» Progress’

<

Corticon
Extensions

3 Progress Corticon

Copyright

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo Ul, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, Sequelink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Apache and Kafka are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. Any other marks contained herein may be trademarks of their
respective owners.

Please refer to the NOTICE.txt or Release Notes — Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Last updated with new content: Corticon 6.3.1

Updated: 2022/09/23

Progress Corticon: Extensions: Version 6.3

Copyright

4 Progress Corticon: Extensions: Version 6.3

Contents

Table of Contents

Overview of Corticon extensions...........ccccoiiieciiiiciiircce e e e 7
How to use extensions when creating Decision Services........c....ccccceennnn. 9
What is in the sample extensions........ccccccccciiiimmisinnnrrsc s 13
What is in the Extended Operators Sample ProjectS.........cooueiiiiiiiiiiie i 14

What is in the Service Callout Sample Projects. ... 15
Service Callout Java and RuUle Projects...........coooiiiiiii it 15

Weather Callout Java and Rule Projects...........oooi i 17

Code CoNVENLIONS..........cooiiiiec s s s e e e e e s e emn e e e enns 21
[0 11T =T a1 o) = 11 0] o < TSP 21
Access HTTP Headers in Extended Operators and Service Callouts.................ccooooiiiiriiiiiiiiiiiiiieennee, 22
Imports and interfaces Used iN EXIENSIONS..............uuiiiiiiiie e e e e 23
How to use DataDirect drivers..........c e e 25
How to create extensions..........ccccoiieeciiiicci i e e e 27
Import the Corticon APIs into the Java Project............ooceiiiiiiiiiee e 27

How to create custom extended OPErators.c.uuiii i 28

How to create custom Service CallOULS...........ooo i 30
Access to Vocabulary Metadata ..o 34

Specify properties on a service callout INStANCE...........cceviiiiiiiiie e 34

Add the compiled Java classes to the Rules Project..........cooouiiiiiiiiiie e 37
How to deploy Decision Services with extensions...........ccccccciiiirieeenne. 39

Progress Corticon: Extensions: Version 6.3 5

Contents

6 Progress Corticon: Extensions: Version 6.3

Overview of Corticon extensions

When you are creating business rules, you sometimes need to perform operations that are not built natively
into Corticon. For example, you may need to apply a complex mathematical formula or to retrieve data from
an external web service. Corticon provides the ability to add custom extensions for just such purposes.

Extensions are written as custom Java code that you package into one or more JAR files. You simply add
extension jar files to your rule project to have them bundled into the EDS file for your Decision Service. This
ease of adding extensions makes it easier to develop extensions yourself or to use open source extensions
that you download from the Corticon community. By bundling extensions with EDS files, the EDS file becomes
self-contained. You can deploy it to a Corticon Server without modifying the server’s classpath. It also allows
you to have different Decision Services, or versions of Decisions Services, running that use different versions
of an extension.

When developing an extension, it needs to implement one or more Java interfaces that Corticon has defined.
The Corticon Extensions API provides for Java annotations to describe the extension, thereby eliminating the
need for additional configuration files.

When developing a project in Corticon Studio you can add extensions to your project through the project's
Properties dialog box, so that they are available for development and running rule tests. The Package and
Deploy wizard in Corticon Studio will include any extensions used by the project into the EDS file it generates
or deploys. If you want to script the building of your EDS files, you can also use the Corticon ANT scripts to
package extensions into EDS files.

For compatibility with previous releases you can still place extension JAR files on the Corticon classpath so
that they are available to all Decision Services.

Extensions can be created in the Java development environment included in Corticon Studio, or you can use
another IDE.

There are two types of Corticon extensions:

* Extended operators - Operators are used when defining conditions and actions in a Rulesheet. While
Corticon has a large built-in set of operators, you can expand this set by adding custom operators. Operators
can operate on individual attributes, collections or sequences. Examples include:

Progress Corticon: Extensions: Version 6.3

https://documentation.progress.com/output/Corticon/6.3/javadoc/Extensions/com/corticon/services/extensions/package-summary.html

Chapter 1: Overview of Corticon extensions

* Financial functions, such as net present value, and loan amortization
e Statistical functions, such as standard deviation, and permutations

* Engineering functions, such as pi, sine, and cosine

* Service callouts - Callouts can be used in a ruleflow to retrieve, modify, or store data that is being processed
by the rules. The most common use is to access data in a database or external web service. For example,
if your Ruleflow needs to look up an applicant's credit rating, the service callout can have a step in the
Ruleflow processing that calls out to a trusted realtime ratings provider, and then adds the response back
into the decision processing.

8 Progress Corticon: Extensions: Version 6.3

How to use extensions when creating
Decision Services

You might want your project to include extensions that are already packaged and ready to use. The sample
extensions bundled with Corticon Studio provide sample Rule projects with their samples already packaged
into JARs.

For now, assume that you just want to use the functionality in these extensions.
To use the packaged extension samples in my project:
1. In Corticon Studio, choose Help > Samples. Locate the Advanced samples:

Getting Started
Intermediate

Advanced

Extended Operators - This sample
demonstrates how to extend Corticon's
capabilities with custom rule operators.

Service Callouts - This sample
demonstrates how to extend Corticon's
capabilities with custom service callouts.

2. Select Extended Operators, click Open, and then click OK.
3. Then do the same to open the Service Callouts sample.

4. Your Studio's Project Explorer lists the two samples, each with its Java project and its Rules project:

Progress Corticon: Extensions: Version 6.3

Chapter 2: How to use extensions when creating Decision Services

L5 Project Explorer &3

ID‘J- Extended Operator Java Project
'La» Extended Operator Rule Project
ID‘J- Service Callout Java Project
-1 Service Callout Rule Project

5. Expanding the two Rule Projects, you can see that each has a related samples JAR.

L5 Project Explorer 23

ID‘J- BExtended Operator Java Project
Elw Extended Operator Rule Project
..... @ DuplicateVendors.ers

----- B¢ FutureValue.ers

..... g Investment.ecore

..... F@ RetirelnleapYear.ers

----- ‘& Retirementfnalysis.erf

----- ¢ RetirementAnalysis.ert

sample-extensions.jar
=]

12 Service Callout Java Project
=-Lg Service Callout Rule Project

...... Eg DetermineApproval.ers

- E& Medical.ecore

& ProcedureApproval.erf

----- "¢ ProcedureApproval.ert
.12 sample-callout.jar

6. Create a new Rule Project named nyPr oj ect and create a very simple Vocabulary that includes a date
type:

L7 Project Explorer [Rule Vocabulary 532

ct

=B=] Entity_
L] Attribute 1

L Attribute 2

7. Copy the JAR files highlighted in step 5, and then paste them in to myPr oj ect .

Note: While you could reference the JARs in their projects, copying them into your project insures that
when you export that Project, those JARs are included so the references don’t break.

8. In the Project Explorer, click on nyPr oj ect , and then select Properties. Select Corticon Extensions.
Click Add then navigate to each of those JARs, as shown:

10 Progress Corticon: Extensions: Version 6.3

{_ Properties for myProject m| ﬁ

| type filter text Corticon Extensions @ - v
- Resource
" Builders Add extended operator and service call-out JAR files used in this project.

Corticon Extensions The selected JAR files will be packaged inside EDS files produced by the Package and Deploy wizard.

Project References

: Ch_bl\workspace_B00N myProject\sample-extensions.jar Add...
i Run/Debug Settings

Add From Project...
Select All
Clear All

C_Blhdvworkspace_G00\myProject\sample-callout.jar

@ 0K | Cancel |

Ly

Note: This feature does not support JARs nested within a JAR that you add to a project.

9. Create a Rulesheet in myPr oj ect . Note that the Rule Operators tab adds in the extended operators that
are in the JAR, so that you can readily use one as a valid operator in the Rulesheet, as shown:

ElRule.. 3 = O B8 *Untitled.ers 32

ga = Conditions 0 1 2

Scope
B myProject =] Entity 1 Entity_1.Date_1.isLeapYear T F

EE Entity 1 .= Date 1
L Attribute 1
= Attribute_2

& Rule Operators 3% = 0
E-= Sample Extended Operators

¥ isLeapYear ()
== Collection
= Finance

(= Attribute Operators

p:y Entity/Association Operators Actions M | |

10. Create a Ruleflow in myPr oj ect . Click Service Call-out on the palette, click on the canvas, and then name
it. On the Properties tab, click the Service Name dropdown to see the service callouts that are packaged
in the sample JAR you added to the project, as shown when get Pat i ent | nf 0 was selected:

Progress Corticon: Extensions: Version 6.3

1"

Chapter 2: How to use extensions when creating Decision Services

0

get-info

kil

E Properties 2 Jrf._\. Problems &) Error Log

J .= Palette [»
% & =
— Connection
@ Rulesheet
& Ruleflow
o5 Branch
B Subflow

() Tterative

Service Call-out Name: | get-info

SNV ET ol (MedicalRecords.getPatientInfo A

Service callout to retrieve patient descriptive information for the set of Corticon 'Patient’ entities, J

Description:

=

Because the two extension JARs are properties of the project, they are embedded in Decision Services that

you package and deploy from Studio.

The next section looks at the source code in each of their Java projects to gain insight into how extensions are

created and prepared for use.

12

Progress Corticon: Extensions: Version 6.3

What is in the sample extensions

Both the Extended Operator and Service Callout samples contain Java projects that show how you can create
the sample extension JAR yourself, and a Corticon Rules project that demonstrates those extensions.

There are two sets of extension samples:

* Extended Operator Sample Projects - The Extended Operators sample contains the source code for
several extended operators and a rule project that uses them. The rule project uses extended operators for
determining the future value or an investment, if a collection contains duplicate strings, and if a given date
is a leap year.

* Service Callout Sample Projects - The Service Callout sample contains the source code for several service
callouts and a rule project that uses them. The rule project uses service callouts to retrieve and update
patient medical data in a pseudo external service. Accessing web services or other external datasources
is a common use case for service callouts.

For details, see the following topics:

* Whatis in the Extended Operators Sample Projects

* Whatis in the Service Callout Sample Projects

Progress Corticon: Extensions: Version 6.3

13

Chapter 3: What is in the sample extensions

What is in the Extended Operators Sample Projects

The Extended Operator Java project contains a sr ¢ folder with the source code for the extended operators

and has on its build path the standard Java system library and CcExt ensi onApi . j ar with the Corticon
extension API:

[Project Explorer 52 | (L] Rule Vocabulary 0% Y = O

ET‘E‘J Extended Cperator Java Project
-8 sic

-2, JRE System Library [Studio]

. -8 CcExtensionApijar - CORTICON_HOME\Studic\lib - C:\home\Studio'\Studio\lib\CcExtensionAPLjar
'LE» Extended Operator Rule Project

The sr ¢ folder contains the source code for three Java classes that implement extended operators:
0122 Bxtended Cperator Java Project
-2 src
EIEE com.corticon.samples.extensions
Elm AttributeCperators.java
=-@ AttributeOperators
----- @ isLeap¥ear(Date) : Eoolean
e @ replacedll(String, String, String) : String
= [J] CollectionOperators,java
=RC) CollectionOperators
----- P containsDuplicates(String(]) : BEoolean
----- & cccurrenceCount(String[], String) : BigInteger
=-[J] Financejava
ElG Finance
----- @ getFutureValue(BigDecimal, BigDecimal, Biglnteger) : EigDecimal
----- & getPresentValue(BigDecimal, BigDecimal, Biglnteger) : EigDecimal

The Extended Operator Rule project is a set of rule assets that demonstrate the extended operator Java
sample It uses the extended operators and the supporting vocabulary, Ruleflows, and Ruletests for the project,
plus the JAR file of the extensions built in the Java project, sanpl e- ext ensi ons. j ar:

TD‘J- Extended Operator Java Project
|_—-_|f=a> Extended Operator Rule Project
+.E@ DuplicateVendors.ers

E FutureValue.ers

+ L@ Investment.ecore

E RetirelnLeapYear.ers

' RetirernentAnalysis.erf
1.[%¢ RetirementAnalysis.ert

| sample-extensions.jar

The sample project contains a Vocabulary, and three Rulesheets that demonstrate each of the new extended
operators:

14 Progress Corticon: Extensions: Version 6.3

What is in the Service Callout Sample Projects

1. FutureValue - Determines years to retirement and the future value of the current investment with a constant

interest rate.

2. RetirelnLeapYear - Checks whether the retirement year is a leap year

3. DuplicateVendors - Checks to determine that there are not multiple accounts with the same vendor

The Ruleflow chains the three Rulesheets together for the Ruletest to see that the extended operators behave

as expected.

{Extended Operator Rule Project/RetirementAnalysis.erf

Input
==l Client [1]
----- =| firsthlame [Herb]
----- =] lastMame [Bremer]
----- = retirementDate [2032/12/31]
El-4— account (Account] [1]
----- = accountMurmber [1234]
----- = currentValue [10000,000000]
----- [=| interestRate [.050000]
----- =] retirementValue
----- j=| vendorMame [First United]
El-4— account (Account] [2]
----- =] accountMumber [1357]
----- = currentValue [20000,000000]
----- [=| interestRate [.030000]
----- =] retirementValue
----- =) vendorMame [Amherst Trust]
B-4— account (Account) [3]
R-4— account (Account) [4]
== Client [2]
----- = firstName [Cristing]
----- =] lastMame [Sarmiento]
----- = retirementDate [2030/12/31]
B-4— account (Account) [5]
B-4— account (Account) [6]
El-¢— account (Account) [7]

=1

Output

=& Client [1]

----- [=| firsthame [Herb]

----- [=] lastMName [Bremer]

----- =] multipleAccountsWithSameVendor [true]
----- =) retirelnlLeapYear [true]

----- =) retirementDate [2032/12/31]

----- =) yearsToRetirement [16]

El-+— account (Account) [1]

----- == accountMumber [1234]

----- B=| currentValue [10000.000000]

----- =] interestRate [0.050000]

----- = retirementValue [21828.745884]
----- B=| vendorMame [First United]

El-<— account (Account) [2]

----- = accountMumber [1357]

----- B=| currentValue [20000.000000]

----- =] interestRate [0.030000]

----- = retirementValue [32094.128782]
----- #=| vendorMame [Amherst Trust]
Rl-<— account (Account) [3]

[-%— account (Account) [4]

=-E1 Client [2]

----- = firstName [Cristing]
----- =] lastName [Sarmiento]
----- =] multipleAccountsWithSameVendor [false]

What is in the Service Callout Sample Projects

A Corticon Studio installation includes two Service Callout sample projects that you can immediately bring in

to your workspace, and then run.

Service Callout Java and Rule Projects

The Service Callout Java Project contains a sr ¢ folder with the source code for the service callouts and has
on its build path the standard Java system library and CcExt ensi onApi . j ar with the Corticon extension

API:
ElT:‘.{' Service Callout Java Project

'ﬁ SIC
(-2 JRE System Library [Studio]

[]-fms CcExtensionAPLjar - CORTICORN

m
L

o

Progress Corticon: Extensions: Version 6.3

Chapter 3: What is in the sample extensions

The sr ¢ folder contains the source code for four Java classes that implement service callouts:
|_—‘_|IE"'- Service Callout Java Project

B sre
E|EE com.corticon.samples.extensions
. B@-[J] MedicalRecords,java
: G MedicalRecords
E|EE|l com.corticon.samples.simulation
Em MedicalDataSimulator,java
m-® MedicalDataSimulator
Em PatientData.java
m- @ PatientData
Em ProcedureData.java
- ® ProcedureData

The Service Callout Rule Project is a set of rule assets that demonstrate the Service Callout Java samples:
H'LE Service Callout Rule Project

Q Determinefpproval.ers

-[g Medical.ecore

-y Procedurebpproval.erf

g ProcedureApproval.ert

samnple-callout.jar
—_

The project uses the service callouts and the supporting vocabulary, Rulesheet, Ruleflow, and Ruletest for the
project. It also contains the JAR file of the extensions built from the Java project, sanpl e- cal | out s. j ar.

The Ruleflow uses three service callouts and a Rulesheet to perform its functions:

B Get Patient Info 2 Get Procedure History

Q Determine Approval 5 Save Approvals

The Ruletest shows that the service callouts behave as expected:

16 Progress Corticon: Extensions: Version 6.3

What is in the Service Callout Sample Projects

/Service Callout Rule Project/Procedurepproval.erf

Input Output

=-=] Patient [1] =& Patient [1] 1=
L id[1234500 i . = firstName [Teri]
EE Patient[2] i . =] id [123450]
D oLsid[234521 . & lastName [Rivera]
EE Patient [3] El-4— procedure (Procedure) [4]
Dol d2esy =] approved [true]
o-E Patientd] L =l code [A1329]
Lo d[123456] 0 f=| date [12/27/15]
EE Patient[5] i i = description [Portable oxygen concentrator, rental]

L. id [123458] El-<— procedure (Procedure) [5] I

----- =] approved [false]

..... = code [E0169]

..... = date [12/27/15]

----- =] description [Apnea monitor, with recording feature]
&=l Patient [2]

----- = firstName [Margarita]

..... = id [123452]

----- = lastMame [Foster]

=-%— procedure (Procedure) [2]

i [=| approved [false]

..J= code [C1726]

L= date [12/27/15]

El-4— procedure (Procedure) [3] -
1| | ’

The Service Callouts sample is accessed from the Studio's Help > Samples in the Advanced section.

Weather Callout Java and Rule Projects

Corticon Studio includes a sample project that shows how service callouts can be reused when they can be
parameterized so that each instance can have a different configuration.

The Weather Callout Java Project is a Java project that includes the source code for a service callout to call
the REST APl on OpenWeatherMap.org to retrieve weather data for individual cities. The Weather Callout
Rule Project uses the callout in the Java project to retrieve data for cities specified in Locat i on entities. The
service callout is specific to the vocabulary in that it looks for Locat i on entities with specific attributes. To
retrieve live weather data for a city you need to create an account on http://openweathermap.org/, and then
generate an API key that you provide as a property on the callout. By default, the keyword 'demo' is used, and
sample weather data is generated.

The Weather Callout Java project contains a sr ¢ folder with the source code for the weather callout and has
on its build path the standard Java system library, or g. j son- 20120521. j ar, and CcExt ensi onApi . j ar .

£-1=2 Weather Callout Java Project
-2 src

=84 JRE System Library [Studio]

= Referenced Libraries

-l orgjson-20120521 jar

: []-(ma CcExtensionAPLjar - CORTICON.
“..g| orgjson-20120521 jar

Progress Corticon: Extensions: Version 6.3 17

http://openweathermap.org/
http://openweathermap.org/

Chapter 3: What is in the sample extensions

The sr ¢ folder contains the source code for two Java classes
|_—‘_|IE"'- Weather Callout Java Project

=1 src

ElEE com.corticon.samples.extensions
El LocationWeatherService,java
G LocationWeatherService
E||E| WeatherData java

G WeatherData

B2 JRE System Library [Studic]

B2, Referenced Libraries

s org,json-20120521 jar
@T_{a CcExtension&PLjar - CORTICOMN |

The Weather Callout Rule Project is a set of rule assets that demonstrate the Weather Callout Java samples
m-1g Weather Callout Rule Project

-.[%g AdvisoryTest.ert
[E EwventPlanning.ecore
t: EventPlanning.erf
E Generateddvisories. ers

fo|®| weather_servicejar
e

The project uses the service callout and the supporting vocabulary, Rulesheet, Ruleflow, and Ruletest for the
project. It also contains the JAR file of the extensions built from the Java project, weat her _service.j ar.

The Ruleflow uses a service callout and a Rulesheet to perform its functions.

f20 Get Weather Data E@ Generate Advisories

The Ruletest shows that the weather callout behaves as expected.

Progress Corticon: Extensions: Version 6.3

What is in the Service Callout Sample Projects

|'Weather Callout Rule Project/EventPlanning.erf

Input

B Event [1]
&-%— location (Location) [1]

B Event [2]
E}-¢— location (Location) [2]

=] Event [3]
E-9— location (Location) [3]

I':'I@ Event [4]
E|<>— location (Location) [4]
.. city [Rotterdam]

Output

B-E&] Event [1]
E|<>— advisory (Advisory) [3]

L[message [wear a sweater]

El-<— location (Location) [1]

..... j=| city [Boston]

..... =) clouds [62.000000]

----- = conditions [Unknown]

..... =] country [US]

..... =] humidity [52.000000]

..... == pressure [1007.000000]

----- == summary [Simulation]

..... = temp [32.000000]

..... =] windSpeed [9.000000]

B-E Event [2]

El-<— advisory (Advisory) [2]

P [=| message [wear a sweater]
E|<>— advisory (Advisory) [6]
i..[#| message [hold onto your hat]
E|<>— location (Location) [2]
..... =] city [Hyderabad]
..... = clouds [69.000000]
----- = conditions [Unknown]
..... =] country [IN]
..... = humidity [55.000000]
..... = pressure [1020.000000]
----- == summary [Simulation]
..... = temp [39.000000]
..... = windSpeed [27.000000]
== Event [3]
E|<>— advisory (Advisory) [4]
{.[= message [wear a sweater]
E1-¢— location (Location) [3]

=l

The Weather Callout sample is accessed from the Studio's Help > Samples in the Advanced section.

Progress Corticon: Extensions: Version 6.3

19

Chapter 3: What is in the sample extensions

20 Progress Corticon: Extensions: Version 6.3

Code conventions

There are certain code conventions to which you should adhere.

For details, see the following topics:

* Using annotations
* Access HTTP Headers in Extended Operators and Service Callouts

* Imports and interfaces used in extensions

Using annotations

Corticon extensions use Java annotations to get information about extensions. Corticon supports four types
of annotations:

* Class annotations:

* @opLevel Fol der - The name of the top level folder that will contain the extended operator. The
operator tree supports two levels of folders; a top level folder and an operator folder. All operators defined
in the class will be under a subfolder of the top level folder defined for the class..

* Method annotations

* (@pescri ption - The text that describes the operator in the Rule operator tooltip or the description of

the service callout in the Ruleflow properties. Note that this is typically the only annotation type used
withh service callouts.

Progress Corticon: Extensions: Version 6.3

21

Chapter 4: Code conventions

* (@er at or Fol der - The name of the subfolder, under top level folder, for the operator defined by the
method.

* Parameter annotations

* @\r gunent Nare - The name of the argument shown in the function signature part of the tool tip.

Localizing Annotations

Annotations offer a format that allows localization. In its basic format, you can just enter
@\nnot ati on("text").

You can choose to add a list of one or more locales with corresponding strings for each locale. For example:

@wnnnot ati on(l ang={"en","fr"}, values={"text","texte"})

Creating multi-line annnotations

Some annotations provide the help that the user sees when they hover over an operator in the Rule Operator
tab. Often the description can be improved by adding line returns

You can embed line returns in your description by using the "\ n text" + convention, as shown:

@escription(lang = { "en" }, values = { "
"\'n Replace all occurrences of a substring" +
"\mwithin a string" +
"\n with another string."

})

The following excerpt from At t r i but eQper at or s. j ava highlights usage of Corticon extension annotations:

@'preveI Fol der (" Sanpl e Extended Operators")
public class AttributeQperators inplenments | CcDeci mal Ext ensi on,
| CcStringExtension, |CcDateTi neExtension {

@peratorFolder(lang = { "en" }, values = { "String" })
@escription(lang = { "en" }, values = { "Replace all occurences of a substring with a
string with another string." })
public static String replaceAll(String s,
@\r gument Nane(lang = { "en" }, values = { "searchString" }) String searchString,
@\r gument Nane(lang = { "en" }, values = { "replacenent" }) String replacenment) ({
}
}

Access HTTP Headers in Extended Operators and
Service Callouts

Access to Vocabulary Metadata through the | CcDat abj ect Manager

When deployed as a web service, the Corticon server can retrieve all HTTP header name/value pairs from the
HTTP session. These will be placed in a class implementing the | CcSer ver Ht t pl nf o interface. This class
is available from the | CcDat a(hj ect Manager class passed to all extensions.

An example of a service callout accessing the HTTP headers is as follows:

public static void getH tpHeaders(| CcDat aChj ect Manager dat aCbj Myr)

22 Progress Corticon: Extensions: Version 6.3

Imports and interfaces used in extensions

{
| CcServerHttplnfo ccServerH tplnfo = dataCObj Myr. get CcServerHtt pl nfo();
Map<String, String> httpHeaders = ccServerHttplnfo.get H t pHeaders();
for (Map. Entry<String, String> entry : httpHeaders.entrySet())
String key = entry. getKey();
String value = entry. getVal ue();
}
}

Corticon can call REST services; for example, calling a SaaS service.

See the Corticon extension JavaDoc for more details.

Imports and interfaces used in extensions

Annotations

Extended Operators - Extended operators load four annotation types:

i nport comcorticon. services. extensi ons. Argunent Nane;

i mport com corticon. services. extensi ons. Descri pti on;

i nport com corticon. services. ext ensi ons. Qper at or Fol der ;
i mport com corticon. services. extensi ons. TopLevel Fol der;

Service Callouts — Service callouts load one annotation type:

i mport comcorticon. services. extensions. Description;

Interfaces

Extended Operators — The interfaces added are those required for the data types used in the extended
operator class, selected from the following:

i mport com corticon. services. extensions. | CcCol | ecti onExt ensi on;
i mport comcorticon. services. extensions. | CcDat eTi neExt ensi on;

i mport comcorticon. services. extensions. | CcDeci nmal Ext ensi on;

i mport com corticon. services. extensions. | Ccl nteger Extensi on;

i mport com corticon. services. extensions. | CcSequenceExt ensi on;

i mport comcorticon. services. extensions. | CcSt andAl oneExt ensi on;
i mport com corticon. services. extensions. | CcStringExtension;

Note: While extended operators are limited to returning a value, the standalone extended operator type can
access the interfaces for | CcDat aObj ect :

i mport com corticon. services. ext ensi ons. | CcSt andAl oneExt ensi on;
i mport comcorticon. services. dat aobj ect. | CcDat alhj ect ;
i mport com corticon. services. dat aobj ect. | CcDat aCbj ect Manager ;

When these interfaces are loaded, extended standalone operator methods can define | CcDat aCbj ect Manager
as their first parameter. This provides flexibility in integrating Corticon with databases and other external services
to perform complex actions, such as retrieving a set of records from a web service, and then adding them as
associations on an entity. The | CcDat aCbj ect Manager parameter is not allowed in rule syntax.

Service Callouts — A service callout adds the following interface:

i nport comcorticon. services. extensions. | CcServiceCal | out Ext ensi on;

Progress Corticon: Extensions: Version 6.3 23

Chapter 4: Code conventions

Extended operator data type mappings

The mapping of parameter and return types for Extended Operators are as follows:

Java Type Corticon Type
j ava. mat h. Bi gl nt eger Integer
j ava. nmat h. Bi gDeci mal Decimal
j ava. | ang. Bool ean Boolean
java.util.Date Date, Time or DateTime
java.lang. String String

24 Progress Corticon: Extensions: Version 6.3

How to use DataDirect drivers

If you need custom database access beyond that provided by Corticon's Enterprise Data Connector (EDC) or
Advanced Data Connector (ADC) you can now use the DataDirecte drivers bundled with Corticon in your
extensions and wrappers. Corticon provides a new factory method for getting a connection to a database. It
connects to a database using a DataDirect driver and returns a standard j ava. sql . Connect i on object. You
work with this Connection object the same as you would any Connection in Java.

The | CcDat aObj ect Manager class now provides a method to retrieve an instance of

| Dat abaseDr i ver Manager . This new class provides the get Connect i on(..) method that can be used to
create a database connection using a bundled DataDirect driver. See the Corticon JavaDoc for details on these
classes and methods.

Get a connection

The class CcDat abaseConnect i onFact or y opens a connection to the database and processes queries. It
contains a method thatreturns aj ava. sql . Connect i on interface to open a connection using the DataDirect
driver and returning it. The get Connecti on() method returns a j ava. sqgl . Connect i on from these
signatures:

get Connection(String dataSourceld, String driverld, String connectionString, String
usernane, String password)

e String: dat aSour cel d - The JNDI dataSource Id. This value is used to lookup an existing connection.
e String: dri ver| D-The Id (as outlined in Dat abaseDef i ni ti ons. xm) for the DataDirect driver.

e String: Connect i onSt ri ng - Driver connection string, in the same format as EDC connection in Corticon
Studio. For example, j dbc: pr ogr ess: openedge: / / host nane: 5566; dat abaseNanme=corti con

* String: user name - username for logging into the database.

Progress Corticon: Extensions: Version 6.3 25

Chapter 5: How to use DataDirect drivers

e String: passwor d - password for logging into the database.

get Connection(String dataSourceld, String driverld, String host, int Port, String
dat abaseName, String usernane, String password)

e String: dat aSour cel d - The JNDI dataSource Id. This value is used to lookup an existing connection.
e String: dri ver | D-The Id (as outlined in Dat abaseDef i ni ti ons. xm) for the DataDirect driver.

* String: host - The hostname of the database server for connection.

* Int: Port - Port number of the database server for connection.

e String: dat abaseNane - the name of the database for connection on the server .

e String: user name - username for logging into the database.

* String: passwor d - password for logging into the database.
get Connection(String dataSourcel d)

e String: dat aSour cel d - The JNDI dataSource Id. This value is used to lookup an existing connection.
get Connecti on(Properties connecti onProperties)

* Properties: properti es - Object passed with each of the above items as fields. This also lets you specify
additional connection parameters. Constants for the properties fields will be supplied.

Close a connection

When you have completed processing requests, you can either:

* Close the connection using the cl ose() method in the Connect i on interface. In some cases, you want
to immediately release a connection's database and JDBC resources instead of waiting for them to be
automatically released; the cl ose() method provides this immediate release.

* Leave the connection up when connection pooling is being used.

* Leave the connection open until the JVM exits or the class gets garbage collected.

26

Progress Corticon: Extensions: Version 6.3

How to create extensions

To create extensions, import the Corticon APls into the Java project so that you can create either custom
extended operators or custom service callouts, and then add the compiled Java classes to the Rules Project.

For details, see the following topics:

Import the Corticon APls into the Java project
How to create custom extended operators
How to create custom service callouts

Add the compiled Java classes to the Rules Project

Import the Corticon APIs into the Java project

The Extended Operator and Service Callout samples contain Java projects demonstrating how to create a
Java extension. These are standard Java projects. Each references the Corticon JAR file that defines its API,
CcExt ensi onApi . j ar, located in a Studio installation at [CORTI CON_HOME] / St udi o/ | i b/ . The JAR is
added to the project from its Corticon installed location to the project's build path using the predefined Eclipse
variable CORTI CON_HQOVE. For example:

Progress Corticon: Extensions: Version 6.3 27

Chapter 6: How to create extensions

€ Properties for Extended Operator Java Project O X
type filter text Java Build Path L= - v
Resource ——
Builders (% Source = Projects B Libraries % Order and Export ~
Java Build Path JARs and class folders on the build path:
Java Code Style ® CORTICON_HOME/Studio/lib/CeExtensionApijar - CA_57s\home\Studio\Studie\i\CcExtensionApi jar Add JARs...
Java Compiler =, JRE System Library [Studio]
Java Editor Add External JARs...
Javadoc Location
Project References Add Variable...
Run_aDebug Settings Add Library...
Task Repository o
@

In your Java project, import the Corticon APls as described, then create your Java source files. Build the Java
project by right-clicking on the project name, and then choosing Export. In the Export Dialog, choose Java >
Jar file. Enter a destination location for the JAR file, then choose appropriate options, and then click Finish.

How to create custom extended operators

Note: Corticon Studio is built on Eclipse which provides a Java development environment you can use for
creating Corticon extensions that you can use in current and future versions of Corticon. If you want to create
extensions in a separate IDE, you must use Java 1.8 or higher.

Note: Compatibility of extensions created in an earlier release, any extension operators and service callouts
that are in ext ended. cor e. j ar are shared across all Rule Projects. As a result, such extensions are always
in the Rule Operator tab in every editor. Then, you can add your extended operators and service callouts to

specific Rule Projects using the new mechanism.

Note: You might want to simply copy the sample project Extended Operator Java Project, and then tweak
a sample such as At t ri but eQper at or s. j ava by renaming the TopLevel Fol der to
my Sanpl eExt endedQper at or s for your first run. You can then build the Java project.

For many developers, the quickest way to learn is by example. You might want to compare the three Java
source files in the Extended Operator Java Project to see what is common and what changes. In this example,
the Attri but eOper at ors. j ava is presented.

1. Specify the imports and interfaces you will need.
package com corticon. sanpl es. ext ensi ons;

i mport java.util.Cal endar;
import java.util.Date;

i mport com corticon. services. ext ensi ons. Ar gunent Nane;

i mport com corticon. services. extensi ons. Descri pti on;

i mport com corticon. services. extensions. | CcDat eTi neExt ensi on;
i mport com corticon. services. extensions. | CcStringExtension;

i mport com corticon. services. ext ensi ons. Qper at or Fol der;

i mport com corticon. services. ext ensi ons. TopLevel Fol der;

28

Progress Corticon: Extensions: Version 6.3

How to create custom extended operators

This class imports the Corticon | CcSt ri ngExt ensi on and | CcDat eTi meExt ensi on interfaces because
it will implement extended operators for String and DateTime attributes. The other Corticon imports are for
the annotations which will be used to describe the extensions.

2. Enter your comments that describe the class.

*

/
This cl ass provides sanple Corticon stand-al one extended operators.
Ext ended operators are a neans to add customfeatures to Corticon for
use in Corticon rules.

The sanmples in this class provide sinple operators for calculating the
present and future value of an investment for a nunber of years at a given
interest rate.

* % 3k F Xk Ok X X

~

A general description of this source file is always good coding practice. It has no use outside of the source
file.

3. Specify the TopLevel Fol der name.
@oplLevel Fol der (" Sanpl e Ext ended Qperators")

The TopLevel Fol der annotation identifies the folder that will group the extended operators on the Rule
Operators tab in Corticon Studio. You can name the folder to fit your needs, such as "My Operators", or
"Financial Operators".

4. Specify the class and its implementations.

public class AttributeQperators inplenments | CcStringExtension, |CcDateTi neExtension {

5. Name your operator folder, and use the locale parameters if appropriate.

@eratorFolder(lang = { "en" }, values = { "Date" })

The Oper at or Fol der defines the subfolder that will list an individual operator within the TopLevel Fol der
on the Rule Operators tab in Corticon Studio. You can organize and name folders to fit your needs.

6. Add your description of the operator, and use the locale parameters if appropriate..

@escription(lang = { "en" }, values = { "Returns true if the date is in a |leap year."

1)

The Descri pt i on annotation describes the specific operator. The hover help reveals what is passed, what
is returned, and description text for the locale.

7. Write your actual implementation of the extended operator. It is always public static.

public static Bool ean isLeapYear(Date d) {
if (d == null)
return null;

Cal endar c¢ = Cal endar. getl nstance();
c.setTime(d);

int year = c.get(Cal endar. YEAR);

if ((year %400 == 0) || ((year %4 == 0) && (year % 100 != 0)))
return true;

el se

return fal se;

}

The example takes a date and returns a boolean. It is up to you to determine that this produces the result
you want, and that you can verify it across a range of values and error conditions.

Progress Corticon: Extensions: Version 6.3 29

Chapter 6: How to create extensions

8. The sample includes another operator definition using the same structure, this one for the String
Oper at or Fol der . You can similarly change this section, or just cut the whole section out.

*

/
Repl aces all occurrences of a substring in a string with another string.

@arams A string.

@ar am searchString The substring to look for in s.

@ar am repl acenent The string to replace it wth.

@eturn The original string with all instances of searchString replace by
repl acenment .

* 0% %k ok Sk F

*/
@DperatorFolder(lang = { "en" }, values = { "String" })
@escription(lang = { "en" }, values = { "Replace all occurrences of a substring within
a string with another string." })
public static String replaceAll(String s,
@\ gunent Nane(lang = { "en" }, values = { "searchString" }) String searchString,
@\ gunment Nane(lang = { "en" }, values = { "replacenent" }) String replacenent) {
if (s ==null)
return null;

if (searchString == null)
return s;

String r = s.replaceAll (searchString, replacenent);
return r;

}
}

9. Save your work, and then go ahead to build the Java project by right-clicking on the project name, and then
choosing Export. In the Export Dialog, choose Java > Jar file. Enter a destination location for the JAR file,
then choose appropriate options, and click Finish.

10. In order for the extension to get referenced by a Rules project, and then packaged with a Decision Service,
you must Add the compiled Java classes to the Rules Project.

11. Create and run Ruletests that evaluate the range of possible values that could be presented to the extension.
Be sure to include blanks and nulls so that you get complete coverage.

How to create custom service callouts

Service Callout (SCO) extensions are user-written functions that can be invoked in a Ruleflow.

In a Ruleflow, the flow of control moves from Rulesheet to Rulesheet, with all Rulesheets operating on a
common pool of facts. This common pool of facts is retained in the rule execution engine's working memory
for the duration of the transaction. Connection arrows on the diagram specify the flow of control. Each Rulesheet
in the flow may update the fact pool.

When you add a Service Callout (SCO) to a Ruleflow diagram, you effectively instruct the system to transfer
control to your extension class at a specific point in the flow. Your extension can directly update the fact pool,
and your updated facts are available to subsequent Rulesheets.

Consider the sample:

30 Progress Corticon: Extensions: Version 6.3

How to create custom service callouts

B Get Patient Info FR* Get Procedure History

Q} Determine Approval " Save Approvals

The rule flow uses two service callouts (Get Pati ent | nfo andthen Get Procedure Hi story), then
uses the datain the Det er mi ne Appr oval Rulesheet, and finally passes control to Service Callout extension
class Save Approval s.

Your Service Callouts use the Progress Corticon Extension API to retrieve and update facts. The package
com corticon. services. dat aobj ect contains two Java interfaces:

Interface Purpose

com corticon. servi ces. dat aobj ect . | CcDat aChj ect Manager | Provides access to the entire fact pool.
Allows you to create, retrieve and
remove entity instances.

com corticon. servi ces. dat aobj ect. | CcDat albj ect Provides access to a single entity
instance. Allows you to update the entity
instance, including setting attributes and
creating and removing associations.

Your Service Callout class must implement marker interface | CcSer vi ceCal | out Ext ensi on.

Here is the source code for the service callout Medi cal Records. j ava::

/*

* Copyright (c) 2016 by Progress Software Corporation. Al rights reserved.
*

/

package com corticon. sanpl es. ext ensi ons;

i mport java.util.Arraylist;
i mport java.util.Set;

i mport comcorticon. services. dat aobj ect. | CcDat albj ect ;

i mport com corticon. services. dat aobj ect. | CcDat aCbj ect Manager ;

i mport com corticon. services. extensions. Description;

i mport comcorticon. services. extensions. | CcServiceCal | out Ext ensi on;
i mport comcorticon. sanpl es. si mul ation. *;

/**
* This class provides sanple Corticon service callouts. Callouts provide
a neans to add customfeatures to Corticon for use in Corticon rul efl ows.
* Callouts are for integrating with external systens such as webservices.
* In a callout you can create and delete instances of Corticon entities,
* set their properties and define associations.

Progress Corticon: Extensions: Version 6.3 31

Chapter 6: How to create extensions

The sanmples in this class provide a sinmulation of retrieving patient

medi cal data given a patient id. The class Medical Dat aSi nul at or provi des
a static set of patient and procedure data. In a real inplenentation
this could be a class which gets data froma webservi ce, database, or

ot her source.

E I

*/
public class Medi cal Records inplenments | CcServiceCall out Ext ensi on {

private static Medical DataSi mnul ator nd = new Medi cal Dat aSi mul ator () ;

/**

* Service callout to retrieve patient descriptive information for

* the set of Corticon "Patient" entities.

*

* This callout denpnstrates how to iterate over a set of Corticon

* entities and set attributes on them

*/

@escription(lang = { "en" }, values = { "Service callout to retrieve patient descriptive
information for the set of Corticon 'Patient' entities." })

Service Callout methods must be declared public static.

The system will recognize your Service Callout method if the method signature takes one parameter and that
parameter is an instance of | CcDat aCbj ect Manager .

public static void getPatientlnfo(lCcDataCbjectManager dataCbj Myr) {
/1l Get the set of "Patient" entities.
Set <I CcDat aChj ect > patients = dataCbj Myr. getEntiti esByNane("Patient");
if (patients !'= null) {
/1 Process each patient in the set.
for (1CcDataObject patient : patients) {
/Il Get the "id" attribute of the current patient.
Long id = (Long) patient.getAttributeValue("id");

if (id!=null) {
/1l Get the sinulated information for this patient.
PatientData pd = nd. getPatientData(id.intValue());
if (pd!=null) {
/]l Set patient information as entity attributes.
patient.setAttributeVal ue("firstName", pd. getFirstNanme());
patient.setAttributeVal ue("l ast Name", pd. getLastName());

/**

* Service callout to retrieve history of nedical procedures for the
* set of Corticon "Patient" entities.
*
* This callout denpnstrates how to create new Corticon entities and
* associate themwith existing Corticon entities.
*/
@escription(lang = { "en" }, values = { "Service callout to retrieve history of nedical
procedures for the set of Corticon 'Patient' entities." })
public static void get ProcedureH story(l CcDataObj ect Manager dataCbj Myr) {
/1l CGet the set of "Patient" entities.
Set <I CcDat aChj ect > patients = dataCbj Myr. getEntiti esByNane("Patient");
if (patients !'=null) {
/1 Process each patient in the set.
for (1CcDataObject patient : patients) {
/l Get the "id" attribute of the current patient.
Long id = (Long) patient.getAttributeValue("id");

32 Progress Corticon: Extensions: Version 6.3

How to create custom service callouts

if (id!=null) {
/1l Get the sinulated infornation for this patient.
PatientData pd = nd. getPatientData(id.intValue());

/'l Get the medical procedure history for this patient.
ArraylLi st <ProcedureData> td = pd. get Procedur eRecords();

/1 Add procedures to the patient entity
for (ProcedurebData r : td) {
/1l Create a new "Procedure" entity.
| CcDat aCbj ect p = dataObj Mgr.createEntity("Procedure");

/1 Set attributes on this entity.

p. set Attri buteVal ue("code", r.getCode());

p.set Attri buteVal ue("description", r.getDescription());
p. set Attri buteVal ue("date", r.getDate());

/1l Associate it with the current patient.
patient.addAssoci ati on("procedure", p);

/**
* Service callout to save the approval state for each nmedi cal procedure
* for a set of Corticon "Patient" entities.
*
* This callout denpnstrates howto iterate over a set of entities and
* associations to get the value of attributes.
*/
@escription(lang = { "en" }, values = { "Service callout to save the approval state
for each medical procedure for a set of Corticon 'Patient' entities." })
public static void saveProcedureApproval (I CcDat aCbj ect Manager dat aCbj Myr) {
/1l Get the set of "Patient" entities.
Set <I CcDat aChj ect > patients = dataCbj Myr.getEntiti esByNane("Patient");
if (patients !'= null) {
/'l Process each patient in the set.
for (1CcDataObject patient : patients) {
/1l Get the "id" attribute of the current patient.
Long id = (Long) patient.getAttributeValue("id");

/1 Process each "Procedure" association on the patient.
Set <I CcDat aCbj ect > procedures = patient.get Associ ati ons("procedure");
for (1CcDataObject procedure: procedures) {

/1 Get the value of the "approved" and "code" attributes on the procedure.
Bool ean approved = (Bool ean) procedure.getAttri buteVal ue("approved");
String code = (String) procedure.getAttributeVal ue("code");

/1 Update the procedure record.
nmd. set Procedur eApproval (id.intValue(), code, approved);
}
}
}
}

Recognized classes and methods are displayed in the Ruleflow Properties View/Service Name drop-down list
when a Service Callout object is on a Ruleflow canvas:

Progress Corticon: Extensions: Version 6.3 33

Chapter 6: How to create extensions

El Properties 32 sa

Service Call-out Name: | Get Patient Info @l

Runtime Properties

Service Mame: |MedicalRecords.getPatientInfo j
MedicalRecords.getPatientinfo
MedicalRecords.getProcedureHistory
Description: MedicalRecords.saveProcedurefpproval
Callout to get descriptive information on each patient. J
Comments:

The Service Callout API provides your extension class complete access to the fact pool, allowing you to:
* Find entities in several ways

* Read and update entity attributes

* Create and remove entity instances

* Create and remove associations

Refer to Service Callout Java sample project and the AP/ Javadocs for more information.

Access to Vocabulary Metadata

Access to Vocabulary Metadata through the | CcDat abj ect Manager

Extended operators have access to the | CcDat aObj ect Manager . This class has long been available to
Service Callouts and provides access to metadata such as the Corticon Vocabulary and the entities being
processed. To be passed an instance of | CcDat aObj ect Manager , the extension class must define method
signatures which take | CcDat aObj ect Manager as a parameter. See the Corticon JavaDoc for more details.

The method:

| CcDat aCbj ect Manager . get Vocabul ar yMet adat a()

Return type:

com corticon. servi ces. netadat a. | Vocabul ar yMet adat a

For details about the | Vocabul ar yMet adat a object, see the topic "How to access the Vocabulary metadata
of a Decision Service" in the Deployment Guide.

Specify properties on a service callout instance

You can specify properties on a Service Callout (SCO) that can be set per instance . That means that a SCO
that retrieves data from a web service could use multiple instances of it in a Ruleflow where each instance has
different parameters. The nature of the parameters is unrestricted; they are simple name/value pairs that a
SCO can interpret as needed.

34 Progress Corticon: Extensions: Version 6.3

How to create custom service callouts

Overview of Service Callout (SCO) parameters

When a SCO is added to a Ruleflow canvas, its Properties (View) > Runtime Properties let you set name/value
parameter pairs on this SCO instance. These name/value pairs will be passed to the SCO when the SCO is
executed. For example:

B Properties %2 | & Problems = Y= 0

Service Call-out

. ; Property Value
Runtime Properties -
Oceans Pacific
Planets Venus

Stars Alpha Lyncis

To enable this functionality, the SCO's method must need to accept aj ava. uti |l . Properti es objectin its
method signature:

public static void processCreditReport (I CcDataChj ect Manager aDat aCbj ect Manager,
Properties apropServiceCal |l out Properties)

If the method does not accept a Pr oper ti es object (as is the case for SCO's created before 5.6.1), the original
method will still be called, providing both backward compatibility as well as an alternative approach to using
parameters in SCOs.

public static void processCreditReport (I CcDataCbj ect Manager aDat aCbj ect Manager)

If the SCO has implemented both methods, the method with the Pr operti es object will be called during
execution. If this method does not exist, then the alternative applies.

Selecting the Runtime Properties for a SCO
Defined Property Names and Values

Often you will want to constrain the Property Names and their respective Values to ensure that only valid
combinations are selected by the user from a drop-down list box. The Service Callout (SCO) must implement
a specific Interface and the following methods for the Ruleflow to list the possible Property Names and their
respective Values.

Interface:

com corticon. servi ces. extensi ons. | CcPropertyProvi der
Static Methods:
public List<String> getPropertyNameOptions()throws Exception;
public List<String> getProperyVal ueOptions(String astrPropertyNane)throws Exception;

Example:

The user drops down the list and then chooses a property name:

Progress Corticon: Extensions: Version 6.3 35

Chapter 6: How to create extensions

= Properties &

Service Call-out
: : Property Value
Runtime Properties

Oceans
Planets
Stars

The Ruleflow calls back to the SCO to get the possible Values for that Property name, and then lists the values
in a drop-down list where the user selects the value:

E Properties &3 s S =
Service Call-out
Property Value

Runtime Properties
Oceans

Southern

Note: This technique does not allow additional name/value pairs to be entered.

No defined Property Names and Values

Undefined Property Names and Values occur when:

* The SCO does not implement the | CcPr opert yPr ovi der interface

* The interface and methods are implemented, but the methods return a null or empty list

Under these conditions, the Property Name and Property Value cells in the Properties (View) > Runtime
Properties are Text Boxes where names and values can be typed on many lines:

36 Progress Corticon: Extensions: Version 6.3

Add the compiled Java classes to the Rules Project

E Properties 2 | @i Problems M Y= O

Service Call-out

Prope Value
Runtime Properties | perty

There are no values defined for a free-form property name so a value must be typed in:

E Properties 32 | Fi Problems M Y = O

Service Call-out Property Value

Runtime Properties TypeAnything |

Note: Property Name and Value lists work independently - While get Pr oper t yNameOpt i ons() might
return a Li st <St ri ng> with values so that the cell on the current Property line offers a drop-down list, the
selected property might find that its get Proper t yVal ueOpti ons(..) returns a null or empty list. In that
case, the Value cell is provided as a text box for your free-form entry. However, each property name and value
pair must have non-blank entries to complete valid service callout runtime properties.

Add the extension to the Rule Project, and then test it.

In order for the extension to get referenced by a Rules project, and then packaged with a Decision Service,
you must Add the compiled Java classes to the Rules Project.

Create and run Ruletests that evaluate the range of possible values that could be presented to the extension.
Be sure to include blanks and nulls so that you get complete coverage.

Add the compiled Java classes to the Rules Project

To add the Java project's compiled classes to a rules project:

1. Right-click on a project name in the Studio's Project Explorer that requires additional JARs, and then choose
Properties.

2. Click Corticon Extensions.

3. Navigate in the panel to locate and list all JAR files used by the project, as illustrated:

Progress Corticon: Extensions: Version 6.3 37

Chapter 6: How to create extensions

| @
[
| |type filter text Corticon Extensions - v
Resource
Builders Add extended operator and service call-out JAR files used in this project.
Corticon Extenszions The selected JAR files will be packaged inside EDS files preduced by the Package and Deploy wizard.
Project References =| /Extended Operator Rule Project/sample-extensions.jar Add
Run/Debug Settings
Task Repository Add From Project...
Remove
Select All
Clear All

@
All the listed JARs will be added to compiled EDS as dependent JARs, but only the ones that are checked
will also be included in the compiled EDS file.

4. Click OK to save the project properties.

When you use the Studio feature of Package and Deploy > Save for later Deployment, the JAR dependencies
and inclusions will be added into the .eds file.

38 Progress Corticon: Extensions: Version 6.3

How to deploy Decision Services with
extensions

Once you have added extension JARs to your project, several deployment tools provide mechanisms to package
the extension JARs into deployment. When you compile a project Ruleflow into an EDS file, the extension
JARSs are encapsulated within the encrypted . eds. That insures that regardless how you relocate or update a
Decision Service, the extension JARs that are associated with it are consistent.

Deployment from Studio

The three standard techniques in Studio that package and deploy Decision Services all incorporate the extension
JARSs that were associated with the project:

* Deploying directly to a server
* Deploying to a server through a Web Console application

* Packaging the EDS file locally for access by other tools or the Web Console to complete the deployment.

Deployment using the Server's command line interface

When you use the tool Cor t i conManagenent at a server's [CORTI CON_HOVE] \ Ser ver \ bi n location, the
conpi | e command provides parameters that will declare dependent JARs and then include them. Both

parameters take values separated by spaces and both parameters are required to achieve the packaging into
EDS file.

-dj, --dependentjars dependentJar add jar files required for this decision service
-ij,--includedjars includedJar add jar files to include in the generated eds file

Any values that contain spaces must be in quotes. For example:

-ij "C\Program Fi |l es\nmyExtensions.jar" "C \Program Fil es\nyCal | outs.jar"

Progress Corticon: Extensions: Version 6.3

Chapter 7: How to deploy Decision Services with extensions

A complete command might look like this:

corti conManagenent
--conpile
--input C\nyProject\nyRul efl ow erf
--output C \nyProject\CQutput
--service MyDS
--dependentjars C \nyProject\nyExtensions.jar C\nyProject\nyCallouts.jar
--includedjars C \myProject\nyExtensions.jar C \nyProject\nyCallouts.jar

With only required options specified, the result is C. \ nyPr oj ect\ Qut put\ MyDS. eds
Additions to Ant macro compile arguments

If you want to use Ant macros for the cort i conManagenent command line utilities that are in the file
[CORTI CON_HOVE] \ Server\lib\corticonAnt Macros. xm , you can set the required extension JARs in
the arguments for the conpi | e macro so that you can use them in the call:

<attribute nane="input" default=""/>
<attribute nane="output" default="" />
<attribute nane="service" default="" />
<attribute nane="version" default="false" />
<attribute nane="edc" default="false" />
<attribute nane="failonerror" default="false" />
<attribute nane="dependentjars" default="" />
<attribute nane="incl udedjars" default="" />

Example of a call to the compile macro:

<corticon-conpile
i nput =" ${ proj ect. hone}/Order.erf"
out put =" ${ proj ect. honme}"
servi ce="Or der Processi ng"
dependent j ar s="${ proj ect. hone}/ nyExt ensi ons. jar ${project. hone}/ nyCallouts.jar"
i ncl udedj ar s="${ proj ect. hone}/ nyExt ensi ons. jar ${project.home}/nyCallouts.jar"
/>

Note: Deploymemt to a Corticon .NET Server - Once a project that includes extension JARs is packaged
into a Decision Service, it deploys and performs as expected on Corticon .NET Server.

40 Progress Corticon: Extensions: Version 6.3

	Copyright
	Table of Contents
	Overview of Corticon extensions
	How to use extensions when creating Decision Services
	What is in the sample extensions
	What is in the Extended Operators Sample Projects
	What is in the Service Callout Sample Projects
	Service Callout Java and Rule Projects
	Weather Callout Java and Rule Projects

	Code conventions
	Using annotations
	Access HTTP Headers in Extended Operators and Service Callouts
	Imports and interfaces used in extensions

	How to use DataDirect drivers
	How to create extensions
	Import the Corticon APIs into the Java project
	How to create custom extended operators
	How to create custom service callouts
	Access to Vocabulary Metadata
	Specify properties on a service callout instance

	Add the compiled Java classes to the Rules Project

	How to deploy Decision Services with extensions

