
is required by the += (Associate Element to collection) operator.

SAMPLE RULETEST
A sample Ruletest provides 2 collections of Entity1. Input and Output panels are illustrated below:

145Progress Corticon: Rule Language: Version 6.3

New

Behavior of the .new operator
The .new operator does not consider implied conditions of non-mandatory attributes (from the initialize
expressions) during execution (in other words, a .new operator always fires when explicit conditions are met).

Each initialize expression within a .new… expression will be executed (or not) depending upon implied conditions;
that is, if any input to the expression is null, the target attribute remains null. Another case where an implied
condition would prevent a .new operator for executing is where the new entity is a target to an association
assignment and the parent of that association does not exist.

The following examples assume that all attributes are not mandatory.

• Rule 1:

IF entity1.attr1 > 10 THEN Entity2.new[attr1 = entity1.attr2]

Executes only if entity1 exists, entity1.attr1 is not null, and entity1.attr1 > 10. The
newEntity2.attr1 will be left as null if entity1.attr2 is null.

• Rule 2:

Entity2.new[attr1 = entity1.attr1 + entity1.attr2]

Will always execute. Entity2.attr1 will remain null if entity1 does not exist, or entity1.attr1 is
null, or entity1.attr2 is null.

• Rule 3:

entity1.assoc2 += Entity2.new[attr1 = entity1.attr1]

Will execute only if entity1 exists. Entity2.attr1 will remain null if entity1.attr1 is null.

• Rule 4:

Entity2.new[attr1 = entity1.assoc1.attr1]

This action will always fire. entity2.attr1will remain null if entity1 does not exist, or entity1.assoc1
does not exist, or entity1.assoc1.attr1 is null. Note that this action will fire multiple times if
entity1.assoc1 contains multiple entities (once for each entity contained in the entity1.assoc1
collection).

New unique
SYNTAX
<Entity>.newUnique[<Expression1>,<Expression2>…]

Progress Corticon: Rule Language: Version 6.3146

Chapter 5: Rule operator details and examples

DESCRIPTION
newUnique is an unusual operator in that it contains both action and condition logic. When an Action containing
this operator is executed, a new <Entity> will be created only if no other entity exists with the characteristics
defined by <Expression1> and <Expression2>, etc. <Expression1> and <Expression2> are optional. If
no expression is present within the square brackets [..], the newUnique operator will create a new entity
only if none currently exists in memory.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: newUnique may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate
with usage restrictions).

There is some restriction to using newUnique with associations. newUnique is valid for associations of
multiplicity One to One or Many to One, but is invalid for associations One to Many or Many to Many, as
illustrated:

RULESHEET EXAMPLE
The following Rulesheet uses .newUnique to create a new Entity2 element with string1=“item1”, and
add it to collection1 only if no existing Entity2 already has string1=“item1”. A collection alias is not
required by the .newUnique operator because it is possible to create a new entity at the root level, without
inserting it into a collection. The collection alias used here is required by the += (Associate Element to collection)
operator.

147Progress Corticon: Rule Language: Version 6.3

New unique

SAMPLE RULETEST 1
Each of three sample tests provides different combinations of Entity1 and Entity2. Input and Output panels
are illustrated below:

Progress Corticon: Rule Language: Version 6.3148

Chapter 5: Rule operator details and examples

Not
SYNTAX
not <Expression>

DESCRIPTION
Returns the negation of the truth value of <Expression>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies, with the following
special exception: not may also be used in Conditional Cells.

RULESHEET EXAMPLE
The following Rulesheet uses not to negate the value of A in the Condition Cell of rule 2. Notmay only be used
in this manner if there is at least one other value (including other or null) present in the Condition Cells values
drop-down list (in other words, there must be at least one alternative to the value negated by not).

SAMPLE RULETEST
A sample Ruletest provides three examples of string1. Input and Output panels are shown below:

149Progress Corticon: Rule Language: Version 6.3

Not

Limitations to using NOT in a Conditional cell
When you use not in a Conditional cell with an attribute name, the form is not valueSet which evaluates
as true when the condition is not a member of an entry in the valueSet. Such entries in the valueSet must be
literals (or partial expressions containing only literals); no variables or attributes may be included. Inclusion of
an attribute reference in the valueSet is not valid.
Although not attribute is unsupported, it is not determined that it is invalid until it does not process. Then,
it indicates that it is invalid.

Consider the following examples:

Table 1: Valid usage

Cell valueCondition

not 'red'foo.color

<> 'red'foo.color

<> bar.colorfoo.color

Table 2: Invalid usage

Cell valueCondition

not bar.colorfoo.color

Not empty
SYNTAX
<Collection> ->notEmpty

DESCRIPTION
Returns a value of true if <Collection> contains at least one element. ->notEmpty does not check for
attribute values, but instead checks for the existence of elements within a collection. As such, it requires the
use of a unique alias to represent the collection being tested.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses the ->notEmpty function to determine if collection1 has elements. Note the
use of unique alias collection1 to represent the collection of Entity2 associated with Entity1.

Progress Corticon: Rule Language: Version 6.3150

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides two collections. The following illustration shows Input and Output panels

Not equal to
SYNTAX

<Expression1> <> <Expression2>Boolean

<DateTime1> <> <DateTime2>DateTime*

<Number1> <> <Number2>Number

<String1> <> <String2>String

151Progress Corticon: Rule Language: Version 6.3

Not equal to

DESCRIPTION

Returns a value of true if <Expression1> does not
have the same truth value as <Expression2>.

Boolean

Returns a value of true if <DateTime1> does not equal
<DateTime2>. This is equivalent to <DateTime1>
not occurring “on” <DateTime2>

DateTime

Returns a value of true if <Number1> is not equal to
<Number2>. Different numeric data types may be
compared in the same expression.

Number

Returns a value of true if <String1> is not equal to
<String2>.

String

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Note: Use of < > when using custom data types - If your Vocabulary uses custom data types, there are
limits to the validity of < > in cells. In the following illustration, the not operator will validly work against a custom
data type label, a value where a label is in use, and the value of a value-only definition. However, only the
value where a label is in use is valid when < > is used.

Progress Corticon: Rule Language: Version 6.3152

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses not equal to to test whether decimal1 equals decimal2, and assign a value
to string1 based on the result of the comparison.

SAMPLE RULETEST
A sample Ruletest provides two examples. Input and Output panels are shown below:

Now
SYNTAX
now

DESCRIPTION
Returns the current system date and time when the rule is executed. This DateTime value is assigned the first
time now is used in a Decision Service, then remains constant until the Decision Service finishes execution,
regardless of how many additional times it is used. This means that every rule in a Ruleflow containing now
will use the same DateTime value.

153Progress Corticon: Rule Language: Version 6.3

Now

USAGE RESTRICTIONS
The Literals row in the table of Summary Table of Vocabulary Usage Restriction applies. No special exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses now to determine how many hours have elapsed between now and dateTime1
(see .hoursBetween for more details on this operator), and assign a value to string1 based on the result.

SAMPLE RULETEST
A sample Ruletest provides two examples of dateTime1. Assume now is equal to March 1, 2018 14:20:00
EST. Note that a future date in example 2 results in a negative value and therefore is under 2 hours. Input and
Output panels are shown below. Notice the variation in DateTime masks (formats).

Null
SYNTAX
null

DESCRIPTION
The null value corresponds to one of three different scenarios:

Progress Corticon: Rule Language: Version 6.3154

Chapter 5: Rule operator details and examples

1. the absence of an attribute in a Ruletest Input pane or request message

2. the absence of data for an attribute in a Ruletest (the value zero counts as data)

3. a business object (supplied by an external application) that has an instance variable of null

A null value is different from an empty String (for String data types) or zero for numeric data types. An empty
String is represented in a Ruletest as [] -- open then close square brackets. Any attribute value, including any
empty strings, may be reset to null in a Ruletest by right-clicking the attribute and choosing Set to null.
Mandatory attributes (property set in the Vocabulary) may not have a null value.

USAGE RESTRICTIONS
The Literals row in the table of Summary Table of Vocabulary Usage Restriction applies. No special exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses null to test for the existence of a real value in decimal1, and assign a value to
boolean1 as a result.

SAMPLE TEST
A sample Ruletest provides four examples of decimal1. Input and Output panels are illustrated below. Posted
messages are not shown.

155Progress Corticon: Rule Language: Version 6.3

Null

Other
SYNTAX
other

DESCRIPTION
When included in a condition's Values set (the drop-down list of values available in a Conditions Cell), other
represents any value not explicitly included in the set, including null. If null is explicitly included in the Values
set, then other does not include null.

USAGE RESTRICTIONS
The Literals row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exception: other may only be used in Condition Cells (section 4 of the Sections of Rulesheet that correlate
with usage restrictions) because it is a non-specific value used in comparisons.

RULESHEET EXAMPLE
The following Rulesheet uses other to test the value of decimal1. If decimal1 has any value other than null,
boolean1 is assigned the value of false.

Progress Corticon: Rule Language: Version 6.3156

Chapter 5: Rule operator details and examples

SAMPLE TEST
A sample Ruletest provides three examples of decimal1. Ruletest Input and Output panels are shown below:

Or
SYNTAX
<Expression1> or <Expression2> or ….

DESCRIPTION
Returns a value of true if either <Expression1> or <Expression2> evaluates to true. When used between
two or more expressions in the Preconditions section, creates a compound filter for the Rulesheet that

157Progress Corticon: Rule Language: Version 6.3

Or

follows. See Rule Modeling Guide for details on using Preconditions as filters. OR is not available in the
Conditions section because the logicalOR construction is implemented using multiple Columns in the decision
table, or by value sets in Conditions Cells.

USAGE RESTRICTIONS
The Literals row in the table of Sections of Rulesheet that correlate with usage restrictions does not apply.
Special exception: or may only be used in the Filters section of the Rulesheet to join 2 or more expressions,
as shown above.

RULESHEET EXAMPLE
The following Rulesheet uses or to test the value of integer1, boolean1, and string1 to set the value of
boolean2

SAMPLE TEST
A sample Ruletest provides three examples. Input and Output panels are shown below:

Progress Corticon: Rule Language: Version 6.3158

Chapter 5: Rule operator details and examples

Random
SYNTAX
<IntegerAttribute>.random(minRange,maxRange)

<DecimalAttribute>.random(minRange,maxRange)

DESCRIPTION
Returns a random value between minRange and maxRange. Either range can be a numeric value of the same
datatype, or numeric attributes of the same type; in which case, the attributes can have arithmetic operators,
absoluteValue, and unary negative applied.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLES
This sample Rulesheet uses random in non-conditional actions:

SAMPLE RULETEST
A sample Ruletest requires values for Entity1 although they have no impact on the output. As the result is
random, there cannot be an expected value.

159Progress Corticon: Rule Language: Version 6.3

Random

Regular expression to replace String
SYNTAX
<String>.regexReplaceString(regularExpression,replacementString)

DESCRIPTION
Returns a new String where the strings matching the regular expression are replaced by the replacement string.

Note: Regular expressions are a well-established technique that uses a sequence of characters to define a
search pattern. For more information, seeWikipedia, as well one of the many sites that provide examples, such
as regular-expresssions.info, and others that analyze the expressions you create.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses regexReplaceString in non-conditional actions as follows:

• regexReplaceString("[0-9]", "X"): Replace all instances of digits with the character X

Progress Corticon: Rule Language: Version 6.3160

Chapter 5: Rule operator details and examples

• regexReplaceString(" {2,}", " ") - Replace all instances of multiple spaces with a single space

• regexReplaceString("[aeiou]", ".") - Replace all vowels with a dot .

• regexReplaceString("[^aeiou]", ".") - Replace all non-vowel characters with a dot.

• regexReplaceString("[c-v]", ".") - Replace each character in the range from c to v with a dot.

• regexReplaceString('^[\t]+|[\t]+$', '') - Strip off leading and trailing spaces.

SAMPLE RULETEST
A sample Ruletest shows the regexReplaceString effect in output.

161Progress Corticon: Rule Language: Version 6.3

Regular expression to replace String

Remove element
SYNTAX
<Entity>.remove
<Collection>.remove

DESCRIPTION
Removes <Entity> or removes elements from <Collection> and deletes it/them. If removing from a
collection, then using a unique alias to represent the collection is optional since .remove is not a collection
operator. If any elements in <Collection> have one-to-many associations with other entities, then those
entities will also be deleted.

The .remove operator's impact on elements of a collection can be controlled:

• When the operator is written as .remove, .remove(), or .remove(true), any lower-level associated
entities are also removed. For an example of this behavior, see example 2 below.

• When the operator is written as .remove(false), lower-level associated entities are promoted to root
level. For an example of this behavior, see example 3 below.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: .remove may only be used in Action Rows (section 5 in Sections of Rulesheet that correlate with
usage restrictions).

EXAMPLE 1: Remove an element from a collection
RULESHEET 1
This Rulesheet uses the operator to remove elements from collection1 whose decimal1 value is greater
than 5. Note the optional use of unique alias collection1 to represent the collection of Entity2 elements
associated with Entity1.

RULETEST 1

A sample Ruletest provides a collection with two elements. The illustration shows Ruletest Input and Output
panels

Progress Corticon: Rule Language: Version 6.3162

Chapter 5: Rule operator details and examples

EXAMPLE 2: Remove an entity and its children
RULESHEET 2
This Rulesheet uses the operator, defaulting to (true), to entirely remove elements from Entity1.entity2
whose decimal1 value is greater than 5. Note that no unique alias has been used to represent the collection
of Entity2 elements associated with Entity1.

RULETEST 2

A sample Ruletest provides an Entity1 with two entity2, each of which has an entity3 child of its own.
The illustration shows Ruletest Input and Output panels. Note that when an entity2 is removed, its associated
entity3 is also removed.

163Progress Corticon: Rule Language: Version 6.3

Remove element

Note: Removing an entity and its children removes child entities from the work document only, not from working
memory. If rules are written so as to access the child entities directly, they will still execute after the parent has
been removed.

EXAMPLE 3: Remove an entity then promote its children
RULESHEET 3
This Rulesheet uses the operator with its (false) parameter to remove only the specified elements from
Entity1.entity2whose decimal1 value is greater than 5. Note no unique alias has been used to represent
the collection of Entity2 elements associated with Entity1.

RULETEST 3

A sample Ruletest provides an Entity1 with two entity2, each of which has an entity3 child of its own.
The illustration shows Ruletest Input and Output panels. Note that when an entity2 is removed, its associated
entity3 is promoted to root level.

Progress Corticon: Rule Language: Version 6.3164

Chapter 5: Rule operator details and examples

Replace elements
SYNTAX
<Collection1> = <Collection2>
<Collection> = <Entity>

DESCRIPTION
Replaces all elements in <Collection1> with the elements in <Collection2>, provided the association
between the two is permitted by the Business Vocabulary. In the second syntax, <Entity> is associated with
<Collection>, replacing the <Entity> already associated, when the association between the two is
“one-to-one” in the Business Vocabulary. All collections must be expressed as unique aliases.

USAGE RESTRICTIONS
The Operators row in the table of Summary Table of Vocabulary Usage Restriction does not apply. Special
exceptions: replace elements may only be used in Action Rows (section 5 in Sections of Rulesheet that
correlate with usage restrictions).

RULESHEET EXAMPLE
This sample Rulesheet uses the replace element operator to add Entity3 to collection1 if its boolean1
value is true. Note the use of unique alias collection1 to represent the collection of Entity3 elements
associated with Entity2. The association between Entity2 and Entity3 has a cardinality of “one-to-one”. If
multiple Entity3 are present, only one will be added to collection1.

165Progress Corticon: Rule Language: Version 6.3

Replace elements

SAMPLE TEST
Three sample tests provide scenarios of two elements which share a one-to-one association. Input and Output
panels are illustrated below:

Progress Corticon: Rule Language: Version 6.3166

Chapter 5: Rule operator details and examples

Replace String
SYNTAX
<String>.replaceString(stringToBeReplaced,replacementString)

DESCRIPTION
Returns a new string where the instances of the String to be replaced are replaced by the value of the
replacement String.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses replaceString in non-conditional actions.

SAMPLE RULETEST
A sample Ruletest shows the replaceString effect in output.

167Progress Corticon: Rule Language: Version 6.3

Replace String

Round
SYNTAX
<Decimal>.round(<Integer>)

DESCRIPTION
Rounds <Decimal> to the number of decimal places specified by <Integer>. Standard rounding conventions
apply, meaning numbers ending with significant digits of 5 or more round up and numbers ending with significant
digits less than 5 round down. <Integer> is optional – if no parameter is specified, then <Decimal> rounds
to the nearest whole number of type Decimal.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .round to round the value of decimal2 to the 2nd decimal place, and assigns it
to decimal1.

Progress Corticon: Rule Language: Version 6.3168

Chapter 5: Rule operator details and examples

SAMPLE TEST
A sample Ruletest provides results for five examples of decimal2.

Second
SYNTAX
<DateTime>.sec

<Time>.sec

DESCRIPTION
Returns the seconds portion of <DateTime> or <Time>. The returned value is an Integer between 0 and 59.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses the .sec function to evaluate dateTime1, return the seconds value, and assign
it to integer1.

169Progress Corticon: Rule Language: Version 6.3

Second

SAMPLE TEST
A sample Ruletest provides results for two examples of dateTime1.

Seconds between
SYNTAX
<DateTime1>.secsBetween(<DateTime2>)

<Time1>.secsBetween(<Time>)

DESCRIPTION
Returns the Integer number of seconds between DateTimes or between Times. The number of milliseconds
in <DateTime1> is subtracted from that in <DateTime2>, and the result divided by 1000 (the number of
milliseconds in a second). The result is truncated. This function returns a positive number if <DateTime2> is
later than <DateTime1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon: Rule Language: Version 6.3170

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
The following Rulesheet uses .secsBetween to determine the number of seconds that have elapsed between
dateTime1 and dateTime2, compare it to the Values set, and assign a value to string1.

SAMPLE TEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

Size of collection
SYNTAX
<Collection> ->size

DESCRIPTION
Returns the Integer number of elements in <Collection>. <Collection> must be expressed as a unique
alias.

171Progress Corticon: Rule Language: Version 6.3

Size of collection

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses ->size to count the number of elements in collection1, and assign a value to
boolean2. Note the use of unique alias collection1 to represent the collection of Entity2 associated
with Entity1.

SAMPLE TEST
A sample Ruletest provides three examples of collection1. Input and Output panels are shown below.

Progress Corticon: Rule Language: Version 6.3172

Chapter 5: Rule operator details and examples

Size of string
SYNTAX
<String>.size

DESCRIPTION
Returns the Integer number of characters in <String>. All characters, numbers, symbols, and punctuation
marks are counted, including spaces before, within, and after words.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

173Progress Corticon: Rule Language: Version 6.3

Size of string

RULESHEET EXAMPLE
The following Rulesheet uses the .size function to determine the length of string1 and assign it to integer1

SAMPLE TEST
A sample Ruletest provides three examples. Input and Output panels are shown below:

Sorted by
SYNTAX
<Collection> ->sortedBy(<Attribute2>) -> sequence operator.<Attribute1>

DESCRIPTION
Sequences the elements of <Collection> in ascending order, using the value of <Attribute2> as the
index, and returns the <Attribute1> value of the element in the sequence position determined by the
sequence operator. A sequence must be created before any sequence operator (->first, ->last, or ->at) is
used to identify a particular element. <Attribute1> and <Attribute2>must be attributes of <Collection>.

<Attribute2> may be any data type except Boolean. Strings are sorted according to character precedence
– see Character precedence in Unicode and Java Collator on page 217. <Collection> must be expressed
as a unique alias.

Progress Corticon: Rule Language: Version 6.3174

Chapter 5: Rule operator details and examples

See "Advanced collection sorting syntax" and "Statement blocks" in the Rule Modeling Guide for more examples
of usage.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE 1 - USED IN A CONDITION
This sample Rulesheet uses ->sortedBy in a conditional expression to create an ascending sequence from
collection with decimal1 as the index. ->first.string1 is used to return the value of the string1
attribute of the first element of the sequence. If the value of string1 is Joe, then boolean1 attribute of
Entity1 is assigned the value of true.

SAMPLE RULETEST 1
A sample Ruletest provides a collection of three elements, each with a decimal1 and string1 value. Input
and Output panels are shown below.

175Progress Corticon: Rule Language: Version 6.3

Sorted by

RULESHEET EXAMPLE 2 – USED IN AN ACTION
This sample Rulesheet uses ->sortedBy in an action expression to create an ascending sequence from
collection with decimal1 as the index. ->first.string1 is used to return the value of the string1
attribute of the first element of the sequence. The value of string1 is assigned the value of Joe if boolean1
attribute of Entity1 is true, if false it is assigned the value of Mary.

SAMPLE RULETEST 2
A sample Ruletest provides a collection of three elements, each with a decimal1 and string1 value. Input
and Output panels are shown below.

Sorted by descending
SYNTAX
<Collection> ->sortedByDesc(<Attribute2>) -> sequence operator.<Attribute1>

Progress Corticon: Rule Language: Version 6.3176

Chapter 5: Rule operator details and examples

DESCRIPTION
Sequences the elements of <Collection> in descending order, using the value of <Attribute2> as the
index, and returns the <Attribute1> value of the element in the sequence position determined by the
sequence operator. A sequence must be created before any sequence operator (->first, ->last, or ->at) is
used to identify a particular element. <Attribute1> and <Attribute2>must be attributes of <Collection>.

<Attribute2> may be any data type except Boolean. Strings are sorted according to their ISO character
precedence – see Character precedence in Unicode and Java Collator on page 217. <Collection> must be
expressed as a unique alias.

See "Advanced collection sorting syntax" and "Statement blocks" in the Rule Modeling Guide for more examples
of usage.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE 1 - USED IN A CONDITION
This sample Rulesheet uses -> sortedByDesc in a conditional expression to create an descending sequence
from collection with decimal1 as the index. ->first.string1 is used to return the value of the
string1 attribute of the first element of the sequence. If the value of string1 is Joe, then boolean1 attribute
of Entity1 is assigned the value of true.

SAMPLE RULETEST 1
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

177Progress Corticon: Rule Language: Version 6.3

Sorted by descending

RULESHEET EXAMPLE 2 – USED IN AN ACTION
This sample Rulesheet uses sortedByDesc in an action expression to create an descending sequence from
collection with decimal1 as the index. ->first.string1 is used to return the value of the string1
attribute of the first element of the sequence. The value of string1 is assigned the value of Joe if boolean1
attribute of Entity1 is true, if false it is assigned the value of Mary.

SAMPLE RULETEST 2
A sample Ruletest provides a collection of three elements, each with a decimal1 value. Input and Output
panels are shown below.

Progress Corticon: Rule Language: Version 6.3178

Chapter 5: Rule operator details and examples

Starts with
SYNTAX
<String1>.startsWith(<String2>)

DESCRIPTION
Returns a value of true if <String1> begins with the characters specified in <String2>. Comparisons are
case-sensitive.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .startsWith to evaluate whether string1 begins with the value of string2
and assigns a different value to boolean1 for each outcome.

179Progress Corticon: Rule Language: Version 6.3

Starts with

SAMPLE TEST
A sample Ruletest provides string1 and string2 values for four examples. Input and Output panels are
shown below.

SubSequence
SYNTAX
<Sequence> ->subSequence(integer1,integer2)

DESCRIPTION
Returns a Sequence containing all elements of <Sequence> between the positions integer1 and integer2.
Another operator, such as ->sortedBy or ->sortedByDesc, must be used to transform a <Collection> into
a <Sequence> before ->subSequence may be used. <Sequence> must be expressed as a unique alias.
See "Advanced collection sorting syntax" in the Rule Modeling Guide for more examples of usage.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Both integer values must be provided, separated by a comma. If integer1 is larger than integer2, there are no
results. When integer1 is beyond the count of the collection, there are no results. When integer2 is beyond the
count of the collection, all data from integer1 to the last entity is in the results collection. There are no results
when both integers extend beyond the number of elements in the collection.

RULESHEET EXAMPLE
This sample Rulesheet uses ->subSequence(3,4) to identify the 'middle' two elements of the sequence that
resulted from the sortedBy operation.

Progress Corticon: Rule Language: Version 6.3180

Chapter 5: Rule operator details and examples

SAMPLE RULETEST
A sample Ruletest provides a collection of five elements, each with a decimal1 value. Input and Output panels
are shown below.

Note: The selected entities and their values are highlighted to improve readability.

Substring
SYNTAX
<String>.substring(<Integer1>, <Integer2>)

181Progress Corticon: Rule Language: Version 6.3

Substring

DESCRIPTION
Returns the portion of <String> beginning with the character in position <Integer1> and ending with the
character in position <Integer2>. The number of characters in <String> must be at least equal to
<Integer2>, otherwise an error will be produced. Both <Integer1> and <Integer2> must be positive
integers, and <Integer2> must be greater than <Integer1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses .substring to return those characters of string1 between positions 4 and 7
(inclusive), and assign the resulting value to string2.

SAMPLE RULETEST
A sample Ruletest provides string1 values for four examples. Input and Output panels are shown below.

Progress Corticon: Rule Language: Version 6.3182

Chapter 5: Rule operator details and examples

Subtract
SYNTAX
<Number1> - <Number2>

DESCRIPTION
Subtracts the value of <Number2> from that of <Number1>. The resulting data type is the more expansive of
those of <Number1> and <Number2>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This sample Rulesheet uses subtract to reduce the value of decimal1 by decimal2, compare the resulting
value to zero, and assign a value to boolean1

SAMPLE TEST
A Ruletest provides three examples of decimal1 and decimal2. Input and Output panels are shown below.

183Progress Corticon: Rule Language: Version 6.3

Subtract

Sum
SYNTAX
<Collection.attribute> ->sum

DESCRIPTION
Sums the values of the specified <attribute> for all elements in <Collection>. <attribute> must be
a numeric data type. <Collection> must be expressed as a unique alias.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
This Rulesheet uses the ->sum function to add all decimal1 attributes within collection1. Note the use
of unique alias collection1 to represent the collection of Entity2 associated with Entity1

Progress Corticon: Rule Language: Version 6.3184

Chapter 5: Rule operator details and examples

SAMPLE TEST
A sample Ruletest provides 3 elements in collection1. Input and Output panels are shown below.

Today
SYNTAX
today

DESCRIPTION
Returns the current system date when the rule is executed. This Date Only value is assigned the first time
today is used in a Decision Service, then remains constant until the Decision Service finishes execution,

185Progress Corticon: Rule Language: Version 6.3

Today

regardless of how many additional times it is used. This means that every rule in a Rule Set using today will
use the same Date Only value. No time portion is assigned

USAGE RESTRICTIONS
The Literals row of the table in Summary Table of Vocabulary Usage Restriction applies. No special exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses today to determine howmany days have elapsed between today and dateTime1,
and assign a value to string1 based on the result.

SAMPLE TEST
A sample Ruletest provides three examples of dateOnly1. Assume today is equal to August 9, 2020.
Input and Output panels are shown below:

To date Casting a dateTime to a date
SYNTAX
<DateTime>.toDate

Progress Corticon: Rule Language: Version 6.3186

Chapter 5: Rule operator details and examples

DESCRIPTION
Converts the value in <DateTime> to a Date datatype, containing only the date portion of the DateTime. If
<DateTime> contains no date information, then the system epoch is used.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDate to convert dateTime1 and DateTime2 to Date datatypes and assign
the values to dateTime1 and dateTime2.

SAMPLE TEST

To dateTime Casting a date to a dateTime
SYNTAX
<Date>.toDateTime

187Progress Corticon: Rule Language: Version 6.3

To dateTime Casting a date to a dateTime

DESCRIPTION
Converts the value in <Date> to data type DateTime. The date portion is the same as the <Date> value and
the time portion is set to 12:00:00 AM in the current timezone.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDateTime to convert dateOnly1 to type DateTime and assign the value to
dateTime1.

SAMPLE TEST

To dateTime Casting a string to a dateTime
SYNTAX
<String>.toDateTime

Progress Corticon: Rule Language: Version 6.3188

Chapter 5: Rule operator details and examples

DESCRIPTION
Converts the value in <String> to data type DateTime ONLY if all characters in <String> correspond to a
valid Date, Time, or DateTime mask (format). For complete details on DateTime masks, see Rule Modeling
Guide.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDateTime to convert string1 to type DateTime and assign the value to
dateTime1.

SAMPLE TEST

To dateTime Casting a time to a dateTime
SYNTAX
<Time>.toDateTime

189Progress Corticon: Rule Language: Version 6.3

To dateTime Casting a time to a dateTime

DESCRIPTION
Converts the value in <Time> to data type DateTime ONLY if all characters in <Time> correspond to a valid
DateTime mask (format). The time portion is the same as the <Time> value and the date portion is the epoch
(see .toTime operator)

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDateTime to convert timeOnly1 to type DateTime and assign the value to
dateTime1.

SAMPLE TEST

To dateTime Timezone offset
SYNTAX
<Date>.toDateTime(<String>)

Progress Corticon: Rule Language: Version 6.3190

Chapter 5: Rule operator details and examples

DESCRIPTION
Converts the value in <Date> to data type DateTime ONLY if all characters in <Date> correspond to a valid
DateTime mask (format). The date portion is the same as the <Date> value and the time portion is set to
00:00:00 in the timezone specified by <String>, which is the timeZoneOffset. The timeZoneOffset must
take the form of a valid, signed timezone offset such as '-08:00', '+03:30', '+01:45’.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDateTime to convert dateOnly1 to type DateTime and assign the value to
dateTime1, with a timezone offset of -01:45.

SAMPLE TEST

191Progress Corticon: Rule Language: Version 6.3

To dateTime Timezone offset

To decimal
SYNTAX
<Integer>.toDecimal

<String>.toDecimal

DESCRIPTION
Converts the value in <Integer> or all characters in <String> to data type Decimal. Converts a String to
Decimal ONLY if all characters in <String> are numeric and contain not more than one decimal point. If any
non-numeric characters are present in <String> (other than the single decimal point or a leading minus sign),
no value is returned by the function.

Note: Integer values may be assigned directly to Decimal data types without using the .toDecimal operator
because a Decimal data type is more expansive than an Integer.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toDecimal to convert integer1 and string1 to type Decimal and assign
them to decimal1 and decimal2, respectively.

Progress Corticon: Rule Language: Version 6.3192

Chapter 5: Rule operator details and examples

SAMPLE TEST

To integer
SYNTAX
<Decimal>.toInteger

<String>.toInteger

DESCRIPTION
Converts the value in <Decimal> or all characters in <String> to data type Integer. All decimals have
fractional portions truncated during the conversion. Strings are converted ONLY if all characters in <String>
are numeric, without a decimal point. If any non-numeric characters (with the sole exception of a single leading
minus sign for negative numbers) are present in <String>, no value is returned by the function. Do not use
on String values of null or empty String ('') -- a pair of single quote marks -- as that will generate an error
message.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toInteger to convert decimal1 and string1 to type Integer and assign them
to integer1 and integer2, respectively.

193Progress Corticon: Rule Language: Version 6.3

To integer

SAMPLE TEST

Cases when the toInteger operator accepts null and empty values for string attributes
There are two factors:

1. Prior to evaluating a rule, Corticon checks if any attribute values used in the expressions in the rule are null
and, if so, does not execute the rule.

2. During expression evaluation, Corticon protects against null pointer exceptions. The expression
"test.string.toInteger" will return null if the string is not an integer. However, the expression "test.string.toInteger
+ 3" will return “3” if the string is not a number – the value 0 being used as the result of the toInteger.

Progress Corticon: Rule Language: Version 6.3194

Chapter 5: Rule operator details and examples

Consider the action expression:

test.integer =test.string.toInteger

Here is the Ruletest output for three tests:

How this Ruletest was processed:

• In test 1, the string is empty but not a null value so the expression evaluates and assigns null to integer.

• In test 2, the string is null so the pre-check for null values does not pass and the expression is not evaluated
and the value of integer is unchanged

• In test 3, the string is the string “null” but not a null value so the expression evaluates and assigns null to
integer. (Note the value “null” here is a string, it could have just as well been “foo”).

Now change the action expression to:

test.integer =test.string.toInteger + 3

Here is the Ruletest output now:

How this Ruletest was processed now:

• In test 1, the string is empty but not a null value so the expression evaluates. To prevent a NPE during
evaluation, the value 0 is used as the result of the toInteger resulting in the expression being “0 + 3” so
integer is assigned a value of 3.

• In test 2, the string is null so the pre-check for null values does not pass and the expression is not evaluated
and the value of integer is unchanged.

195Progress Corticon: Rule Language: Version 6.3

To integer

• In test 3, the string is the string “null” but not a null value so the expression evaluates in the same fashion
as 1, that is, “0 + 3” and assigns a value of 3.

You might argue that you cannot assume a value of 0 when doing toString on a non-number string. However,
to protect a business user against runtime exceptions, Corticon makes logical substitutions during rule evaluation
to protect against null values.

To string
SYNTAX
<Number>.toString

<DateTime*>.toString

*includes DateTime, Date, and Time data types

DESCRIPTION
Converts a value to a data type of String.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toString to convert 3 data types to strings. Rule N.3 also uses the alternative
String concatenation syntax. See Add Strings for details.

Progress Corticon: Rule Language: Version 6.3196

Chapter 5: Rule operator details and examples

SAMPLE TEST

To time Casting a dateTime to a time
SYNTAX
<DateTime>.toTime

DESCRIPTION
Converts the value in <DateTime> to a Time data type, containing only the time portion of the full DateTime. If
<DateTime> contains no time information, then the time portion is set to 12:00:00 AM in the current timezone.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toTime to convert dateTime1 to Time and assign the value to TimeOnly1.

197Progress Corticon: Rule Language: Version 6.3

To time Casting a dateTime to a time

SAMPLE TEST

Trend
SYNTAX
<Collection.attribute> -> <Sequence>.trend

DESCRIPTION
Returns one of the following 4-character strings depending on the trend of <Collection.attribute> once
sequenced by the same or different attribute in <Collection>. <Sequence> is an ordered set of
<Collection> in the form {x1, x2, x3 … xn}, where

the value of <attribute> of element xn+1 is greater
than or equal to the value of <attribute> of element
xn for every element. At least one <attribute> value
of element x must be greater than that of xn-1

INCR

the value of <attribute> of element xn+1 is less than
or equal to the value of <attribute> of element xn
for every element. At least one <attribute> value
of element x must be less than that of xn-1

DECR

the value of <attribute> of element xn+1 is equal
to the value of <attribute> for element xn for every
element.

CNST

any <sequence> with elements not meeting the
requirements for INCR, DECR, or CNST

NONE

An alternative way to understand this operator is to view the index attribute used to sequence the collection
as the independent variable (traditionally plotted along the “x” axis in a standard x-y graph) in a set of data
pairs. The attribute evaluated by the .trend operator, <Collection.attribute>, is the dependent variable,
plotted along the “y” axis. When so plotted, the 4-character words returned by .trend correspond to curves with
positive, negative, zero (constant), or arbitrary slopes.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon: Rule Language: Version 6.3198

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
This Rulesheet uses the .trend function to analyze integer1 attributes within collection1 sorted by
decimal1. The resulting trend value is assigned to string1.

SAMPLE TEST
Two sample tests provide two collections of elements, each with a decimal1 and integer1 values. Input
and Output panels are shown below.

199Progress Corticon: Rule Language: Version 6.3

Trend

Note: Technically, the slope of an INCR curve need not be positive everywhere, but must have a first derivative
(instantaneous slope) that is positive at some point along the curve and never be negative. The slope of a
CNST curve must be zero everywhere.

Trim spaces
SYNTAX
<String>.trimSpaces

DESCRIPTION
Returns <String>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

Progress Corticon: Rule Language: Version 6.3200

Chapter 5: Rule operator details and examples

RULESHEET EXAMPLE
This sample Rulesheet uses trimSpaces.

SAMPLE RULETEST
A sample Ruletest provides a collection of three elements, each with a String value. Input and Output panels
are shown below.

Note: As the Studio Tester trims spaces in the input area, you cannot really test this operation here!

True
SYNTAX
true or T

DESCRIPTION
Represents Boolean value true. Recall from the discussion oftruth values that an <expression> is evaluated
for its truth value, so the expression Entity1.boolean1=truewill evaluate to true only if boolean1=true.
But since boolean1 is Boolean and has a truth value all by itself without any additional syntax, we do not
actually need the “=true” piece of the expression. Many examples in the documentation use explicit syntax
like boolean1=true or boolean2=false for clarity and consistency, even though boolean1 or not
boolean2 are equivalent logical expressions.

201Progress Corticon: Rule Language: Version 6.3

True

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses true in a Precondition to Ruletest whether boolean1 is true, and perform the
Nonconditional computation if it is. As discussed above, the alternative expression Entity1.boolean1 is
logically equivalent.

SAMPLE TEST
A sample Ruletest provides three examples. Assume decimal2=10.0 and integer1=5 for all examples.
Input and Output panels are shown below:

Uppercase
SYNTAX
<String>.toUpper

Progress Corticon: Rule Language: Version 6.3202

Chapter 5: Rule operator details and examples

DESCRIPTION
Converts all characters in <String> to uppercase.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .toUpper to convert string2 to uppercase and assign it to string1.

SAMPLE TEST
A sample Ruletest provides three examples. Input and Output panels are shown below:

Week of month
SYNTAX
<DateTime>.weekOfMonth

<Date>.weekOfMonth

203Progress Corticon: Rule Language: Version 6.3

Week of month

DESCRIPTION
Returns an Integer from 1 to 6, equal to the week number within the month in <DateTime> or <Date>. A week
begins on Sunday and ends on Saturday.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .weekOfMonth to assign a value to integer1.

SAMPLE TEST

Week of year
SYNTAX
<DateTime>.weekOfYear

<Date>.weekOfYear

Progress Corticon: Rule Language: Version 6.3204

Chapter 5: Rule operator details and examples

DESCRIPTION
Returns an Integer from 1 to 52, equal to the week number within the year in <DateTime> or <Date>. A week
begins on Sunday and ends on Saturday. When a year ends between Sunday and the next Friday, or in other
words when a new year begins between Monday and the next Saturday, the final day(s) of December will be
included in week 1 of the new year. For example, 12/29/2013 fell on a Sunday, so 12/29-31 are included in
week 1 of 2014.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .weekOfYear to assign a value to integer1.

SAMPLE TEST

Year
SYNTAX
<DateTime>.year

205Progress Corticon: Rule Language: Version 6.3

Year

<Date>.year

DESCRIPTION
Returns the century/year portion of <DateTime> or <Date>. The returned value is a four digit Integer.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .year to evaluate dateTime1 and dateOnly1 and assign the year values to
integer1 and integer2, respectively.

SAMPLE TEST
A sample Ruletest provides three examples of dateTime1 and dateOnly1. Input and Output panels are
shown below:

Progress Corticon: Rule Language: Version 6.3206

Chapter 5: Rule operator details and examples

Years between
SYNTAX
<DateTime1>.yearsBetween(<DateTime2>)

<Date1>.yearsBetween(<Date2>)

DESCRIPTION
Returns the Integer number of years between DateTimes or between Dates. The number of months in
<DateTime2> is subtracted from the number of months in <DateTime1>, and the result is divided by 12 and
truncated. This function returns a positive number if <DateTime2> is later than <DateTime1>.

USAGE RESTRICTIONS
The Operators row of the table in Summary Table of Vocabulary Usage Restriction applies. No special
exceptions.

RULESHEET EXAMPLE
The following Rulesheet uses .yearsBetween to determine the number of months that have elapsed between
dateTime1 and dateTime2, compare it to the Values set, and assign a value to string1.

SAMPLE TEST
A sample Ruletest provides dateTime1 and dateTime2 for two examples. Input and Output panels are shown
below.

207Progress Corticon: Rule Language: Version 6.3

Years between

Progress Corticon: Rule Language: Version 6.3208

Chapter 5: Rule operator details and examples

A
Standard Boolean constructions

The topics in this section presents several standard truth tables (AND, NAND, OR, XOR, NOR, and XNOR)
with examples of usage in a Rulesheet.

For details, see the following topics:

• Boolean AND

• Boolean NAND

• Boolean OR

• Boolean XOR

• Boolean NOR

• Boolean XNOR

Boolean AND
In a decision table, a rule with AND’ed Conditions is expressed as a single column, with values for each
Condition aligned vertically in that column. For example:

209Progress Corticon: Rule Language: Version 6.3

In this scenario, each Condition has a set of 2 possible values:

person is 45 or older: {true, false}

person is a smoker: {true, false}

and the outcome may also have two possible values:

person’s risk rating: {low, high}

These Conditions and Actions yield the following truth table:

risk ratingsmokerage >= 45

hightruetrue

falsetrue

truefalse

falsefalse

Note that we have only filled in a single value of risk rating, because the business rule above only covers a
single scenario: where age >= 45 and smoker = true. Running The completeness checker as described
in the Rule Modeling section quickly identifies the remaining three scenarios:

Progress Corticon: Rule Language: Version 6.3210

Appendix A: Standard Boolean constructions

Completing the truth table and the Rulesheet requires the definition of 2 additional business rules:

and updating the truth table, we recognize the classic AND Boolean function.

risk ratingsmokerage >= 45

hightruetrue

lowfalsetrue

lowtruefalse

lowfalsefalse

Once the basic truth table framework has been established in the Rulesheet by the Completeness Checker –
in other words, all logical combinations of Conditions have been explicitly entered as separate columns in the
Rulesheet – we can alter the outcomes to implement other standard Boolean constructions. For example, the
NAND construction has the following truth table:

211Progress Corticon: Rule Language: Version 6.3

Boolean AND

Boolean NAND
risk ratingsmokerage >= 45

lowtruetrue

highfalsetrue

hightruefalse

highfalsefalse

Also known as “Not And”, this construction is shown in the following Rulesheet:

Boolean OR
risk ratingsmokerage >= 45

hightruetrue

highfalsetrue

hightruefalse

lowfalsefalse

Progress Corticon: Rule Language: Version 6.3212

Appendix A: Standard Boolean constructions

Boolean XOR
Using “Exclusive Or” logic, riskRating is high whenever the age or smoker test, but not both, is satisfied.
This construction is shown in the following Rulesheet:

risk ratingsmokerage >= 45

lowtruetrue

highfalsetrue

hightruefalse

lowfalsefalse

213Progress Corticon: Rule Language: Version 6.3

Boolean XOR

Boolean NOR
Also known as “Not Or”, this construction is shown in the following Rulesheet:

risk ratingsmokerage >= 45

lowtruetrue

lowfalsetrue

lowtruefalse

highfalsefalse

Progress Corticon: Rule Language: Version 6.3214

Appendix A: Standard Boolean constructions

Boolean XNOR
Also known as “Exclusive NOR”, this construction is shown in the following Rulesheet:

risk ratingsmokerage >= 45

hightruetrue

lowfalsetrue

lowtruefalse

highfalsefalse

215Progress Corticon: Rule Language: Version 6.3

Boolean XNOR

Progress Corticon: Rule Language: Version 6.3216

Appendix A: Standard Boolean constructions

B
Character precedence in Unicode and Java
Collator

The Unicode standard assigns a 4 digit (hexadecimal) code to every character, including many that can't be
typed on standard keyboards. Java (and hence Progress Corticon software) uses a special method named
Collator to sort these characters in specific sequences based on the I18n locale of the user.

While sorting by locale allows for regional variations of language-specific characters like accents, the combination
of these two systems can also make determining character precedence very complicated. The Unicode code
and Java Collator sequence for standard keyboards in US-English locale is shown in the table below.

Sequences for other languages and/or locales may differ, and many other Unicode characters are available
but are not shown in the table. We recommend http://www.unicode.org/charts for more information on the
Unicode system and http://java.sun.com/docs/books/tutorial/i18n/text/locale.html for more information on the
Java Collator method.

• 'Z'='z' evaluates to false.

• 'C & S' < 'C and S' evaluates to true because character a has a higher precedence than & (26 <
44). These characters are decisive because they are the first different characters encountered as the two
strings are compared beginning with characters in position 1.

• 'B' > 'aardvark' evaluates to true because character B has a higher precedence than a (45 > 44).

• 'Marilynn' < 'Marilyn' evaluates to false because character n has a higher precedence than
<space> (57 > 1). The first seven characters of each String are identical, so the final character comparison
is decisive.

Unicode 5.0 codeprecedencenamecharacter

00201typed space

217Progress Corticon: Rule Language: Version 6.3

http://www.unicode.org/charts
http://java.sun.com/docs/books/tutorial/i18n/text/locale.html

Unicode 5.0 codeprecedencenamecharacter

002D2dash or minus sign-

005F3underline or underscore_

002C4comma,

003B5semicolon;

003A6colon:

00217exclamation point!

003F8question mark?

002F9slash/

002E10period.

006011grave accent`

005E12circumflex^

007E13tilde~

002714apostrophe'

002215quotation marks"

002816left parenthesis(

002917right parenthesis)

005B18left bracket[

005D19right bracket]

007B20left brace{

007D21right brace}

004022at symbol@

002423dollar sign$

002A24asterisk*

005C25backslash\

002626ampersand&

002327number sign or hash sign#

Progress Corticon: Rule Language: Version 6.3218

Appendix B: Character precedence in Unicode and Java Collator

Unicode 5.0 codeprecedencenamecharacter

002528percent sign%

002B29plus sign+

003C30less than sign<

003D31equals sign=

003E32greater than sign>

007C33vertical line|

0031-003934-43numbers 1 through 90..9

0061, 004144letter a, small and capitala, A

0062, 004245letter b, small and capitalb, B

0063, 004346letter c, small and capitalc, C

0064, 004447letter d, small and capitald, D

0065, 004548letter e, small and capitale, E

0066, 004649letter f, small and capitalf, F

0067, 004750letter g, small and capitalg, G

0068, 004851letter h, small and capitalh, H

0069, 004952letter I, small and capitalI, I

006A, 004A53letter j, small and capitalj, J

006B, 004B54letter k, small and capitalk, K

006C, 004C55letter l, small and capitall, L

006D, 004D56letter m, small and capitalm, M

006E, 004E57letter n, small and capitaln, N

006F, 004F58letter o, small and capitalo, O

0070, 005059letter p, small and capitalp, P

0071, 005160letter q, small and capitalq, Q

0072, 005261letter r, small and capitalr, R

0073, 005362letter s, small and capitals, S

219Progress Corticon: Rule Language: Version 6.3

Unicode 5.0 codeprecedencenamecharacter

0074, 005463letter t, small and capitalt, T

0075, 005564letter u, small and capitalu, U

0076, 005665letter v, small and capitalv, V

0077, 005766letter w, small and capitalw, W

0078, 005867letter x, small and capitalx, X

0079, 005968letter y, small and capitaly, Y

007A, 005A69letter z, small and capitalz, Z

Progress Corticon: Rule Language: Version 6.3220

Appendix B: Character precedence in Unicode and Java Collator

C

221Progress Corticon: Rule Language: Version 6.3

Precedence of rule operators

The precedence of operators affects the grouping and evaluation of expressions. Expressions with
higher-precedence operators are evaluated first. Where several operators have equal precedence, they are
evaluated from left to right. The following table summarizes Corticon's operator precedence.

ExampleOperator NameOperatorOperator
precedence

(5.5 / 10)Parenthetic expression()1

-10Unary negative-2

not 10Boolean testnot

5.5 * 10Arithmetic: Multiplication*3

5.5 / 10Arithmetic: Division/

5 ** 2

25 ** 0.5

125 ** (1.0/3.0)

Arithmetic: Exponentiation (Powers and Roots)**

5.5 + 10Arithmetic: Addition+4

10.0 – 5.5Arithmetic: Subtraction-

5.5 < 10Relational: Less Than<5

5.5 <= 5.5Relational: Less Than Or Equal To<=

10 > 5.5Relational: Greater Than>

10 >= 10Relational: Greater Than Or Equal To>=

5.5=5.5Relational: Equal=

5.5 <> 10Relational: Not Equal<>

(ent1.dec1 > 5.5 and
ent1.dec1 < 10)

Logical: AND(expression and
expression)

6

(ent1.dec1 > 5.5 or
ent1.dec1 < 10)

Logical: OR(expression or
expression)

Progress Corticon: Rule Language: Version 6.3222

Appendix C: Precedence of rule operators

Note: While expressions within parentheses that are separated by logical AND / OR operators are valid, the
component expressions are not evaluated individually when testing for completeness, and might cause
unintended side effects during rule execution. Best practice within a Corticon Rulesheet is to represent AND
conditions as separate condition rows and OR conditions as separate rules -- doing so allows you to get the
full benefit of Corticon’s logical analysis.

Note: It is recommended that you place arithmetic exponentiation expressions in parentheses.

223Progress Corticon: Rule Language: Version 6.3

Progress Corticon: Rule Language: Version 6.3224

Appendix C: Precedence of rule operators

D
Formats for Date Time and DateTime
properties

DateTime informationmay takemany different formats. Corticon uses a common source of acceptable DateTime,
Date Only, and Time Only formats, also known as masks.

For example, a date mask may specify yyyy-MM-dd as an acceptable date format, which means that an
attribute of type DateTime (or Date) may hold or contain data that conforms to this format. '2019-04-12'
conforms to this mask; 'April 12th,2019' does not.

For proper execution, it is important to ensure that date formats used during rule development and testing (and
are included in the rule builders' Corticon Studio brms.properties file) are also present in the Corticon
Server's brms.properties file.

Most commercial databases represent dates as DateTimes. Such DateTimes are frequently stored as UTC,
namely the number of milliseconds that have transpired from an arbitrary epoch (for example, 1/1/1970 00:00:00
GMT); this is not a universal standard but is a very popular convention. UTC dates can be rendered in the
user's local time zone, but this is merely a matter of presentation. A UTC represents a simultaneous point in
time for two observers regardless of where on earth they reside.

However, some date or time concepts, such as holiday, cannot be expressed conveniently as a discrete time
point. Christmas (12/25/XX) actually denotes different time frames depending on the observers' time zones;
thus, Corticon carries (that is, holds in memory) all dates in GMT with the time portion zeroed (that is, midnight).
This approach addresses the holiday problem because a user can enter holiday dates into the database and
not have them shift when they are rendered in the user's local time zone.

Carrying GMT dates should be transparent to the user. Dates expressed as strings in incoming XML are parsed
and the proper data type is inferred; for dates, they are immediately instantiated as GMT and rendered back
in GMT with no conversion.

225Progress Corticon: Rule Language: Version 6.3

Setting and modifying masks
Date/time masks are stored as a set of defaults that can be replaced by listing preferred values in the
brms.properties file located at your work directory root – or, in Studio, the preferred location specified in
Preferences.Corticon Studio's DateTime datatype uses both date and time data. The Date datatype handles
only date information, and the Time datatype handles only time information.

The Corticon XML Translator will maintain the consistency of DateTime, Date, and Time values from input
to output documents as long as the masks that are used are contained in the lists.

Note: Property settings you list in your brms.properties do not append to an existing list, they replace the
default values. For example, if you want to add a new DateTime mask to the built-in list, be sure to include
all the masks you intend to use, not just the new one. If your brms.properties file contains only the new
mask, then it will be the only mask Corticon uses.

There is only one Date datatype. It handles dates, times, and date/times. A Date attribute is designated as
date, time, or date/time depending on which of the masks below are matched. This designation changes the
behavior of Date comparison operators.

The dateformat, timeformat, and datetimeformat, Date masks process incoming date/times on request
XML payloads, insert date/times into output response XML payloads, parse entries made in the Studio
Rulesheets, Vocabulary, and Testsheets, and to display any date/time in Studio.

The first entry for each dateformat, datetimeformat, and timeformat is the default mask. For example,
the built-in operator today always returns the current date in the default dateformat mask.

The function now returns the current date in the default datetimeformat.The entries can be altered but must
conform to the patterns/masks supported by the Java class SimpleDateFormat in the java.text package.

com.corticon.crml.OclDate.dateformat=
MM/dd/yy
MM/dd/yyyy
M/d/yy
M/d/yyyy
yyyy/MM/dd
yyyy-MM-dd
yyyy/M/d
yy/MM/dd
yy/M/d
MMM d, yyyy
MMMMM d, yyyy

com.corticon.crml.OclDate.datetimeformat=
MM/dd/yy h:mm:ss a
MM/dd/yyyy h:mm:ss a
M/d/yy h:mm:ss a
M/d/yyyy h:mm:ss a
yyyy/MM/dd h:mm:ss a
yyyy/M/d h:mm:ss a
yy/MM/dd h:mm:ss a
yy/M/d h:mm:ss a
MMM d, yyyy h:mm:ss a
MMMMM d, yyyy h:mm:ss a
MM/dd/yy H:mm:ss
MM/dd/yyyy H:mm:ss
M/d/yy H:mm:ss
M/d/yyyy H:mm:ss
yyyy/MM/dd H:mm:ss
yyyy/M/d H:mm:ss
yy/MM/dd H:mm:ss
yy/M/d H:mm:ss
MMM d, yyyy H:mm:ss
MMMMM d, yyyy H:mm:ss

Progress Corticon: Rule Language: Version 6.3226

Appendix D: Formats for Date Time and DateTime properties

MM/dd/yy hh:mm:ss a
MM/dd/yyyy hh:mm:ss a
M/d/yy hh:mm:ss a
M/d/yyyy hh:mm:ss a
yyyy/MM/dd hh:mm:ss a
yyyy/M/d hh:mm:ss a
yy/MM/dd hh:mm:ss a
yy/M/d hh:mm:ss a
MMM d, yyyy hh:mm:ss a
MMMMM d, yyyy hh:mm:ss a
MM/dd/yy HH:mm:ss
MM/dd/yyyy HH:mm:ss
M/d/yy HH:mm:ss
M/d/yyyy HH:mm:ss
yyyy/MM/dd HH:mm:ss
yyyy/M/d HH:mm:ss
yy/MM/dd HH:mm:ss
yy/M/d HH:mm:ss
MMM d, yyyy HH:mm:ss
MMMMM d, yyyy HH:mm:ss
MM/dd/yy h:mm:ss a z
MM/dd/yyyy h:mm:ss a z
M/d/yy h:mm:ss a z
M/d/yyyy h:mm:ss a z
yyyy/MM/dd h:mm:ss a z
yyyy/M/d h:mm:ss a z
yy/MM/dd h:mm:ss a z
yy/M/d h:mm:ss a z
MMM d, yyyy h:mm:ss a z
MMMMM d, yyyy h:mm:ss a z
MM/dd/yy H:mm:ss z
MM/dd/yyyy H:mm:ss z
M/d/yy H:mm:ss z
M/d/yyyy H:mm:ss z
yyyy/MM/dd H:mm:ss z
yyyy/M/d H:mm:ss z
yy/MM/dd H:mm:ss z
yy/M/d H:mm:ss z
MMM d, yyyy H:mm:ss z
MMMMM d, yyyy H:mm:ss z
MM/dd/yy hh:mm:ss a z
MM/dd/yyyy hh:mm:ss a z
M/d/yy hh:mm:ss a z
M/d/yyyy hh:mm:ss a z
yyyy/MM/dd hh:mm:ss a z
yyyy/M/d hh:mm:ss a z
yy/MM/dd hh:mm:ss a z
yy/M/d hh:mm:ss a z
MMM d, yyyy hh:mm:ss a z
MMMMM d, yyyy hh:mm:ss a z
MM/dd/yy HH:mm:ss z
MM/dd/yyyy HH:mm:ss z
M/d/yy HH:mm:ss z
M/d/yyyy HH:mm:ss z
yyyy/MM/dd HH:mm:ss z
yyyy/M/d HH:mm:ss z
yy/MM/dd HH:mm:ss z
yy/M/d HH:mm:ss z
MMM d, yyyy HH:mm:ss z
MMMMM d, yyyy HH:mm:ss z

com.corticon.crml.OclDate.timeformat=
h:mm:ss a
h:mm:ss a z
H:mm:ss
H:mm:ss z
hh:mm:ss a
hh:mm:ss a z

227Progress Corticon: Rule Language: Version 6.3

HH:mm:ss
HH:mm:ss z

--

When com.corticon.crml.OclDate.locale=true, it will override the default datetime mask and use
the locale mask as the date style type defined by com.corticon.crml.OclDate.datetype and the time
style type defined by com.corticon.crml.OclDate.timetypevalue for datetype and timetype are
defined as values of java.text.DateFormat enums: FULL = 0, LONG = 1, MEDIUM = 2, SHORT
= 3 .

com.corticon.crml.OclDate.locale=false
com.corticon.crml.OclDate.datetype=3
com.corticon.crml.OclDate.timetype=2

--

If permissive is true (default), then the Corticon date/time parser will be lenient when handling incoming or
entered date/times, trying to find a match even if the pattern is not contained in the mask lists. If false, then
any incoming or entered date/time must strictly adhere to the patterns defined by dateformat,
datetimeformat, timeformat.

Default patterns are for United States and other countries that follow the US conventions on date/times.

com.corticon.crml.OclDate.permissive =true

--

By default, when the value of now is pinned, the milliseconds are set to zero. This property can specify how to
deal with the nano seconds (which can affect the milliseconds).

• Value of ZERO_MILLIS sets the nanos to 0 (which also sets milliseconds to zero)

• Value of ZERO_NANOS sets only the last 3 digits of the nanos to zero (which does not modify millis)

• Value of NO_ZERO does not modify the nanos (This has shown some rare side effects where datetime
appears equal however the hidden nanos values cause comparison to be not equal)

Default value is ZERO_MILLIS

com.corticon.crml.OclDate.nanos=ZERO_MILLIS

--

If maskliterals is true (default), the system will parse strings and dates more quickly by checking for the
presence of mask literals (for example, “/”, “-”, “:” or “,”) before consulting the date masks (an expensive
process). If a string does not contain any of the mask literal characters, it can be immediately deemed a string
(as opposed to a date).

com.corticon.crml.OclDate.maskliterals =true

--

When a Date literal contains time zone information, it may cause a shift in the actual day because internally
Corticon expects Date literals to have a time component of 00:00:00 GMT.By setting
com.corticon.crml.OclDate.ignoreTimeZoneOnDate=true, the time component is ignored when
converting a string into a Date literal. The result is an internal value that has a time component of 00:00:00
GMT which normalizes the Date literal. Default value is false.

com.corticon.crml.OclDate.ignoreTimeZoneOnDate =true

Progress Corticon: Rule Language: Version 6.3228

Appendix D: Formats for Date Time and DateTime properties

Mask patterns
To take advantage of this feature, all user-specified date masks must contain at least one literal character. If
any user-specified masks contain exclusively date pattern characters (for example, 'MMddyy'), maskliterals
must be set to false in order to prevent the system from misinterpreting date literals (for example, '123199')
as simple strings.

These properties deal with the way Corticon Studio and Corticon Server handle date/time formats. Preset
formats -- referred to as masks - are used to:

• Process incoming date/times on request XML payloads.

• Insert date/times into output response XML payloads.

• Parse entries made in the Corticon Studio Rulesheets, Vocabulary, and Tests.

• To display any date/time in Corticon Studio.

Masks are divided into 3 categories: dateformat, datetimeformat, timeformat.

Use the following chart to decode the date mask formats:

The following symbols are used in date/time masks:

PatternsPresentationMeaningSymbol

G = {AD, BC}TextEra designatorG

yy = {00..99}
yyyy = {0000..9999}

NumberYeary

YY = {00..99}
YYYY = {0000..9999}

NumberWeek yearY

M = {1..12}
MM = {01..12}

MMM = {Jan..Dec}
MMMM = {January..December}

Text or NumberMonth in yearM

w = {1..53}

ww = {01..53}

NumberWeek in yearw

W = {1..6}NumberWeek in monthW

D = {0..366}

DDD = {000..366}

NumberDay in yearD

d = {1..31}

dd = {01..31}

NumberDay in monthd

F = {0..6}NumberDay of week in monthF

229Progress Corticon: Rule Language: Version 6.3

PatternsPresentationMeaningSymbol

E, EE, or EEE = {Sun..Sat}

EEEE = {Sunday..Saturday}

TextDay name in weekE

u = {1..7}NumberDay number of week (1 =
Monday, ..., 7 = Sunday)

u

a = {AM, PM}TextAM/PM markera

H = {0..23}

HH = {00..23}

NumberHour in 24-hour format
(0-23)

H

k = {1..24}

kk = {01..24}

NumberHour in day (1-24)k

K = {1..12}

KK = {01..12}

NumberHour in AM/PM (0-11)K

h = {1..12}

hh = {01..12}

NumberHour in AM or PMh

m = {0..59}

mm = {00..59}

NumberMinute in hourm

s = {0..59}

ss = {00..59}

NumberSecond in minutes

S = {0..999}

SSS = {000..999}

NumberMillisecond in minuteS

z, zz, or zzz = abbreviated time zone

zzzz = full time zone

TextGeneral time zonez

Z,ZZ, or ZZZ = abbreviated time zone

ZZZZ = full time zone

TextRFC 822 time zoneZ

X, XX, or XXX = abbreviated time zone

XXXX = full time zone

TextISO 8601 time zoneX

Delimiterescape character used to
insert text

`

'Literalsingle quote'

Progress Corticon: Rule Language: Version 6.3230

Appendix D: Formats for Date Time and DateTime properties

Any characters in the pattern that are not in the ranges of [a..z] and [A..Z] will be treated as quoted text. For
instance, characters like {:, ., <space>, #, @} will appear in the resulting time text even they are not embraced
within single quotes. A pattern containing any invalid pattern letter will result in a thrown exception during
formatting or parsing.

Examples:

Resulting Formatted DateSample Pattern

2013.07.10 AD at 15:08:56 PDTyyyy.MM.dd G 'at' hh:mm:ss z

Wed, Jul 10, '13EEE, MMM d, ''yy

12:08 PMh:mm a

12 o'clock PM, Pacific Daylight Timehh 'o''clock' a, zzzz

0:00 PM, PSTK:mm a, z

2013.July.10 AD 12:08 PMyyyy.MMMM.dd G h:mm a

Note: See SimpleDateFormat Javadocs for more detailed information.

231Progress Corticon: Rule Language: Version 6.3

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Progress Corticon: Rule Language: Version 6.3232

Appendix D: Formats for Date Time and DateTime properties

	Copyright
	Table of Contents
	Introduction to Corticon Rule Language
	Rule structure
	Basic data types
	Truth values
	Collection operators
	Language operators
	Vocabulary used in this Language Guide

	How to access rule operators
	Usage restrictions
	Rule operators
	Attribute operators
	Boolean
	Date
	DateTime
	Decimal
	Integer
	String
	Time

	Entity and Association operators
	Entity
	Collection
	Sequence

	General terms

	Rule operator details and examples
	Absolute value
	Add numbers
	Add strings
	Add days
	Add hours
	Add minutes
	Add months
	Add seconds
	Add years
	Associate elements
	At
	Average
	CellValue
	Character at
	Clone
	Concatenate
	Contains
	Day
	Day of week
	Day of year
	Days between
	Decrement
	Disassociate elements
	Divide
	Div
	Ends with
	Equals ignoring case
	Equals when used as an assignment
	Equals when used as a comparison
	Equals when using Strings
	Exists
	Exponent
	False
	First
	First NUMBER
	Floor
	For all
	Get Milliseconds
	Greater than
	Greater than or equal to
	Hour
	Hours between
	In LIST
	In RANGE
	Increment
	Index of
	Is integer
	Is empty
	Iterate
	Last
	Last NUMBER
	Less than
	Less than or equal to
	Logarithm BASE 10
	Logarithm BASE X
	Lowercase
	Matches
	Maximum value
	Maximum value COLLECTION
	Minimum value
	Minimum value COLLECTION
	Minute
	Minutes between
	Mod
	Month
	Months between
	Multiply
	Natural logarithm
	New
	New unique
	Not
	Not empty
	Not equal to
	Now
	Null
	Other
	Or
	Random
	Regular expression to replace String
	Remove element
	Replace elements
	Replace String
	Round
	Second
	Seconds between
	Size of collection
	Size of string
	Sorted by
	Sorted by descending
	Starts with
	SubSequence
	Substring
	Subtract
	Sum
	Today
	To date Casting a dateTime to a date
	To dateTime Casting a date to a dateTime
	To dateTime Casting a string to a dateTime
	To dateTime Casting a time to a dateTime
	To dateTime Timezone offset
	To decimal
	To integer
	To string
	To time Casting a dateTime to a time
	Trend
	Trim spaces
	True
	Uppercase
	Week of month
	Week of year
	Year
	Years between

	Standard Boolean constructions
	Boolean AND
	Boolean NAND
	Boolean OR
	Boolean XOR
	Boolean NOR
	Boolean XNOR

	Character precedence in Unicode and Java Collator
	Precedence of rule operators
	Formats for Date Time and DateTime properties

