
Corticon
Extensions

Copyright

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress
®

software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo UI, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Apache and Kafka are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. Any other marks contained herein may be trademarks of their
respective owners.

Please refer to the NOTICE.txt or Release Notes – Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Last updated with new content: Corticon 6.3.1

Updated: 2022/09/23

3Progress Corticon: Extensions: Version 6.3

Progress Corticon: Extensions: Version 6.34

Copyright

Table of Contents

Overview of Corticon extensions...7

How to use extensions when creating Decision Services.........................9

What is in the sample extensions...13
What is in the Extended Operators Sample Projects..14
What is in the Service Callout Sample Projects..15

Service Callout Java and Rule Projects...15
Weather Callout Java and Rule Projects...17

Code conventions..21
Using annotations...21
Access HTTP Headers in Extended Operators and Service Callouts..22
Imports and interfaces used in extensions..23

How to use DataDirect drivers..25

How to create extensions..27
Import the Corticon APIs into the Java project..27
How to create custom extended operators...28
How to create custom service callouts..30

Access to Vocabulary Metadata ..34
Specify properties on a service callout instance..34

Add the compiled Java classes to the Rules Project..37

How to deploy Decision Services with extensions...................................39

5Progress Corticon: Extensions: Version 6.3

Contents

Progress Corticon: Extensions: Version 6.36

Contents

1
Overview of Corticon extensions

When you are creating business rules, you sometimes need to perform operations that are not built natively
into Corticon. For example, you may need to apply a complex mathematical formula or to retrieve data from
an external web service. Corticon provides the ability to add custom extensions for just such purposes.

Extensions are written as custom Java code that you package into one or more JAR files. You simply add
extension jar files to your rule project to have them bundled into the EDS file for your Decision Service. This
ease of adding extensions makes it easier to develop extensions yourself or to use open source extensions
that you download from the Corticon community. By bundling extensions with EDS files, the EDS file becomes
self-contained. You can deploy it to a Corticon Server without modifying the server’s classpath. It also allows
you to have different Decision Services, or versions of Decisions Services, running that use different versions
of an extension.

When developing an extension, it needs to implement one or more Java interfaces that Corticon has defined.
The Corticon Extensions API provides for Java annotations to describe the extension, thereby eliminating the
need for additional configuration files.

When developing a project in Corticon Studio you can add extensions to your project through the project's
Properties dialog box, so that they are available for development and running rule tests. The Package and
Deploy wizard in Corticon Studio will include any extensions used by the project into the EDS file it generates
or deploys. If you want to script the building of your EDS files, you can also use the Corticon ANT scripts to
package extensions into EDS files.

For compatibility with previous releases you can still place extension JAR files on the Corticon classpath so
that they are available to all Decision Services.

Extensions can be created in the Java development environment included in Corticon Studio, or you can use
another IDE.

There are two types of Corticon extensions:

• Extended operators - Operators are used when defining conditions and actions in a Rulesheet. While
Corticon has a large built-in set of operators, you can expand this set by adding custom operators. Operators
can operate on individual attributes, collections or sequences. Examples include:

7Progress Corticon: Extensions: Version 6.3

https://documentation.progress.com/output/Corticon/6.3/javadoc/Extensions/com/corticon/services/extensions/package-summary.html

Financial functions, such as net present value, and loan amortization•
• Statistical functions, such as standard deviation, and permutations

• Engineering functions, such as pi, sine, and cosine

• Service callouts - Callouts can be used in a ruleflow to retrieve, modify, or store data that is being processed
by the rules. The most common use is to access data in a database or external web service. For example,
if your Ruleflow needs to look up an applicant's credit rating, the service callout can have a step in the
Ruleflow processing that calls out to a trusted realtime ratings provider, and then adds the response back
into the decision processing.

Progress Corticon: Extensions: Version 6.38

Chapter 1: Overview of Corticon extensions

2
How to use extensions when creating
Decision Services

You might want your project to include extensions that are already packaged and ready to use. The sample
extensions bundled with Corticon Studio provide sample Rule projects with their samples already packaged
into JARs.

For now, assume that you just want to use the functionality in these extensions.

To use the packaged extension samples in my project:

1. In Corticon Studio, choose Help > Samples. Locate the Advanced samples:

2. Select Extended Operators, click Open, and then click OK.

3. Then do the same to open the Service Callouts sample.

4. Your Studio's Project Explorer lists the two samples, each with its Java project and its Rules project:

9Progress Corticon: Extensions: Version 6.3

5. Expanding the two Rule Projects, you can see that each has a related samples JAR.

6. Create a new Rule Project named myProject and create a very simple Vocabulary that includes a date
type:

7. Copy the JAR files highlighted in step 5, and then paste them in to myProject.

Note: While you could reference the JARs in their projects, copying them into your project insures that
when you export that Project, those JARs are included so the references don’t break.

8. In the Project Explorer, click on myProject, and then select Properties. Select Corticon Extensions.
Click Add then navigate to each of those JARs, as shown:

Progress Corticon: Extensions: Version 6.310

Chapter 2: How to use extensions when creating Decision Services

Note: This feature does not support JARs nested within a JAR that you add to a project.

9. Create a Rulesheet in myProject. Note that the Rule Operators tab adds in the extended operators that
are in the JAR, so that you can readily use one as a valid operator in the Rulesheet, as shown:

10. Create a Ruleflow in myProject. Click Service Call-out on the palette, click on the canvas, and then name
it. On the Properties tab, click the Service Name dropdown to see the service callouts that are packaged
in the sample JAR you added to the project, as shown when getPatientInfo was selected:

11Progress Corticon: Extensions: Version 6.3

Because the two extension JARs are properties of the project, they are embedded in Decision Services that
you package and deploy from Studio.

The next section looks at the source code in each of their Java projects to gain insight into how extensions are
created and prepared for use.

Progress Corticon: Extensions: Version 6.312

Chapter 2: How to use extensions when creating Decision Services

3
What is in the sample extensions

Both the Extended Operator and Service Callout samples contain Java projects that show how you can create
the sample extension JAR yourself, and a Corticon Rules project that demonstrates those extensions.

There are two sets of extension samples:

• Extended Operator Sample Projects - The Extended Operators sample contains the source code for
several extended operators and a rule project that uses them. The rule project uses extended operators for
determining the future value or an investment, if a collection contains duplicate strings, and if a given date
is a leap year.

• Service Callout Sample Projects - The Service Callout sample contains the source code for several service
callouts and a rule project that uses them. The rule project uses service callouts to retrieve and update
patient medical data in a pseudo external service. Accessing web services or other external datasources
is a common use case for service callouts.

For details, see the following topics:

• What is in the Extended Operators Sample Projects

• What is in the Service Callout Sample Projects

13Progress Corticon: Extensions: Version 6.3

What is in the Extended Operators Sample Projects
The Extended Operator Java project contains a src folder with the source code for the extended operators
and has on its build path the standard Java system library and CcExtensionApi.jar with the Corticon
extension API:

The src folder contains the source code for three Java classes that implement extended operators:

The Extended Operator Rule project is a set of rule assets that demonstrate the extended operator Java
sample It uses the extended operators and the supporting vocabulary, Ruleflows, and Ruletests for the project,
plus the JAR file of the extensions built in the Java project, sample-extensions.jar:

The sample project contains a Vocabulary, and three Rulesheets that demonstrate each of the new extended
operators:

Progress Corticon: Extensions: Version 6.314

Chapter 3: What is in the sample extensions

1. FutureValue - Determines years to retirement and the future value of the current investment with a constant
interest rate.

2. RetireInLeapYear - Checks whether the retirement year is a leap year

3. DuplicateVendors - Checks to determine that there are not multiple accounts with the same vendor

The Ruleflow chains the three Rulesheets together for the Ruletest to see that the extended operators behave
as expected.

What is in the Service Callout Sample Projects
A Corticon Studio installation includes two Service Callout sample projects that you can immediately bring in
to your workspace, and then run.

Service Callout Java and Rule Projects
The Service Callout Java Project contains a src folder with the source code for the service callouts and has
on its build path the standard Java system library and CcExtensionApi.jar with the Corticon extension
API:

15Progress Corticon: Extensions: Version 6.3

What is in the Service Callout Sample Projects

The src folder contains the source code for four Java classes that implement service callouts:

The Service Callout Rule Project is a set of rule assets that demonstrate the Service Callout Java samples:

The project uses the service callouts and the supporting vocabulary, Rulesheet, Ruleflow, and Ruletest for the
project. It also contains the JAR file of the extensions built from the Java project, sample-callouts.jar.
The Ruleflow uses three service callouts and a Rulesheet to perform its functions:

The Ruletest shows that the service callouts behave as expected:

Progress Corticon: Extensions: Version 6.316

Chapter 3: What is in the sample extensions

The Service Callouts sample is accessed from the Studio's Help > Samples in the Advanced section.

Weather Callout Java and Rule Projects
Corticon Studio includes a sample project that shows how service callouts can be reused when they can be
parameterized so that each instance can have a different configuration.

TheWeather Callout Java Project is a Java project that includes the source code for a service callout to call
the REST API on OpenWeatherMap.org to retrieve weather data for individual cities. The Weather Callout
Rule Project uses the callout in the Java project to retrieve data for cities specified in Location entities. The
service callout is specific to the vocabulary in that it looks for Location entities with specific attributes. To
retrieve live weather data for a city you need to create an account on http://openweathermap.org/, and then
generate an API key that you provide as a property on the callout. By default, the keyword 'demo' is used, and
sample weather data is generated.

TheWeather Callout Java project contains a src folder with the source code for the weather callout and has
on its build path the standard Java system library, org.json-20120521.jar, and CcExtensionApi.jar.

17Progress Corticon: Extensions: Version 6.3

What is in the Service Callout Sample Projects

http://openweathermap.org/
http://openweathermap.org/

The src folder contains the source code for two Java classes.

TheWeather Callout Rule Project is a set of rule assets that demonstrate the Weather Callout Java samples.

The project uses the service callout and the supporting vocabulary, Rulesheet, Ruleflow, and Ruletest for the
project. It also contains the JAR file of the extensions built from the Java project, weather_service.jar.
The Ruleflow uses a service callout and a Rulesheet to perform its functions.

The Ruletest shows that the weather callout behaves as expected.

Progress Corticon: Extensions: Version 6.318

Chapter 3: What is in the sample extensions

The Weather Callout sample is accessed from the Studio's Help > Samples in the Advanced section.

19Progress Corticon: Extensions: Version 6.3

What is in the Service Callout Sample Projects

Progress Corticon: Extensions: Version 6.320

Chapter 3: What is in the sample extensions

4
Code conventions

There are certain code conventions to which you should adhere.

For details, see the following topics:

• Using annotations

• Access HTTP Headers in Extended Operators and Service Callouts

• Imports and interfaces used in extensions

Using annotations
Corticon extensions use Java annotations to get information about extensions. Corticon supports four types
of annotations:

• Class annotations:

• @TopLevelFolder - The name of the top level folder that will contain the extended operator. The
operator tree supports two levels of folders; a top level folder and an operator folder. All operators defined
in the class will be under a subfolder of the top level folder defined for the class..

• Method annotations

• @Description - The text that describes the operator in the Rule operator tooltip or the description of
the service callout in the Ruleflow properties. Note that this is typically the only annotation type used
withh service callouts.

21Progress Corticon: Extensions: Version 6.3

• @OperatorFolder - The name of the subfolder, under top level folder, for the operator defined by the
method.

• Parameter annotations

• @ArgumentName - The name of the argument shown in the function signature part of the tool tip.

Localizing Annotations

Annotations offer a format that allows localization. In its basic format, you can just enter
@Annotation("text").

You can choose to add a list of one or more locales with corresponding strings for each locale. For example:

@Annotation(lang={"en","fr"}, values={"text","texte"})

Creating multi-line annnotations

Some annotations provide the help that the user sees when they hover over an operator in the Rule Operator
tab. Often the description can be improved by adding line returns

You can embed line returns in your description by using the "\n text" + convention, as shown:

@Description(lang = { "en" }, values = { "
"\n Replace all occurrences of a substring" +
"\n within a string" +
"\n with another string."
})

The following excerpt from AttributeOperators.java highlights usage of Corticon extension annotations:

...
@TopLevelFolder("Sample Extended Operators")
public class AttributeOperators implements ICcDecimalExtension,

ICcStringExtension, ICcDateTimeExtension {

@OperatorFolder(lang = { "en" }, values = { "String" })
@Description(lang = { "en" }, values = { "Replace all occurences of a substring with a
string with another string." })
public static String replaceAll(String s,

@ArgumentName(lang = { "en" }, values = { "searchString" }) String searchString,
@ArgumentName(lang = { "en" }, values = { "replacement" }) String replacement) {

...
}

}

Access HTTP Headers in Extended Operators and
Service Callouts

Access to Vocabulary Metadata through the ICcDataObjectManager

When deployed as a web service, the Corticon server can retrieve all HTTP header name/value pairs from the
HTTP session. These will be placed in a class implementing the ICcServerHttpInfo interface. This class
is available from the ICcDataObjectManager class passed to all extensions.

An example of a service callout accessing the HTTP headers is as follows:

public static void getHttpHeaders(ICcDataObjectManager dataObjMgr)

Progress Corticon: Extensions: Version 6.322

Chapter 4: Code conventions

{
ICcServerHttpInfo ccServerHttpInfo = dataObjMgr.getCcServerHttpInfo();
Map<String, String> httpHeaders = ccServerHttpInfo.getHttpHeaders();
for (Map.Entry<String, String> entry : httpHeaders.entrySet())
{

String key = entry.getKey();
String value = entry.getValue();
.......

}
}

Corticon can call REST services; for example, calling a SaaS service.

See the Corticon extension JavaDoc for more details.

Imports and interfaces used in extensions
Annotations
Extended Operators - Extended operators load four annotation types:

import com.corticon.services.extensions.ArgumentName;
import com.corticon.services.extensions.Description;
import com.corticon.services.extensions.OperatorFolder;
import com.corticon.services.extensions.TopLevelFolder;

Service Callouts – Service callouts load one annotation type:

import com.corticon.services.extensions.Description;

Interfaces
Extended Operators – The interfaces added are those required for the data types used in the extended
operator class, selected from the following:

import com.corticon.services.extensions.ICcCollectionExtension;
import com.corticon.services.extensions.ICcDateTimeExtension;
import com.corticon.services.extensions.ICcDecimalExtension;
import com.corticon.services.extensions.ICcIntegerExtension;
import com.corticon.services.extensions.ICcSequenceExtension;
import com.corticon.services.extensions.ICcStandAloneExtension;
import com.corticon.services.extensions.ICcStringExtension;

Note: While extended operators are limited to returning a value, the standalone extended operator type can
access the interfaces for ICcDataObject:

import com.corticon.services.extensions.ICcStandAloneExtension;
import com.corticon.services.dataobject.ICcDataObject;
import com.corticon.services.dataobject.ICcDataObjectManager;

When these interfaces are loaded, extended standalone operator methods can define ICcDataObjectManager
as their first parameter. This provides flexibility in integrating Corticon with databases and other external services
to perform complex actions, such as retrieving a set of records from a web service, and then adding them as
associations on an entity. The ICcDataObjectManager parameter is not allowed in rule syntax.

Service Callouts – A service callout adds the following interface:

import com.corticon.services.extensions.ICcServiceCalloutExtension;

23Progress Corticon: Extensions: Version 6.3

Imports and interfaces used in extensions

Extended operator data type mappings
The mapping of parameter and return types for Extended Operators are as follows:

Corticon TypeJava Type

Integerjava.math.BigInteger

Decimaljava.math.BigDecimal

Booleanjava.lang.Boolean

Date, Time or DateTimejava.util.Date

Stringjava.lang.String

Progress Corticon: Extensions: Version 6.324

Chapter 4: Code conventions

5
How to use DataDirect drivers

If you need custom database access beyond that provided by Corticon's Enterprise Data Connector (EDC) or
Advanced Data Connector (ADC) you can now use the DataDirect® drivers bundled with Corticon in your
extensions and wrappers. Corticon provides a new factory method for getting a connection to a database. It
connects to a database using a DataDirect driver and returns a standard java.sql.Connection object. You
work with this Connection object the same as you would any Connection in Java.

The ICcDataObjectManager class now provides a method to retrieve an instance of
IDatabaseDriverManager. This new class provides the getConnection(…) method that can be used to
create a database connection using a bundled DataDirect driver. See the Corticon JavaDoc for details on these
classes and methods.

Get a connection
The class CcDatabaseConnectionFactory opens a connection to the database and processes queries. It
contains a method that returns a java.sql.Connection interface to open a connection using the DataDirect
driver and returning it. The getConnection() method returns a java.sql.Connection from these
signatures:

getConnection(String dataSourceId, String driverId, String connectionString, String
username, String password)

• String: dataSourceId - The JNDI dataSource Id. This value is used to lookup an existing connection.

• String: driverID - The Id (as outlined in DatabaseDefinitions.xml) for the DataDirect driver.

• String: ConnectionString - Driver connection string, in the same format as EDC connection in Corticon
Studio. For example, jdbc:progress:openedge://hostname:5566;databaseName=corticon

• String: username - username for logging into the database.

25Progress Corticon: Extensions: Version 6.3

• String: password - password for logging into the database.

getConnection(String dataSourceId, String driverId, String host, int Port, String
databaseName, String username, String password)

• String: dataSourceId - The JNDI dataSource Id. This value is used to lookup an existing connection.

• String: driverID - The Id (as outlined in DatabaseDefinitions.xml) for the DataDirect driver.

• String: host - The hostname of the database server for connection.

• Int : Port - Port number of the database server for connection.

• String: databaseName - the name of the database for connection on the server .

• String: username - username for logging into the database.

• String: password - password for logging into the database.

getConnection(String dataSourceId)

• String: dataSourceId - The JNDI dataSource Id. This value is used to lookup an existing connection.

getConnection(Properties connectionProperties)

• Properties: properties - Object passed with each of the above items as fields. This also lets you specify
additional connection parameters. Constants for the properties fields will be supplied.

Close a connection
When you have completed processing requests, you can either:

• Close the connection using the close() method in the Connection interface. In some cases, you want
to immediately release a connection's database and JDBC resources instead of waiting for them to be
automatically released; the close() method provides this immediate release.

• Leave the connection up when connection pooling is being used.

• Leave the connection open until the JVM exits or the class gets garbage collected.

Progress Corticon: Extensions: Version 6.326

Chapter 5: How to use DataDirect drivers

6
How to create extensions

To create extensions, import the Corticon APIs into the Java project so that you can create either custom
extended operators or custom service callouts, and then add the compiled Java classes to the Rules Project.

For details, see the following topics:

• Import the Corticon APIs into the Java project

• How to create custom extended operators

• How to create custom service callouts

• Add the compiled Java classes to the Rules Project

Import the Corticon APIs into the Java project
The Extended Operator and Service Callout samples contain Java projects demonstrating how to create a
Java extension. These are standard Java projects. Each references the Corticon JAR file that defines its API,
CcExtensionApi.jar, located in a Studio installation at [CORTICON_HOME]/Studio/lib/. The JAR is
added to the project from its Corticon installed location to the project's build path using the predefined Eclipse
variable CORTICON_HOME. For example:

27Progress Corticon: Extensions: Version 6.3

In your Java project, import the Corticon APIs as described, then create your Java source files. Build the Java
project by right-clicking on the project name, and then choosing Export. In the Export Dialog, choose Java >
Jar file. Enter a destination location for the JAR file, then choose appropriate options, and then click Finish.

How to create custom extended operators
Note: Corticon Studio is built on Eclipse which provides a Java development environment you can use for
creating Corticon extensions that you can use in current and future versions of Corticon. If you want to create
extensions in a separate IDE, you must use Java 1.8 or higher.

Note: Compatibility of extensions created in an earlier release, any extension operators and service callouts
that are in extended.core.jar are shared across all Rule Projects. As a result, such extensions are always
in the Rule Operator tab in every editor. Then, you can add your extended operators and service callouts to
specific Rule Projects using the new mechanism.

Note: You might want to simply copy the sample project Extended Operator Java Project, and then tweak
a sample such as AttributeOperators.java by renaming the TopLevelFolder to
mySampleExtendedOperators for your first run. You can then build the Java project.

For many developers, the quickest way to learn is by example. You might want to compare the three Java
source files in the Extended Operator Java Project to see what is common and what changes. In this example,
the AttributeOperators.java is presented.

1. Specify the imports and interfaces you will need.

package com.corticon.samples.extensions;

import java.util.Calendar;
import java.util.Date;

import com.corticon.services.extensions.ArgumentName;
import com.corticon.services.extensions.Description;
import com.corticon.services.extensions.ICcDateTimeExtension;
import com.corticon.services.extensions.ICcStringExtension;
import com.corticon.services.extensions.OperatorFolder;
import com.corticon.services.extensions.TopLevelFolder;

Progress Corticon: Extensions: Version 6.328

Chapter 6: How to create extensions

This class imports the Corticon ICcStringExtension and ICcDateTimeExtension interfaces because
it will implement extended operators for String and DateTime attributes. The other Corticon imports are for
the annotations which will be used to describe the extensions.

2. Enter your comments that describe the class.

/**
* This class provides sample Corticon stand-alone extended operators.
* Extended operators are a means to add custom features to Corticon for
* use in Corticon rules.
*
* The samples in this class provide simple operators for calculating the
* present and future value of an investment for a number of years at a given
* interest rate.
*/

A general description of this source file is always good coding practice. It has no use outside of the source
file.

3. Specify the TopLevelFolder name.

@TopLevelFolder("Sample Extended Operators")

The TopLevelFolder annotation identifies the folder that will group the extended operators on the Rule
Operators tab in Corticon Studio. You can name the folder to fit your needs, such as "My Operators", or
"Financial Operators".

4. Specify the class and its implementations.

public class AttributeOperators implements ICcStringExtension, ICcDateTimeExtension {

5. Name your operator folder, and use the locale parameters if appropriate.

@OperatorFolder(lang = { "en" }, values = { "Date" })

The OperatorFolder defines the subfolder that will list an individual operator within the TopLevelFolder
on the Rule Operators tab in Corticon Studio. You can organize and name folders to fit your needs.

6. Add your description of the operator, and use the locale parameters if appropriate..

@Description(lang = { "en" }, values = { "Returns true if the date is in a leap year."
})

The Description annotation describes the specific operator. The hover help reveals what is passed, what
is returned, and description text for the locale.

7. Write your actual implementation of the extended operator. It is always public static.

public static Boolean isLeapYear(Date d) {
if (d == null)

return null;

Calendar c = Calendar.getInstance();
c.setTime(d);

int year = c.get(Calendar.YEAR);
if ((year % 400 == 0) || ((year % 4 == 0) && (year % 100 != 0)))

return true;
else

return false;
}

The example takes a date and returns a boolean. It is up to you to determine that this produces the result
you want, and that you can verify it across a range of values and error conditions.

29Progress Corticon: Extensions: Version 6.3

How to create custom extended operators

8. The sample includes another operator definition using the same structure, this one for the String
OperatorFolder. You can similarly change this section, or just cut the whole section out.

/**
* Replaces all occurrences of a substring in a string with another string.
*
* @param s A string.
* @param searchString The substring to look for in s.
* @param replacement The string to replace it with.
* @return The original string with all instances of searchString replace by
* replacement.
*/

@OperatorFolder(lang = { "en" }, values = { "String" })
@Description(lang = { "en" }, values = { "Replace all occurrences of a substring within
a string with another string." })
public static String replaceAll(String s,

@ArgumentName(lang = { "en" }, values = { "searchString" }) String searchString,
@ArgumentName(lang = { "en" }, values = { "replacement" }) String replacement) {

if (s == null)
return null;

if (searchString == null)
return s;

String r = s.replaceAll(searchString, replacement);
return r;

}
}

9. Save your work, and then go ahead to build the Java project by right-clicking on the project name, and then
choosing Export. In the Export Dialog, choose Java > Jar file. Enter a destination location for the JAR file,
then choose appropriate options, and click Finish.

10. In order for the extension to get referenced by a Rules project, and then packaged with a Decision Service,
you must Add the compiled Java classes to the Rules Project.

11. Create and run Ruletests that evaluate the range of possible values that could be presented to the extension.
Be sure to include blanks and nulls so that you get complete coverage.

How to create custom service callouts
Service Callout (SCO) extensions are user-written functions that can be invoked in a Ruleflow.

In a Ruleflow, the flow of control moves from Rulesheet to Rulesheet, with all Rulesheets operating on a
common pool of facts. This common pool of facts is retained in the rule execution engine's working memory
for the duration of the transaction. Connection arrows on the diagram specify the flow of control. Each Rulesheet
in the flow may update the fact pool.

When you add a Service Callout (SCO) to a Ruleflow diagram, you effectively instruct the system to transfer
control to your extension class at a specific point in the flow. Your extension can directly update the fact pool,
and your updated facts are available to subsequent Rulesheets.

Consider the sample:

Progress Corticon: Extensions: Version 6.330

Chapter 6: How to create extensions

The rule flow uses two service callouts (Get Patient Info and then Get Procedure History), then
uses the data in the Determine Approval Rulesheet, and finally passes control to Service Callout extension
class Save Approvals.

Your Service Callouts use the Progress Corticon Extension API to retrieve and update facts. The package
com.corticon.services.dataobject contains two Java interfaces:

PurposeInterface

Provides access to the entire fact pool.
Allows you to create, retrieve and
remove entity instances.

com.corticon.services.dataobject.ICcDataObjectManager

Provides access to a single entity
instance. Allows you to update the entity
instance, including setting attributes and
creating and removing associations.

com.corticon.services.dataobject.ICcDataObject

Your Service Callout class must implement marker interface ICcServiceCalloutExtension.

Here is the source code for the service callout MedicalRecords.java: :

/*
* Copyright (c) 2016 by Progress Software Corporation. All rights reserved.
*/

package com.corticon.samples.extensions;

import java.util.ArrayList;
import java.util.Set;

import com.corticon.services.dataobject.ICcDataObject;
import com.corticon.services.dataobject.ICcDataObjectManager;
import com.corticon.services.extensions.Description;
import com.corticon.services.extensions.ICcServiceCalloutExtension;
import com.corticon.samples.simulation.*;

/**
* This class provides sample Corticon service callouts. Callouts provide
* a means to add custom features to Corticon for use in Corticon ruleflows.
* Callouts are for integrating with external systems such as webservices.
* In a callout you can create and delete instances of Corticon entities,
* set their properties and define associations.

31Progress Corticon: Extensions: Version 6.3

How to create custom service callouts

*
* The samples in this class provide a simulation of retrieving patient
* medical data given a patient id. The class MedicalDataSimulator provides
* a static set of patient and procedure data. In a real implementation
* this could be a class which gets data from a webservice, database, or
* other source.
*
*/

public class MedicalRecords implements ICcServiceCalloutExtension {

private static MedicalDataSimulator md = new MedicalDataSimulator();

/**
* Service callout to retrieve patient descriptive information for
* the set of Corticon "Patient" entities.
*
* This callout demonstrates how to iterate over a set of Corticon
* entities and set attributes on them.
*/

@Description(lang = { "en" }, values = { "Service callout to retrieve patient descriptive
information for the set of Corticon 'Patient' entities." })

Service Callout methods must be declared public static.

The system will recognize your Service Callout method if the method signature takes one parameter and that
parameter is an instance of ICcDataObjectManager.

public static void getPatientInfo(ICcDataObjectManager dataObjMgr) {
// Get the set of "Patient" entities.
Set<ICcDataObject> patients = dataObjMgr.getEntitiesByName("Patient");
if (patients != null) {

// Process each patient in the set.
for (ICcDataObject patient : patients) {

// Get the "id" attribute of the current patient.
Long id = (Long) patient.getAttributeValue("id");

if (id != null) {
// Get the simulated information for this patient.
PatientData pd = md.getPatientData(id.intValue());

if (pd != null) {
// Set patient information as entity attributes.
patient.setAttributeValue("firstName",pd.getFirstName());
patient.setAttributeValue("lastName", pd.getLastName());

}
}

}
}

}

/**
* Service callout to retrieve history of medical procedures for the
* set of Corticon "Patient" entities.
*
* This callout demonstrates how to create new Corticon entities and
* associate them with existing Corticon entities.
*/

@Description(lang = { "en" }, values = { "Service callout to retrieve history of medical
procedures for the set of Corticon 'Patient' entities." })
public static void getProcedureHistory(ICcDataObjectManager dataObjMgr) {

// Get the set of "Patient" entities.
Set<ICcDataObject> patients = dataObjMgr.getEntitiesByName("Patient");
if (patients != null) {

// Process each patient in the set.
for (ICcDataObject patient : patients) {

// Get the "id" attribute of the current patient.
Long id = (Long) patient.getAttributeValue("id");

Progress Corticon: Extensions: Version 6.332

Chapter 6: How to create extensions

if (id != null) {
// Get the simulated information for this patient.
PatientData pd = md.getPatientData(id.intValue());

// Get the medical procedure history for this patient.
ArrayList<ProcedureData> td = pd.getProcedureRecords();

// Add procedures to the patient entity
for (ProcedureData r : td) {

// Create a new "Procedure" entity.
ICcDataObject p = dataObjMgr.createEntity("Procedure");

// Set attributes on this entity.
p.setAttributeValue("code", r.getCode());
p.setAttributeValue("description", r.getDescription());
p.setAttributeValue("date", r.getDate());

// Associate it with the current patient.
patient.addAssociation("procedure", p);

}
}

}
}

}

/**
* Service callout to save the approval state for each medical procedure
* for a set of Corticon "Patient" entities.
*
* This callout demonstrates how to iterate over a set of entities and
* associations to get the value of attributes.
*/

@Description(lang = { "en" }, values = { "Service callout to save the approval state
for each medical procedure for a set of Corticon 'Patient' entities." })

public static void saveProcedureApproval(ICcDataObjectManager dataObjMgr) {
// Get the set of "Patient" entities.
Set<ICcDataObject> patients = dataObjMgr.getEntitiesByName("Patient");
if (patients != null) {

// Process each patient in the set.
for (ICcDataObject patient : patients) {

// Get the "id" attribute of the current patient.
Long id = (Long) patient.getAttributeValue("id");

// Process each "Procedure" association on the patient.
Set<ICcDataObject> procedures = patient.getAssociations("procedure");
for (ICcDataObject procedure: procedures) {

// Get the value of the "approved" and "code" attributes on the procedure.
Boolean approved = (Boolean) procedure.getAttributeValue("approved");
String code = (String) procedure.getAttributeValue("code");

// Update the procedure record.
md.setProcedureApproval(id.intValue(), code, approved);

}
}

}
}

Recognized classes and methods are displayed in the Ruleflow Properties View/Service Name drop-down list
when a Service Callout object is on a Ruleflow canvas:

33Progress Corticon: Extensions: Version 6.3

How to create custom service callouts

The Service Callout API provides your extension class complete access to the fact pool, allowing you to:

• Find entities in several ways

• Read and update entity attributes

• Create and remove entity instances

• Create and remove associations

Refer to Service Callout Java sample project and the API Javadocs for more information.

Access to Vocabulary Metadata

Access to Vocabulary Metadata through the ICcDataObjectManager

Extended operators have access to the ICcDataObjectManager. This class has long been available to
Service Callouts and provides access to metadata such as the Corticon Vocabulary and the entities being
processed. To be passed an instance of ICcDataObjectManager, the extension class must define method
signatures which take ICcDataObjectManager as a parameter. See the Corticon JavaDoc for more details.

The method:

ICcDataObjectManager.getVocabularyMetadata()

Return type:

com.corticon.services.metadata.IVocabularyMetadata

For details about the IVocabularyMetadata object, see the topic "How to access the Vocabulary metadata
of a Decision Service" in the Deployment Guide.

Specify properties on a service callout instance
You can specify properties on a Service Callout (SCO) that can be set per instance . That means that a SCO
that retrieves data from a web service could use multiple instances of it in a Ruleflow where each instance has
different parameters. The nature of the parameters is unrestricted; they are simple name/value pairs that a
SCO can interpret as needed.

Progress Corticon: Extensions: Version 6.334

Chapter 6: How to create extensions

Overview of Service Callout (SCO) parameters
When a SCO is added to a Ruleflow canvas, its Properties (View) > Runtime Properties let you set name/value
parameter pairs on this SCO instance. These name/value pairs will be passed to the SCO when the SCO is
executed. For example:

To enable this functionality, the SCO's method must need to accept a java.util.Properties object in its
method signature:

public static void processCreditReport(ICcDataObjectManager aDataObjectManager,
Properties apropServiceCalloutProperties)

If the method does not accept a Properties object (as is the case for SCO's created before 5.6.1), the original
method will still be called, providing both backward compatibility as well as an alternative approach to using
parameters in SCOs.

public static void processCreditReport(ICcDataObjectManager aDataObjectManager)

If the SCO has implemented both methods, the method with the Properties object will be called during
execution. If this method does not exist, then the alternative applies.

Selecting the Runtime Properties for a SCO
Defined Property Names and Values

Often you will want to constrain the Property Names and their respective Values to ensure that only valid
combinations are selected by the user from a drop-down list box. The Service Callout (SCO) must implement
a specific Interface and the following methods for the Ruleflow to list the possible Property Names and their
respective Values.

Interface:

com.corticon.services.extensions.ICcPropertyProvider

Static Methods:

public List<String> getPropertyNameOptions()throws Exception;

public List<String> getProperyValueOptions(String astrPropertyName)throws Exception;

Example:

The user drops down the list and then chooses a property name:

35Progress Corticon: Extensions: Version 6.3

How to create custom service callouts

The Ruleflow calls back to the SCO to get the possible Values for that Property name, and then lists the values
in a drop-down list where the user selects the value:

Note: This technique does not allow additional name/value pairs to be entered.

No defined Property Names and Values

Undefined Property Names and Values occur when:

• The SCO does not implement the ICcPropertyProvider interface

• The interface and methods are implemented, but the methods return a null or empty list

Under these conditions, the Property Name and Property Value cells in the Properties (View) > Runtime
Properties are Text Boxes where names and values can be typed on many lines:

Progress Corticon: Extensions: Version 6.336

Chapter 6: How to create extensions

There are no values defined for a free-form property name so a value must be typed in:

Note: Property Name and Value lists work independently - While getPropertyNameOptions() might
return a List<String> with values so that the cell on the current Property line offers a drop-down list, the
selected property might find that its getPropertyValueOptions(..) returns a null or empty list. In that
case, the Value cell is provided as a text box for your free-form entry. However, each property name and value
pair must have non-blank entries to complete valid service callout runtime properties.

Add the extension to the Rule Project, and then test it.
In order for the extension to get referenced by a Rules project, and then packaged with a Decision Service,
you must Add the compiled Java classes to the Rules Project.

Create and run Ruletests that evaluate the range of possible values that could be presented to the extension.
Be sure to include blanks and nulls so that you get complete coverage.

Add the compiled Java classes to the Rules Project
To add the Java project's compiled classes to a rules project:

1. Right-click on a project name in the Studio's Project Explorer that requires additional JARs, and then choose
Properties.

2. Click Corticon Extensions.

3. Navigate in the panel to locate and list all JAR files used by the project, as illustrated:

37Progress Corticon: Extensions: Version 6.3

Add the compiled Java classes to the Rules Project

All the listed JARs will be added to compiled EDS as dependent JARs, but only the ones that are checked
will also be included in the compiled EDS file.

4. Click OK to save the project properties.

When you use the Studio feature of Package and Deploy > Save for later Deployment, the JAR dependencies
and inclusions will be added into the .eds file.

Progress Corticon: Extensions: Version 6.338

Chapter 6: How to create extensions

7
How to deploy Decision Services with
extensions

Once you have added extension JARs to your project, several deployment tools provide mechanisms to package
the extension JARs into deployment. When you compile a project Ruleflow into an EDS file, the extension
JARs are encapsulated within the encrypted .eds. That insures that regardless how you relocate or update a
Decision Service, the extension JARs that are associated with it are consistent.

Deployment from Studio
The three standard techniques in Studio that package and deploy Decision Services all incorporate the extension
JARs that were associated with the project:

• Deploying directly to a server

• Deploying to a server through a Web Console application

• Packaging the EDS file locally for access by other tools or the Web Console to complete the deployment.

Deployment using the Server's command line interface
When you use the tool CorticonManagement at a server's [CORTICON_HOME]\Server\bin location, the
compile command provides parameters that will declare dependent JARs and then include them. Both
parameters take values separated by spaces and both parameters are required to achieve the packaging into
EDS file.

-dj,--dependentjars dependentJar add jar files required for this decision service
-ij,--includedjars includedJar add jar files to include in the generated eds file

Any values that contain spaces must be in quotes. For example:

-ij "C:\Program Files\myExtensions.jar" "C:\Program Files\myCallouts.jar"

39Progress Corticon: Extensions: Version 6.3

A complete command might look like this:

corticonManagement
--compile
--input C:\myProject\myRuleflow.erf
--output C:\myProject\Output
--service MyDS
--dependentjars C:\myProject\myExtensions.jar C:\myProject\myCallouts.jar
--includedjars C:\myProject\myExtensions.jar C:\myProject\myCallouts.jar

With only required options specified, the result is C:\myProject\Output\MyDS.eds

Additions to Ant macro compile arguments

If you want to use Ant macros for the corticonManagement command line utilities that are in the file
[CORTICON_HOME]\Server\lib\corticonAntMacros.xml, you can set the required extension JARs in
the arguments for the compile macro so that you can use them in the call:

<attribute name="input" default=""/>
<attribute name="output" default="" />
<attribute name="service" default="" />
<attribute name="version" default="false" />
<attribute name="edc" default="false" />
<attribute name="failonerror" default="false" />
<attribute name="dependentjars" default="" />
<attribute name="includedjars" default="" />

Example of a call to the compile macro:

<corticon-compile
input="${project.home}/Order.erf"
output="${project.home}"
service="OrderProcessing"
dependentjars="${project.home}/myExtensions.jar ${project.home}/myCallouts.jar"
includedjars="${project.home}/myExtensions.jar ${project.home}/myCallouts.jar"

/>

Note: Deploymemt to a Corticon .NET Server - Once a project that includes extension JARs is packaged
into a Decision Service, it deploys and performs as expected on Corticon .NET Server.

Progress Corticon: Extensions: Version 6.340

Chapter 7: How to deploy Decision Services with extensions

	Copyright
	Table of Contents
	Overview of Corticon extensions
	How to use extensions when creating Decision Services
	What is in the sample extensions
	What is in the Extended Operators Sample Projects
	What is in the Service Callout Sample Projects
	Service Callout Java and Rule Projects
	Weather Callout Java and Rule Projects

	Code conventions
	Using annotations
	Access HTTP Headers in Extended Operators and Service Callouts
	Imports and interfaces used in extensions

	How to use DataDirect drivers
	How to create extensions
	Import the Corticon APIs into the Java project
	How to create custom extended operators
	How to create custom service callouts
	Access to Vocabulary Metadata
	Specify properties on a service callout instance

	Add the compiled Java classes to the Rules Project

	How to deploy Decision Services with extensions

