» Progress’

<

Corticon
Data Integration

3 Progress Corticon

Copyright

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo Ul, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, Sequelink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Apache and Kafka are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. Any other marks contained herein may be trademarks of their
respective owners.

Please refer to the NOTICE.txt or Release Notes — Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Last updated with new content: Corticon 6.3.1

Updated: 2022/09/25

Progress Corticon : Data Integration: Version 6.3

Copyright

4 Progress Corticon : Data Integration: Version 6.3

Contents

Table of Contents

Why your rules might want to access external data...............ccceeuniiirnneeee. 9
Corticon alternatives for data integration...........cccommmiieeeccciiiiiiiiinneeees 11
How Corticon concepts apply to Datasources.......cccccooimrmciirieciiiceeceenee, 15
About the sample projects referenced in this guide............ccoeeeannnennnnneee 19
How Datasource information is viewed in the Vocabulary...................... 23
Getting Started with EDC.............oo e 29
Define a table namespace in the database...........oocuiiiiiiii e 30
Define the database connection fOr EDC...........oooiiiiiiiiiiiiiie et e s ee e e 30
Set the entities to store in the database.c..eiiiii s 32
Load the schema and data in the database...............ueiiiiiiiiiiii e 34
Import EDC database metadata into a Vocabulary............ccooouiiiiiii e 34
Test the rules when reading from the database...........cceoviiiiiiiiiiiii e 36
Test the rules when writing to the database..............ooo e 37
Getting Started with ADC.............o s 41
Overview of the Advanced Data CONNECION.............oiuuiiieiiiiiie et e e s e e e s sneaee e 42
Define a table namespace in the database for ADC...........ooo i 42
Create and map the ADC SChema and QUETIES.........cc.uuiiiiiiiiee e e e e e e e e e e e e e e e seaanad 43
Define a database connection fOr ADC...........ooo e e e e e e e e e eeees 45
Define and import QUENES fOr ADC.........ouiiiiiieee e e e e e e e e e e e e e e e aa e e e e e sennrnreens 47
Import ADC Datasource metadata into @ Vocabulary............ccceeioiiiiii e 50
Use an ADC connection as a Ruleflow service Callout............ccccooeiiiiiiiiiiiiiii e 51
Test the rules when reading from the ADC database..............oooiiiiiiiiiiiiii e 52
Test the rules when writing to the ADC database............cc.uuviiiiiiiiii e 54
Getting Started with Multiple Database Connectivity.........ccccccovvrmremnnnnnnn. 55
Define multiple table NAMESPACESuuuiiiiiiie i eeeaaaeaaaes 56
Create and map the multiple database SChemas...........ccooiiiiii e 56
Define multiple database CONNECHIONS.........cccooii i eeeanaaans 59

Progress Corticon : Data Integration: Version 6.3 5

Contents

Define and import queries for multiple databases. ... 62
Import multiple Datasource metadata into a Vocabulary..............ccooii 65

A closer 100k at MDB metadata.........ccoooiieiiiiiiiiiiceeee e 67

Use multiple database connections as Ruleflow service callouts...............coooociiiiiiieiiiiiiiicceee, 69

Test the rules when reading from multiple databases..............coooiiii 70

Test the rules when writing to multiple databases.............c.ee e 72
Getting Started with REST ... s 73
Overview of the Autonomous REST CONNECION............uuiiiiiiiieiee e e e 73
Define a Datasource connection for RESTcooiiiiiiiiiiiiie et ee e 74
Create and map the REST SCheMa... ... e e e e e e e e 76

Use REST data sources in @ RUIETIOW. ... 79

Test rules when importing from the REST DatasourCe............cooo i 80
Revise Connection and Service Call-out to retrieve data...........cccooieiiiiiiiiii e 81
Mixing REST and database access........cccccccceiiiiiiiiiiminnnneeecsssnn s 85
Deploying projects that use data integration..........cccccoorrmeiiriciiriicen, 89
Export the Datasource Configuration file.............ooiiiiiii i e 89
Package a project in Corticon Studio for Corticon Server............ccuuveiiviiiee e 92
Getting Started with BatCh..........cooeeemeeecr s 93
A closer look at how Corticon relates to Datasources.........cccceeeeeeennnnnee. 99
Add your own database AriVET.............eeiiiiiiii e 100
SUPPOEA AAtADASES.uuuiiiiiee e e e e e e e e e e e e e e e e —— i ——————— 100
Authentication on EDC and ADC CONNECLIONS........cuiiiiiiiiieiicciiiieeiee e e e e e e e e e e e s saneeeeneeeeeas 101
SmartMatching of Vocabularies to databases............c..eeiiiiii i 101
Validation of names against SQL keywords and database restrictions..............ccooccciiiiiiiiiiee s 102
Support for catalogs and SChEMAS.ui it e e e e e e e 102

How to filter catalogs and SChemMas.ooo i 103
Fully-qualified table NAMES. ... et e e e e e e e e e e e e nneeee 103
SUPPOTrt fOr databasE VIEWS.ccoo it e et e e e e e nneeas 104
ASSOCIatioNS @S JOIN EXPIrESSIONS......ueeeiiiiieie ettt e e e e e e e e et e et e e aea e e e s s e nenbeeeeeeaaaeeeesaaannneneeees 104

7aXo \VZ- T LoT=To I 1 0 O3 Ko o 1 o 109
How to set EDC Vocabulary properties...........ooo it 109

Edit Entity EDC PrOPEIrtiES.uviiieiiiieiie et ctteee ettt e ettt e e e sttt e e e s st e e e e sneeeeaesantaeeaeeans 110

Edit Attribute EDC PropPerti©s.ccooiuiiiiiiiiiiiee ettt e et e e et e e e sneeeeeeea 113

Edit Association EDC PrOPEIrtiES.......cooiiiiiiiiiiiiiieeeie et e e e e e e e e eeeanns 123

6 Progress Corticon : Data Integration: Version 6.3

Contents

Mapping and validating EDC database metadata...............cccooiiiiiiiiii e 123
Mapping EDC database tables to Vocabulary Entities............cccooecieveiiiiiii e 124
Mapping EDC database fields (columns) to Vocabulary Attributes.........cccccccooeiiiiiiiennnnn. 126
Mapping EDC database relationships to Vocabulary Associations............ccccocccovveiiiieneeenee. 126
Validate EDC database Mappings........cuueeieiiiiiiiiiiiiee et 127
Types of mapping validation and validation errors...........ccccveviiiiii e 128

Set additional EDC Datasource connection properties............ooocueiieeiiiiieie e e e 129

How data from an EDC Datasource integrates into rule output............cccoceveiiiiiiie e, 131
When Datasource access is Read ONY.......ooc.uiiiiiiiiiiiie e 132
When Datasource access is Read/Update.............ccuuviiiiiiiiiiiiiiiiieeeeee e 137

EDC data CaChiNg.........eeiiieiei e e e e e e 141
How to specify caching on Vocabularies and Rulesheets...........ccccccvviiiiiiiiiciie e, 142
Settings for EDC CaChING......coiiiiiiiii ettt 144
How to work with database Caches...............ooiiiii e 145

Metadata for Datastore Identity in XML and JSON Payloads............cccceiiiiiiiiiiiiiene e 148

Relational database concepts in the Enterprise Data Connectorccccoiieeiiiiiiiicciieee. 149
[AENtity SIrAtEGIES. .. .ei it e e e e e aae 150
Advantages of using Identity Strategy rather than Sequence Strategy........c.cccceeiivviiinnnnn. 152
KEY @SSIGNMIEBNTS.ttt e ettt e e s sttt e e e e bt e e e s nbe e e e e s anneeeeeeannneeeens 152
1070 o 1T) 0 F=T =Y o1 11 1= SRS 154
Dependent tables.o i 155

How EDC handles transactions and €XCEPLIONS.ccuuiiieiiiiiiie e e 155

Advanced ADC TOPICS.....cccciiiiimrrmmniiisirrreesssssrrsnnssss s e s sensssssseresnnsssssssnnnnnnes 157

Mapping ADC database metadata.. ... 157
Mapping ADC database tables to Vocabulary Entities.........ccccccceeiiiiiiiiiiieice e, 158
Mapping ADC database fields to Vocabulary Attributes...........ccocciiiiii, 159
Mapping ADC database relationships to Vocabulary Associations..........c.c.cccccoeviciiiieeeeneeenn. 159

HOW t0 CONFIGUIE ADC..... .. ettt e e et e e e s s bt e e e s abb b e e e e snnneeee s 160
HoW 10 CONfiIgUIe ADC FEAUS.eiiiieiee ettt e e e e e e e e e e e e e e e e e e e s e nanreeeeees 161
How t0 configure ADC WIES.ot 162
How t0 configure DatCh.............ouiiiiiiii e 164
Configuration detailS.........c..ueiiiii e 164

How Corticon is expressed iN SQIL........ooiiiiiiiiiiiiiiiie et e et e e e st e e e s sbeeeeaessnreeeaeens 166

Tips and techniques in SQL data integration.............ooo e 167

Advanced REST Datasource TOPICS.....cccccccuiirmmmmmniiiiirreenncss s escensssseeennnnes 171

Authentication on REST Service CONNECLIONS..........oiiiiiiiiiiiieee e 172

Parameters on REST Service CONNECHIONS.ciiiiiiiiieeiieee ettt e e e e e e e e e e eneees 176

Import REST Datasource metadata into @ Vocabulary...........ccccoooiiiiiiiiiiiie e 177

Mapping REST Service metadata.t e e e e e 179
Define your preferred SChemMa..........c.uuiiiiiii e 182
How to define associations in REST Service metadata..............ccco 182

Progress Corticon : Data Integration: Version 6.3 7

Contents

Data type mappings from database fields.......ccc.ccooommmrmcciiiiiirccciiiinneeen, 185

8 Progress Corticon : Data Integration: Version 6.3

1

Why your rules might want to access external
data

Corticon provides the flexibility to either pass the data in on the call to the decision service or to have the
decision service retrieve data, or a mix of both. What you choose depends on your needs.

In most Corticon deployments, the data is passed in. This simplifies the architecture because you don't need
to account for Corticon connecting to external data sources. This is especially true when you have legacy
systems which cannot be easily accessed. In some cases, the data passed in can be large. For example, all
the data needed to process a loan application for a single applicant.

In some deployments, Corticon needs to retrieve supporting data. This adds additional connections to the
architecture yet it can be a considerable savings to not have to pass in all the data in the request. This is
especially true where the data is selective — when the rules are choosing some subset of data that is needed.
This can also be useful with reference data that you want to cache.

In other deployments Corticon needs to retrieve the data for efficiency. An example would be a batch application
where you need to process a billion records at the end of the month. In such cases, efficient moving of data is
essential for performance.

Progress Corticon : Data Integration: Version 6.3

Chapter 1: Why your rules might want to access external data

10 Progress Corticon : Data Integration: Version 6.3

2

Corticon alternatives for data integration

Corticon provides several techniques for data integration. Which ones are right for you depends on your use
case — you can assemble the right mix to suit your needs.

Here is a video overview of the data access options:

Learn about data access from Corticon

When you want the Datasource to create the Vocabulary

You could choose to connect to a database or REST Datasource to populate your Vocabulary. You need not
be bound to the Datasource once the Vocabulary has been generated. For more about this technique, see the
section "Populate a Vocabulary from a Datasource" in the Rule Modeling Guide.

When to use the Enterprise Data Connector (EDC)

Corticon EDC accesses data is a relational database to augment data when processing a discrete Decision
Service request. It is used by rule authors who like the user friendly and intuitive way of modeling data access
and persistence in their Rulesheets to conditionally enrich transactional data, and to use reference data for
rule processing using a single backend relational database.

For example, a single request to adjudicate an insurance claim tells Corticon to retrieve all required data and
related data from a database to service the request. Corticon performs well in this scenario including the
persistence of the claim processing result back into the database.

Corticon EDC uses an object relational model (ORM) where entities mapped to a database are automatically
enriched with database data and optionally saved back to the database. This approach makes it very easy to
use database data in your rules but also introduces query and data processing overhead when reading data
from a database with related tables. Both read and write performance can suffer in some use cases with EDC.
When performing reads, the number of queries required to retrieve an entity and all associated entities can
grow exponentially with each level of associations. When performing writes, each updated object is committed
to the database as a distinct update instead of a large, single pass multi-record update.

Progress Corticon : Data Integration: Version 6.3 11

https://www.youtube.com/watch?v=t5oElS_errs

Chapter 2: Corticon alternatives for data integration

Database read and update through EDC is a good choice for a single Decision Service request scenario with
limited amounts of data. Examples are individual claims processing, single client eligibility requests, and a
single transaction validation request. Many Corticon users have EDC running every day with EDC deployment
scenarios.

EDC's limitations are in its performance in large, data intensive operations where large chunks of data are
loaded into Corticon for processing and updating the database.

EDC can be thought of as the "Easy Data Connector" because it provides the simplest means of connection
to a database. This contrasts with the "Advanced Data Connector" which requires greater knowledge of SQL
but provides greater flexibility.

When to use Advanced Data Connectors (ADC)

ADC also provides for accessing data in a database but takes a different approach than EDC to address
different use cases. ADC is very efficient in dealing with large data sets. ADC has the ability to connect to
disparate databases--you can use ADC to read from and write to multiple databases in a single decision service.
With EDC you're limited to one database. Both read and write performance is much better than EDC when
processing larger data sets in a Decision Service request. ADC can read related data in a few passes from the
database, where EDC requires discrete queries to fetch data. And ADC can write back data in chunks, where
EDC writes data as discrete updates.

Both ADC and EDC are single-threaded -- a single request is executed by a single Decision Service reactor
which has access to the full collection of data included in the request payload, database exposed entities and
filter criteria in the Rulesheets (EDC) or ADC queries.

Using ADC, you get great performance when processing a large dataset through a single Decision Service
request. You can use ADC to quickly process a set of unrelated records such as individual customers or work
orders. You can also use it when you need to do operations such as aggregations and clustering. You can
build rules that operate on the full collection of data. As examples, you can quickly adjudicate all medical claims
in @ month or approve specific procedures across all hospitals in a specified region, or calculate sales prices
for all items in stock. In some situations, it is imperative to have access to the full collection of data for your
rules to work properly. For example, when sales prices are calculated based on clustering rules whereby all
sales prices for products in the same cluster are based on the average purchase price of their respective
product cluster.

When to use the REST Datasource

The Corticon REST Datasource provides support for accessing REST services. It allows you to retrieve REST
data to enrich the payloads being processed by your rules.

The Corticon REST Datasource uses the Data Direct Autonomous REST Connector which provides the ability
to access REST services as if they were databases. This is beneficial to a Corticon user because the process
of mapping a vocabulary to a REST service is the same as for EDC and ADC data sources.

To configure the REST Datasource you either perform schema discovery or supply your own schema file.
When using schema discovery, you supply the URL of the REST data source and query parameters and allow
the Autonomous REST Connector to generate a schema for your REST service. To supply your own schema,
you can either export a discovered schema from Corticon Studio and make edits or create one from scratch.
See the Autonomous REST Connector documentation for details on the its schema file format.

The query parameters for a REST Datasource can either be fixed or dynamically set by data in your payload.
Dynamic setting of parameters allows you to access a REST service to retrieve information about a specific
entity in your payload. You can also configure the security settings for accessing a REST service.

As REST access is limited to read-only, it is ideal for data enrichment. You could have one or several REST
Datasources used by a decision service. You can even mix EDC or ADC with REST depending on your data
access needs.

12 Progress Corticon : Data Integration: Version 6.3

The wealth of REST data sources exposed through APIs means that you could be touching multiple sources
to build the best complete data set possible. In marketing scenarios that might mean taking sparse info on a
prospect from social or business contacts to enrich the data by discovering their profile and preferences to
focus campaigns and assign local reps for follow-up. In medical applications, diagnoses and treatments can
be enriched with claims approval histories or related clinical trials. For mortgage lenders, quickly scanning
multiple credit review resources for a prospect, and then matching their home value and loan to retrieve the
best rate from multiple lenders.

When to use batch processing

Batch processing is used to process large data sets either after hours, during periods of low system usage or
to meet business demands such as monthly or quarterly reporting. Corticon's batch processing can be used
with ADC to efficiently process huge amounts of data. Batch decision services can also use REST Datasources.

A requirement for batch processing is that each transaction stands on its own, not needing access to the full
collection of data to make decisions on single transactions. As only so much data can be loaded into Corticon
working memory at once, the data would need to be fed to the rules engine in chunks to then process the
chunks concurrently based on resource capacity. Note that there are no return payloads in batch processing
— the result of all the rule processing is persisted in the database.

Batch processing usually runs against the same input source to process large volumes of data so it is set to
run at scheduled such as nightly or monthly. Corticon's Web Console can be used to schedule batch executions
or you can use external tooling to perform scheduling and call Corticon REST API to start a batch execution.

Progress Corticon : Data Integration: Version 6.3

13

Chapter 2: Corticon alternatives for data integration

14 Progress Corticon : Data Integration: Version 6.3

3

How Corticon concepts apply to Datasources

Internally, Corticon accesses all data sources using SQL. A Corticon Vocabulary is fundamentally relational in
nature, and conceptually equivalent to the elements of a typical relational database:

Corticon Vocabulary

Relational Database

Vocabulary

Schema

Vocabulary: Entity

Table

Vocabulary: Attribute

Table Column or Field

Vocabulary: Association

Relationship between Tables

Ruletest Output

Table Row(s) or Record(s)

How REST can conform to a relational database schema

Corticon uses the Progress® DataDirect® Autonomous Rest Connector to access REST Datasources, which
maps the returned JSON to a relational database schema and translates SQL statements to REST API requests.
When configuring a REST Datasource you can either have the Autonomous Rest Connector discover the
schema for a REST service or provide your own schema file. The schema tells the Autonomous Rest Connector
how to map JSON in memory database tables which Corticon will then access with SQL.

JSON data is hierarchical, not relational, but can be mapped to a relational model. When using schema

discovery, Autonomous Rest Connector will determine how to perform this mapping. If you need finer control
over the mapping, you can provide your own schema file.

Progress Corticon : Data Integration: Version 6.3

15

Chapter 3: How Corticon concepts apply to Datasources

The Autonomous Rest Connector handles the complexities of mapping JSON to a relational representation
but you need to understand the rules applied to perform the mapping. This is best done by example. Imagine
you have a REST service which returned the JSON.

{

"applicant": [

"name": "Sydney Snith",
"income": 57000,
"address": {
"street": "101 Main Street",
"city": "Raleigh",
"state": "NC'
}

"children": [
{
"nane": "Robert Smith",

"dob": "2017-04-19"
b
{

"nane": "Chelsea Smth",
"dob": "2014-11-07"

}

Looking at this, you can see there is one applicant, Sydney Smith, with two children and other information
about Sydney. The Autonomous REST Connector would represent this relationally as two tables, "applicant”
and "children". The applicant table would contain columns for:

* name

* income

* street

e city

* state

The "children" table would contain columns for
* name

e dob

When mapping the JSON to in memory tables, the Autonomous Rest Connector would map Sydney to the
"applicant" table and her two children to the "children" table. The Autonomous Rest Connector would also
define a primary key/foreign key relationship between the tables so that the children for an applicant can be
identified.

In this simple example:
* The applicant and their attributes were added to the applicant table
* The nested address data was "flattened" and made attributes of the applicant

* The nested array of children objects were mapped to an associated table

Corticon Vocabulary Relational Database REST mapping
Vocabulary Schema Schema (even if implicit)
Vocabulary: Entity Table Object

16 Progress Corticon : Data Integration: Version 6.3

Corticon Vocabulary

Relational Database

REST mapping

Vocabulary: Attribute

Table Column or Field

Number, string, or null

Vocabulary: Association

Relationship between Tables

Array of objects, strings, or numbers

Ruletest Output

Table Row(s) or Record(s)

Object Instances

For an example a schema in a REST Datasource, see Mapping REST Service metadata on page 179 .

Progress Corticon : Data Integration: Version 6.3

17

Chapter 3: How Corticon concepts apply to Datasources

18 Progress Corticon : Data Integration: Version 6.3

4

About the sample projects referenced in this
guide

The Getting Started techniques for data integration are presented in this guide using a sample of medical
patient records and treatments that have been performed on the patient. The samples provide the SQL
statements that setup the table and sample data for many supported databases. All the samples build on each
other so that you understand that what is under discussion is evolution of functionality in Corticon data integration.

The scenarios demonstrate the essential concepts of the various data integration options. The corresponding
Corticon Studio sample projects use one or more databases or REST services. Where a database is needed,
the samples include SQL scripts to define the schema and load sample data for many supported databases.
Where REST is needed, the samples use a test REST service hosted by Progress on AWS. With the exception
of the Batch Rule Process sample, the samples are independent. The Batch Rule Processing sample requires
the ADC Database Connectivity sample's database configuration to have been performed and the decision
service deployed to Corticon Server.

For database samples, this guide demonstrates usage with Microsoft SQL Server. The techniques can be
applied to other supported databases.

This guide refers to the included SQL scripts by their logical name. For example, the SQL script that sets up
the patient schema and data on SQL Server is the file sql / sql server/pati ent _sql server. sql . This
guide refers to that as simply pat i ent . Once a script has been run in the database, it does need to run again
for another sample as the script is the same.

Each sample section starts with advice about advancing from the previous section. Each topic within a Getting
Started section indicates how hands-on users can just read through the steps that are pre-defined in the sample
project assets.

If you choose, you could start at Mixed Connectivity, and work backwards to the other samples. You might see
some unneeded data and tables yet all the required metadata and SQL Queries will process the samples as
expected.

There are six Corticon samples that relate to data integration:

Progress Corticon : Data Integration: Version 6.3

Chapter 4: About the sample projects referenced in this guide

1. EDC Database Connectivity - The classic database connectivity in Corticon is EDC. The richness of
database interaction is defined within Rulesheets. While this can be constraining, its simplicity is appropriate
for many applications, as illustrated:

Q Determine Approval

The EDC sample can be used as the basis for the ADC sample. It is a good idea though to close the EDC
asset files to ensure that you keep the samples distinguished. SQL script: pati ent .

2. ADC Database Connectivity - Corticon Extensions are the foundation of the ADC functionality. The defined
functions enable read and write functionality that are implemented in the sample's Ruleflow as Service
Call-outs, where one call-out is enabling read functions while the other enables write functions, as illustrated:

f8° GetPatient Data Q Determine Approval s Save Approvals

The ADC sample can be used as the basis for the Multiple Database sample and is needed by the Batch
Rule Processing sample. SQL scripts: pat i ent and adc.

3. Multiple Database Connectivity - With ADC you can access multiple databases. The data read in from
one database can even be used when querying data from another database. This sample will demonstrate
the use of ADC to read patient and treatment data from one database and then access a second database
to retrieve detailed information about a type of treatment. The rules determine if a treatment is approved
and the results are saved to the patient and treatment database, as illustrated:

o=

f8Y GetPatient Data o Get CMS Details @ DetermineApproval Q Deny Clinical Trials s Save Approvals

4. REST Connectivity - The REST sample demonstrates the use of Corticon's REST Connectivity for accessing
REST services from rules. The sample calls a REST service to retrieve the reimbursement rates for a
medical procedure given a procedure code. There may be multiple rates for a procedure with different
effective date ranges.

e Get Rates Q RateMessage

5. Mixed Connectivity - This sample mixes ADC and REST datasources to demonstrate the flexibility of
Corticon's data access capabilities. The sample builds on the Multi Database Sample, adding to it the
retrieval of reimbursement rate data as is done in the REST connectivity sample.

20 Progress Corticon : Data Integration: Version 6.3

'8 GetPatient Data f80 Get CMS Details @ Determinefpproval @ Deny Clinical Trials

f8% Save Approvals 7Y RateMessages s Get Rates

6. Batch Rule Processing - The batch sample does not include any rule assets. It contains SQL scripts to
populate a test database with additional records to better explore the batch rule processing concepts. This
guide will show how to use the Web Console perform batch rule processing.

ﬂ Web Console

Manage Batch Configurations

monitor Corticon Batch

Manage and

ConfigL

[=¥)

Progress Corticon : Data Integration: Version 6.3

Chapter 4: About the sample projects referenced in this guide

22 Progress Corticon : Data Integration: Version 6.3

Progress Corticon : Data Integration: Version 6.3

23

Chapter 5: How Datasource information is viewed in the Vocabulary

How Datasource information is viewed in the
Vocabulary

When an EDC, ADC or REST Datasource is added to a vocabulary, the Vocabulary editor is modified to place
a Datasource pulldown menu above the Vocabulary tree, as illustrated:

Figure 1: Datasource not selected

[g Medical.ecore 52 = O
Datasource: || j Basic Properties &
- : Property Mame Property Value
-2 Medical
= U = |ca. Attribute Name medicalCode
E-&5 Patient Data Type String
""" =] dob Mandatory Mo
----- == gender Mode Baze
""" =l pat!enﬂd Patient Data Datascurce Properties E
----- ==| patientMame
i Column Mame
----- == region
_____ —£ treatment (Treatment) Treatment Data Datasource Properties 3
== Treatment Column Mame treatmentCode
----- ==| approved
----- == clinicalTrial

..... ==| description

..... = medicalCode
..... ==| patientld

..... == providerld

..... ==| treatmentDiate
..... ==| treatrmentld

24 Progress Corticon : Data Integration: Version 6.3

Once a Datasource is selected, the tree icons take on database 'decorations' on each persisted entity and
attribute. The list of attributes in each persisted entity is re-arranged such that the one or more attributes that
comprise the entity identity, the Primary Key, are at the top of each list. Here, the EDC Datasource is selected

and the database decorations are shown:

Figure 2: EDC Datasource selected

Ea Medical.ecore E& Cargo.ecore 53 O
Datasource: | EDC j Basic Properties #
=i Carge F'FD.FJEFt_‘r‘ MName F'ru:upert:,r Value
- = w Entity Name Aircraft
53 - Inherits From
----- By aircraftType :
_____ B maxCargoVelume EDC Datasource Properties o
----- =y maxCargoWeight Entity Identity
_____ = tailNumber -?a:;ﬁ;re Persistent Yes
e . able Mame
—!Q flightPlan (FlightPlan) Datastore Caching
ER= Ca.rgc' _ . Identity Strategy
""" =y manifesthumber Identity Column Mame
----- =, container Identity Sequence
----- Bl needsRefrigeration Identity Table Name
..... my volume Identity Table Name Colurmn Mame
..... = weight Identity Table Value Colurmn Mame
----- 3 flightPlan (FlightPlan) EE“!D” -‘Etflateg}f -
5-E9 FlightPlan ersicn Column Mame
----- Ey flightMumber *
----- I~ aircraft (Aircraft)
----- = cargo (Cargo)
25

Progress Corticon : Data Integration: Version 6.3

Chapter 5: How Datasource information is viewed in the Vocabulary

When more than one Datasource has been defined in a Vocabulary, clicking the pulldown lets you choose

which Datasource you want to view, as illustrated:

Figure 3: Selecting from multiple Datasources

[E Medical.ecore 3

Datazource: ||

=21 Medi

EE

Patient Data

Treatment Data
[

...... E patientld
...... E patientMame

El@

----- =] region
----- —£ treatment (Treatment)

Treatment

m=| approved

==| clinicalTrial
m=| description
==| medicalCode
m=| patientld

== providerld

.. == treatmentDate
../ treatrentld

Basic Properties

Property Name Property Value
Attribute Name medicalCode
Data Type String
Mandatory Mo

Mode Base

Patient Data Datasource Properties
Coelumn Name
Treatment Data Datasource Properties

Calumn Mame treatmentCode

26

Progress Corticon : Data Integration: Version 6.3

In the following illustration, the Patient Datasource is showing its persisted elements and keys, and the
Datasource's section of the Properties panel is decorated with an orange arrow to indicate that it is the
Datasource in the current view:

Figure 4: Patient Datasource keys and persistent elements

Cg Medical.ecore 52 = O
Datasource: | [ZElEy 8 0E S w| Basic Properties 2
- . Property Mame Property Value
-] Medical
= [...J EEF'IC’? ; Attribute Mame medicalCode
= atient . Data Type String
""" =y patientld Mandatory Mo
----- = dob Mode Base
""" = gen.u:ler Patient Data Datasource Properties -
----- = patientMame
. Column Mame
----- By region
_____ — treatment (Treatment) Treatrment Data Datasource Properties *
=5 Treatment Column Mame treatmentCode
----- = treatmentld *
----- =y approved
----- = clinicalTrial

..... B description

..... Ey medicalCode
..... =y patientld

..... Ey providerd

----- By treatmentDate

When you toggle the Datasource selector to the Treatment Datasource, it decorates its persisted elements
and keys, and the Datasource's section of the Properties panel is decorated with an orange arrow to indicate
that it is the Datasource in the current view:

Progress Corticon : Data Integration: Version 6.3

27

Chapter 5: How Datasource information is viewed in the Vocabulary

Figure 5: Treatment Datasource keys and persistent elements

[E Medical.ecore 23

Datasource: | PEERUEREE] -

=] Medical

=

£-E5

Patient

----- = region
----- ~€ treatment (Treatment)

Treatrment

= medicalCode *
= approved

= clinicalTrial
=y description
= patientld

= providerld

=] treatmentDate
=] treatmentld

Basic Properties

Property Mame
Attribute Mame
Data Type
Mandatory
Mode

Patient Data Datasource Properties

Column Mame

Treatrnent Data Datasource Properties

Column Mame

= O
Property Value
medicalCode
String
Ma
Base
treatmentCode

The next sections of this document take you through setting up and experiencing each type of data connectivity.
That is followed by advanced material for each type of Datasource.

28

Progress Corticon : Data Integration: Version 6.3

Getting Started with EDC

In this section, you walk through how an Enterprise Data Connector (EDC) connection is established, and then
used and tested by rules. The EDC connection enables Corticon Decision Services to connect to a single
database and perform read, write, and delete operations on it.

Some simple Vocabulary designs can take advantage of the EDC technique (if accepted by database
administrators) that lets Studio export schema information directly to a database engine and generate the
necessary table structure within an appropriately defined tablespace.

To load the EDC sample:

In Corticon Studio, choose the menu item Help > Samples. Select the Intermediate Sample EDC Database
Connectivity, and then click Done. Follow the Import dialog to bring the sample into your workspace.

The topics guide you through experiencing this section by running the sample files in Corticon Studio.

For details, see the following topics:

* Define a table namespace in the database

* Define the database connection for EDC

* Set the entities to store in the database

* Load the schema and data in the database

* Import EDC database metadata into a Vocabulary
* Test the rules when reading from the database

* Test the rules when writing to the database

Progress Corticon : Data Integration: Version 6.3

29

Chapter 6: Getting Started with EDC

Define a table namespace in the database

Note: Using the sample: The sample uses the namespace PatientRecords. If you completed Getting Started
with ADC on page 41 or Getting Started with Multiple Database Connectivity on page 55, you can just continue
with their namespaces.

Set up your database product in a network-accessible location, and then define a database name. Note the
database URL and port as well as the new database name. Be sure that your database will not deny connection
using credentials -- for example, using SQL Ser ver Aut henti cati onandnotW ndows Aut henti cati on.
These parameters are all that is typically required to connect the Vocabulary to the database, create the schema
for the persistent entities, and then bring the database metadata back to the Vocabulary.

Note: Refer to the Progress Software web page Corticon Supported Platforms Matrix to review the currently
supported database brands and versions.

Define the database connection for EDC

Note: Using the sample: The EDC database connection is defined in the Vocabulary. Enter your username
and password, and then test the connection.

To connect a Vocabulary to a database:

1. On the Vocabulary menu, choose Add Datasource > Add EDC Datasource as shown:

30 Progress Corticon : Data Integration: Version 6.3

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

Define the database connection for EDC

Vocabulary
4] AddDomain
%] Add Entity
Add Attribute *

Add Association...

Find References

Refactor...

Add Datasource * Add EDC Datasource
Datascurce Configuration File * Add ADC Datasource
Add Docurment Mapping * Add Query Datasource
Populate Vocabulary From Datasource Add REST Datasource

Set to Read/Write
Vo Show Vocabulary Details

Localize...
[E Report..

Export WSDL...
Export X50...

2. The EDC tab is added to the root level of the Vocabulary, as illustrated:
Custom Data Types EDC

METADATA MAPPING SCHEMA ENUMERATION | CONMECTION | DATASOURCE
cdy Import || X Clear () validate | | X Clear 3 Create/Update 4y Import B Test T Delete
Description:
Database Server: | Microsoft SQL Server ~

URL: |jdbc:pru:ngress:sqIserver:;‘_a'locaIhnst:1433;databaseName:PatientRecords

Authentication | Baczic "

FRER AR

Pazzword:

Catalog Filter: |

Uzername: | =3 |

Schermna Filter: |

where:

* Description: An informative description of the intended use for the database you are accessing.

* Database Server: The database product. Click the dropdown menu on the right side of the entry area
to list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each
database. These drivers provide robust, configurable, high-availability functionality to RDBMS brands.
The drivers are pre-configured and do not require performance tuning.

Progress Corticon : Data Integration: Version 6.3 31

Chapter 6: Getting Started with EDC

* URL: The preconfigured URL for the selected database server. You must edit the default entry to replace
(1) <ser ver > with the machine's DNS-resolvable hostname or IP address and port, and (2) <dat abase
nane> with the database name that was set up (typically case-sensitive).

* Authentication: The authentication technique required for the Datasource. Most drivers default to Basi ¢
where the Username and Password fields are available, and offer Keber os as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

* Catalog Filter and Schema Filter: Patterns that refine the metadata that is imported during Import
Database Metadata and Create/Update Database Schema.

Note: Filters are a good idea for production databases that might have hundreds or even thousands of
schemas. As the Catalog filter value does not support wildcards, distinguishing two metadata import
filters enables the use of wildcards in the Schema filter value: Underscore (_) provides a pattern match
for a single character. Percent sign (%) provides a pattern match for multiple characters (similar to the
SQL LI KE clause). For example, you could restrict the filter to only schemas that start with DATA by
specifying: DATA% The ability to specify patterns is especially valuable when testing performance on
RDBMS brands with applications that use multiple schemas.

* Additional properties: Extended properties are not typically needed on an EDC connection. For more
about these properties, see Set additional EDC Datasource connection properties on page 129.

3. Click the CONNECTION Test button. An alert indicates success.

Importing Datasource and Database Access configurations

You might be given a Datasource XML configuration file that defines the EDC connection as well as its security
credentials. In that case, do the following:

1. On the project's Vocabulary menu, select Datasource Configuration File > Import .
2. Browse to locate and select the . xrm configuration file to apply.

3. When you click OK, the EDC Datasource definition is added to your Vocabulary. If you already have an
EDC Datasource defined, the EDC definition will not be overwritten.

If you have an older Database Access Properties file, you can import it as follows:

1. On the project's Vocabulary menu, select Datasource Configuration File > Import Database Access
Properties.

2. Browse to locate and select the . pr operti es configuration file to apply.

3. When you click OK, the EDC Datasource definition is added to your Vocabulary. If you already have an
EDC Datasource defined, the EDC definition will not be overwritten.

Set the entities to store in the database

Note: Using the sample: The property values in this topic are preset as described in the sample.

In the EDC Datasource Properties section of the Vocabulary, each entity that will be mapped to a database
needs to be declared, and then specify its entity identity that will set the Primary Key.

1. In the Vocabulary editor, click on each entity that will be included in the database schema, to do the following:

32

Progress Corticon : Data Integration: Version 6.3

Set the entities to store in the database

a. Set its Datastore Persistent property to Yes, as shown:

Cg Medical.ecore &2 = O
Datasource: | EDC j LETE RS #
~) Property Name Property Value
E|U Medlca.l Entity Name Patient
|_:_|E, Patient Inherits From
= patientld EDC Datasource Properties S
- dob - .
= gender Entity Identity
; 4 . Datastore Persistent [Yes -
- pat!entName Table Name
- region Datastore Caching
L= treatrment (Treatment) Identity Strategy
#-E4 Treatment Identity Column Name
Identity Sequence

Identity Table Name

Identity Table Name Colurmn MName
Identity Table Value Column Mame
Version Strategy

Version Calumn Name

The entity and all its attributes now display their icon with a database decoration.

b. Set its Entity Identity - While you might consider alternative Identity strategies on page 150, typically
Application Identity is used to assign an attribute as the primary key for the entity. Click the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

g Medical.ecore 33 = 0
Datasource: | EDC j Basic Properties S
=21 Medical Property Name Property Value
I_'—_|E| Patient Entity Name Patient
4 patientld * Inherits From
EDC Datasource Properties #
Entity Identity patientld hd
Datastore Persistent
= region Table Name
—\; treatment (Treatment) Datas.tnrr: Caching
] Treatment Identity Strategy
& restmen Identity Column Name !
region

Identity Sequence

Identity Table Name

Identity Table Name Colurmn Name
Identity Table Yalue Column Name
Version Strategy

Version Column MName

The selected attribute is now at the top of the listed attributes and marked with an asterisk (*). That's the
primary key (PK) in the database table.

You can specify a key that is a compound of two attributes by holding down the Ct r | key while clicking
the attributes you want in the key.

Progress Corticon : Data Integration: Version 6.3 33

Chapter 6: Getting Started with EDC

Note: Setting the Entity Identity but leaving Datastore Persistent set to No has no effect.

Load the schema and data in the database

Create the schema in the database

A Corticon EDC Datasource connection enables you to push the schema into the database. For a basic use
case, this a great timesaver.

It is more often the case that a database administrator would create the schema for the persistent entities as
tables and columns in the database. For the EDC sample, you need to have executed the Corticon SQL script
pati ent for your database in your database management tool's editor.

Once the database has been setup for the Vocabulary, you need to import the metadata into Corticon Studio
to complete the binding. In Corticon Studio on the Vocabulary's EDC tab, click METADATA: Import. The
mapping metadata from the database is added into the Vocabulary for the Entities (tables), Attributes (columns),
and Associations (join expressions). For more about mapping and possible anomalies, see Mapping and
validating EDC database metadata on page 123.

Import EDC database metadata into a Vocabulary
When the database schema exists, its metadata can be imported into Corticon Studio to refine and complete
the mappings between the Vocabulary and the metadata.

You can control the tables that are accessed to transfer metadata to the Vocabulary. When only a small subset
of tables will supply the metadata that is needed, the time and space overhead of the process is reduced by
delimiting the tables.

In the Vocabulary editor with the EDC database connection established, select the Vocabulary root, and then
select the tab of the database connection metadata you want to import. In its panel, click METADATA Import.

In the dialog, accept Import all tables, and click Finish, or...

34 Progress Corticon : Data Integration: Version 6.3

Import EDC database metadata into a Vocabulary

e Import Database Metadata

Import Database Metadata
What do you want to import?

@ Import all tables

Select this option to import all database metadata.

Choose tables for database metadata import

Select this option to choose tables to import.

= [= =
N

< Back Mext >

Finish

|| cancel

e

... or click Choose tables for database metadata import and click Next.

The panel lists all the tables in the connected database.

If you do not want all, click Deselect All, and then choose specific tables.

e Import Database Metadata

Import Database Metadata

What do you want to import?

EE

Table Mame

PatientRecords.dbo. CORTICON_ADC_READ
PatientRecords.dbo. CORTICON_ADC_READ_DEFS
PatientRecords.dbo. CORTICON_ADC _WRITE
PatientRecords,dbo, CORTICON_ADC_WRITE_DEFS
PatientRecords.dbo.CORTICOMN_BATCH_READ
PatientRecords.dbo.Patient
PatientRecords.dbo.Treatment
PatientRecords.sys.all_columns

Select All Deselect All

< Back ‘ Finish | Cancel

=10] x|

In this example, just two tables are selected. Click Finish to perform the task.

As database metadata is imported into a Vocabulary, the Vocabulary Editor’s automatic mapping feature
attempts to find the smart match for each piece of metadata. An entity will be auto-mapped to a table if the two

names are spelled the same way, regardless of case.

Progress Corticon : Data Integration: Version 6.3

35

Chapter 6: Getting Started with EDC

Test the rules when reading from the database

In the EDC sample's Rulesheet, Det er ni neAppr oval . er s, its Advanced view's Scope shows that the
Pat i ent entity on the Rulesheet is set to Extend to Database, as shown:

Lg Medical.ecore Eg DetermineApproval.ers 52

Scope

E-—% trea L-l_\‘f Cut
..... 5 |.'|_ CDF'F
3€ Delete

W Extend to Database
Cache Query

Comment...
Localize...

Matural Language...

This setting tells the rules to get all database records that relate to the query. As the rules do not filter or
aggregate data, the results will be more than you might expect.

Open the sample's Ruletest, Pr ocedur eAppr oval . ert . It opens on the Testsheet No Input Data. Click Run
to compile and run the rules. The output shows patient and treatment data.

/EDC Database Connectivity/Procedurefpproval.erf

=1 One Patient | =1 Multiple Patients |

Input Output
=-E5 Patient [1] i‘
..... = dob [09/22/72 8:00:00 PM]
----- = gender [F]
----- = patientld [1]
----- = patientMame [Teri Rivera]
----- = region [NE]
-4~ treatment (Treatment) [1]
- = approved [false]

-8 clinicalTrial =l

Right-click anywhere in the output column, and then choose Collapse All, as shown:

Input Output
=R Pl B
..... = do <“Undo
""" B ge o Cut
..... EI pa] =
..... w3 et 151COPY
""" B reg 3 Delete
E|¢_ tre Comment]
=
o] Collapse All j
: Expand All

Now we can see that all the patient records and their treatments were retrieved.

36 Progress Corticon : Data Integration: Version 6.3

Test the rules when writing to the database

Input Output
[a® =5 Patient [1]
#-E5 Patient [2]
#-E5 Patient [3]
#-E5 Patient [4]

So too for the One Patient and Multiple Patients Testsheets. That is not what we want in this use case.

Note: Extending to database can produce a variety of useful results. For examples see How data from an
EDC Datasource integrates into rule output on page 131

Run test without extending to database

In the Rulesheet's Scope, right-click on Pat i ent , and then clear the option to Extend to Database. Then,
return to the Ruletest. When you run the test for the No Input Data testsheet, you get no results. When you
run the Testsheet for the One Patient and Multiple Patients Testsheets, you get exactly that one patient and
the specified three patients.

Test the rules when writing to the database

When the rules ran, they determined the approval of treatment, as shown:

Q; Medical.ecore ¢ *Procedurefpproval.ert 3

Mo Input Data One Patient | Multiple Patients |

/EDC Database Connectivity/ProcedureApproval.erf

Input Output
= Patient [1] = Patient [1]
b B patientld [1] 0 = dob [09/22/72 8:00:00 PM]
----- = gender [F]
----- B patientld [1]
----- B patientName [Teri Rivera]
----- B region [NE]

¢ treatment (Treatment) [1]
----- =y approved [trug]

- = medical_ode |BD41777)]
..... [y patientld [1]

..... =y providerld [1234]

----- = treatmentDate [08/12/17]
----- = treatmentld [18]

g4 treatment (Treatment) [2]

..... =y approved [false]

----- = medicalCode [SWBEXDZ]

----- [y patientld [1]

That information might have been adequate in the response. If the intent was to also persist the approval, it is
not being entered into the database, as shown:

Progress Corticon : Data Integration: Version 6.3 37

Chapter 6: Getting Started with EDC

treatmentld | approved

MNULL
MNULL
MNULL
MNULL
MNULL
MNULL
MNULL
MNULL
MNULL
MNULL

W ota =~ Oh ol = Ra

[ury
=

medicalCode
OWBEXDZ
BL30YDZ
OWBEXKL
FO97177
03130090
FO9Z0KZ
BDA1777
BL30Z77Z
B512777
FO9Z0KZ

providerld | treatmentDate | patientld

1234
5678
5678
1234
43211
1234
1234
43211
8765
43211

2017-07-15
2017-08-01
2017-03-12
2017-07-01
2017-08-05
2017-09-28
2017-08-03
2017-06-12
2017-10-30
2017-10-04

B T = R e W L =2 T L T R)

To persist to the database, choose the Ruletest's Testsheet Multiple Patients, and then choose the menu
command Ruletest > Testsheet > Database Access to choose Read/Update, as shown:

Ruletest
Testsheet

B Run All Tests

£ Report..

Remove Invalid Modes

Notice the red bar that decorates the database corner of the Multiple Patients tab:

& | Add Testsheet...

Rermove Testsheet

Link to Previous Testsheet
m Change Test Subject...

Cut Testsheet
“1 Copy Testsheet
Paste Testsheet

Rename Testsheet...

(i,

Maowve Backward
Maove Forward
Move to Beginning

Mowve to End

7 Add Cornment to Testsheet..,

Import
Data
EDC Database fAccess

Execution Properties

B Deploy
b RunTest

Cutput Validation

w

Mone
Read Cnly
Read/Update

Return All Entity Instances
Return Incoming/Mew Entity Instan

Enable Cache
Disable Cache

38

Progress Corticon : Data Integration: Version 6.3

Test the rules when writing to the database

That shows that it is in Read/Update mode. Now, click Run to compile and execute the rules. The output shows
patient and treatment data for just the three specified patients. And the database shows that records were
updated with the Appr oved status for only those three patients, as shown:

treatmentld | approved | medicalCode | providerld treatmentDate patientld

ﬂ Falze 9WBEXDZ 1234 2017-07-15 1
2 MNULL BL30YDZ 5678 2017-08-01)
3 Falze OWBEXKZ 5678 2017-03-12 2
4 MNULL F08Z177 1234 2017-07-01 6
5 MNULL 0313080 4321 2017-08-05 7
6 Falze FO9Z0KZ 1234 2017-09-28 2
7 True BDA1777 1234 2017-08-03 3
8 True BL30ZZZ 4321 2017-06-12 1
9 MNULL B512777 8765 2017-10-30 8
10 MNULL FO9Z0KZ 4321 2017-10-04 7

That's the basics of Corticon's Enterprise Data Connector. Now you can get A closer look at how Corticon
relates to Datasources on page 99 and the Advanced EDC Topics on page 109, or proceed to Getting Started
with ADC on page 41.

Progress Corticon : Data Integration: Version 6.3 39

Chapter 6: Getting Started with EDC

40 Progress Corticon : Data Integration: Version 6.3

Getting Started with ADC

Corticon's Advanced Data Connector (ADC) provides an alternative to Corticon’s Enterprise Data Connector
(EDC) for accessing database data. It provides greater control over the query and insert statements that are

used. This is beneficial when you need finer control for performance or need to retrieve large amounts of data,
as is the case in batch processing. With ADC you define a mapping of your vocabulary to a database, define
queries, and control when queries are performed to retrieve data.

Here is a video overview of the data access with ADC:
Access data with ADC
To load the ADC sample:

In Corticon Studio, choose the menu item Help > Samples. Select the Advanced Sample ADC Database
Connectivity, and then click Done. Follow the Import dialog to bring the sample into your workspace.

Note: ADC is different from EDC in a few ways. If you are following along after walking through Getting Started
with EDC on page 29, there are a few things to reset to make this section flow smoothly:

* |n Corticon Studio, choose File > Close All.

* Inthe database table Tr eat ment s, either reset all the approved values to Null, or just delete and recreate
the database

See more topics on ADC usage in the section Advanced ADC Topics on page 157

For details, see the following topics:

* Overview of the Advanced Data Connector

* Define a table namespace in the database for ADC

Progress Corticon : Data Integration: Version 6.3

https://www.youtube.com/watch?v=kS5s20qYcec

Chapter 7: Getting Started with ADC

* Create and map the ADC schema and queries

* Define a database connection for ADC

* Define and import queries for ADC

* Import ADC Datasource metadata into a Vocabulary
* Use an ADC connection as a Ruleflow service callout
* Test the rules when reading from the ADC database

¢ Test the rules when writing to the ADC database

Overview of the Advanced Data Connector

ADC functions as a service callout that accesses data as a step in a Ruleflow. They are based on Corticon
Extensions -- ones that you might create yourself, as described in the Corticon Extensions Guide -- that are
packaged opaquely for ADC Datasource read/write functions through SQL queries stored in the database.

To use ADC:

1. Map your vocabulary to a database - In the Corticon vocabulary editor, map the entities, attributes, and
associations that tell ADC how to construct entities and associations for data retrieved from the database
and how to save data when storing to the database.

2. Define parameterized SQL statements for the queries - You have full control over these queries. They
can be parameterized so that substitutions can be performed at runtime. To make these statements easy
to manage, they are also stored in a database--the same database or a database separate from the data
to be queried.

3. Add the ADC callout to a Ruleflow - In the Corticon Ruleflow editor, when you add a Service Call-out to
a Ruleflow, you configure it to identify the queries to be performed by selecting one of the SQL statements
you have defined. To make this easier, you can give the SQL statements logical names.

When all steps are completed you are ready to deploy your Ruleflow or test it in the Corticon tester. When ADC
runs, it performs substitutions into the statement to access data. For queries, ADC constructs entities, sets
attributes, and defines associations using the Vocabulary mapping. For inserts, ADC uses the mapping data
for storing to the database.

You can use multiple instance of ADC in a Ruleflow. A typical use case would be to have an instance at the
start of a Ruleflow to retrieve data and one later in the Ruleflow to save data.

Define a table namespace in the database for ADC

Note: The sample uses the namespace PatientRecords. If you completed Getting Started with EDC on page
29 or Getting Started with Multiple Database Connectivity on page 55, you can just continue with their
namespaces.

Set up your database product in a network-accessible location, and then define a database name. Note the
database URL and port as well as the new database name. Be sure that your database will not deny connection
using credentials -- for example, using SQL Ser ver Aut henti cati onandnotW ndows Aut henti cati on.
These parameters are all that is typically required to connect the Vocabulary to the database, create the schema
for the persistent entities, and then bring the database metadata back to the Vocabulary.

42 Progress Corticon : Data Integration: Version 6.3

Create and map the ADC schema and queries

Note: Refer to the Progress Software web page Corticon Supported Platforms Matrix to review the currently
supported database brands and versions.

Create and map the ADC schema and queries

Note: Using the sample: For the ADC sample, you need to have executed the Corticon SQL scripts pat i ent
and adc for your database in your database management tool's editor. The sample's metadata, primary keys,
and join expressions are already mapped to the database.

Create the schema in the database

Typically, the database administrator creates the tables in the namespace, and then the columns with their
data types, the declared primary key, and any joins between tables.

Create the entities and their identity, then their attributes, and associations

1. Define the database tables that will participate in rules as Corticon entities. For the sample, the first table
is Pati ent:
e
= 4 Columns
¢ patientld (PK, bigint, not null)
=] dob (datetime2(7), null)
B gender (varchar(255), null)
B patientMame (varchar(255), null)
B region (varchar(255), null}

2. Add the required columns for that table as Corticon attributes with corresponding data types.

3. Specify the Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

Progress Corticon : Data Integration: Version 6.3 43

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

Chapter 7: Getting Started with ADC

Datasource: | Patient Data j Basic Properties 2
=& Medical Property Mame Property Value
L E= Patient Entity Mame Patient
B atent Inherits From
----- = patientld * _ _
_____ 4 dob Patient Data Datasource Properties &
_____ B gender Entity Identity patientld
----- = patientMame Table Name i
o
..... E‘ regign ender
----- < tretment (Treatmen) T —

=-E5 Treatment

..... = treatmentld *
..... = approved

..... = clinicalTrial

..... = description

..... = medicalCode
..... = patientld

..... = providerld

..... = treatmentDate

4. Add additional tables, such as the sample's Tr eat nent table:

=T o Tresment

= 3 Columns
{ treatmentld (PK, bigint, not null)
=] approved (bit, null)
=] medicalCode (warchar(255), null)
B providerld (bigint, null}
=] treatmentDate (date, null)
¥ patientld (FK, bigint, null)

patientMame
region

5. Specify its Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

44

Progress Corticon : Data Integration: Version 6.3

Define a database connection for ADC

[i¢ *Cargo.ecore Cg Medical.ecore 532 = 0
Datasource: ‘ Patient Data j Basic Properties -
521 Medical Property Mame Property Value
7 E= Patient Entity Mame Treatrment
B Ea| 1ent 4 Inherits From
----- atientld *
_____ = znb Patient Data Datasource Properties 3
_____ me gender Entity Identity treatmentld
. Table Mame
..... tienth
=i pa !En ame approved
""" =4 region medicalCode
----- =& treatment (Treatment) patientld
E-E3 Treatment providerld
..... =y treatmentld * treatmentDate
_____ =9 approved treatmentld
----- = clinicalTrial

..... = description

..... =y medicalCode
..... = patientld

..... = providerld

----- =y treatmentDate

6. In Corticon Studio on the Vocabulary's Datasource tab, click METADATA: Import. The mapping metadata
from the database is added into the VVocabulary for the Entities (tables), Attributes (columns), and Associations
(join expressions). If the imported tables and columns do not align with entities and their attributes, those
values will require manual mapping.

For more about mapping, see Mapping ADC database metadata on page 157.

Define a database connection for ADC

Note: Using the sample: The ADC database connection is defined in the Vocabulary. Enter your username
and password, and then test the connection.

Progress Corticon : Data Integration: Version 6.3 45

Chapter 7: Getting Started with ADC

To connect a Vocabulary to a defined database where you will use SQL queries, define the connection as an
ADC Datasource. In the project's Vocabulary editor, select the Vocabulary command Add Datasource > Add
ADC Datasource, as shown:

Vocabulary

]

g
|

Add Damain
Add Entity
Add Attrnibute

Add Association...

Find References

Refactar...

Add Datasource
Datasource Configuration File
Add Decument Mapping

Populate Vocabulary From Datascurce

Set to Read/Write
Show Vocabulary Details

Localize...

Report...

Export WSDL...
Export X50...

Add EDC Datasource
Add ADC Datasource
Add Query Datasocurce
Add REST Datascurce

Custom Data Types | Cuery | Patient Data

w Import || X Clear » Clear % Test

An ADC tab is added to the root level of the Vocabulary. The ADC sample renamed this Datasource to Patient
Data which is now the name of its tab, as illustrated:

METADATA MAPPING | COMMECTIOM | DATASOURCE

Datasource Mame: | Patient Data

Description:

Databasze Server: | Microsoft SOL Server

URL: | jdbciprogress:sglserver//localhost: 1433, databaseMame=PatientRecords

Authentication | Basic

Username: | a

AR

Password:

Catalog Filter: |

5cherna Filter: |

46

Progress Corticon : Data Integration: Version 6.3

Define and import queries for ADC

where:

* Datasource Name: The connection name that displays on the Vocabulary tab. This is also its name that
will bind this ADC connection to an instance of the service call-out in a Ruleflow. While you can change this
name, it is a good idea to do so before you specify it in Ruleflow Service Call-out's Service Name. When
you add additional ADC Datasource tabs, the default names will increment n in ADC_n.

* Description: Provide an informative description of the use of the Datasource you are adding.

* Database Server: The database product. Click the dropdown menu on the right side of the entry area to
list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each database.
These drivers provide robust, configurable, high-availability functionality to RDBMS brands. The drivers are
pre-configured and do not require performance tuning.

* URL: The preconfigured URL for the selected database server. You must edit the default entry to replace
(1) <ser ver > with the machine's DNS-resolvable hostname or IP address and port, and (2) <dat abase
name> with the database name that was set up (typically case-sensitive).

* Authentication: The authentication technique required for the Datasource. Most drivers default to Basi ¢
where the Username and Password fields are available, and offer Keber os as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

* Catalog Filter and Schema Filter: Patterns that refine the metadata that is imported during Import Database
Metadata.

Note: Filters are a good idea for production databases that might have hundreds or even thousands of
schemas. As the Catalog filter value does not support wildcards, distinguishing two metadata import filters
enables the use of wildcards in the Schema filter value: Underscore (_) provides a pattern match for a single
character. Percent sign (99 provides a pattern match for multiple characters (similar to the SQL LI KE clause).
For example, you could restrict the filter to only schemas that start with DATA by specifying: DATA% The
ability to specify patterns is especially valuable when testing performance on RDBMS brands with applications
that use multiple schemas.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding.

Define and import queries for ADC

Queries are essential to how ADC functions. With just a few queries, a lot of the SQL tasks are minimized as
the rules processing handles complex conditions and actions.

Progress Corticon : Data Integration: Version 6.3 47

Chapter 7: Getting Started with ADC

Running the sample's adc script created five tables that will be referenced by the query service. ADC_READ
and ADC_W\RI TE access their DEF table to do the steps requested by your Ruleflow Service Call-outs.

EH:J

[Database Diagrams
= [Tahles

HEHBEEHBNERKBHE

[Systermn Tables
[FileTables
= dbo.CORTICON_ADC_READ

=1} dbo . CORTICOM_ADC_READ _DEFS

=1| dbo.CORTICON_ADC_WRITE

=1| dbo.CORTICOM_ADC_WRITE_DEFS

=l dbo, CORTICOM_BATCH_READ
=] dbo.Patient
=1 dbo.Treatment

Note: The BATCH READ table inserts the queries you will use in Getting Started with Batch on page 93. For
more about the sample's Corticon's queries, see How Corticon is expressed in SQL on page 166.

Define the Query Datasource connection

To connect a Vocabulary to a defined database where you will read the SQL queries, define the connection
as a Query Datasource. In the project's Vocabulary editor, select the Vocabulary command Add Datasource
> Add Query Datasource, as shown:

Vocabulary

=]

i

Add Domain
Add Entity
Add Attribute

Add Association...

Find References

Refactaor...

Add Datasource
Datasource Configuration File
Add Document Mapping

Populate Vocabulary From Datascurce

Set to Read/Write
Show Vocabulary Details

Localize...

Report...

Export WSDL...
Export X50...

Add EDC Datasource
Add ADC Datasource
Add Query Datasocurce
Add REST Datascurce

The Query tab is added to the root level of the Vocabulary as a fixed-name tab, as illustrated:

48

Progress Corticon : Data Integration: Version 6.3

Define and import queries for ADC

Custom Data Types | Cuery . PatientRecords

QUERIES COMMECTION | DATASOURCE
) Import || X Clear Bl Test Til Delete

Description:

Database Server: | Microsoft SCOL Server o

URL: | jdbciprogressisglserver//localhost:1433; databaseMame=PatientRecords

Authentication | Basic »

drdrd R AR A

Password:

Catalog Filter: |

Username: | =3 |

Schema Filter: |

where:

Description: An informative description of the Query Datasource.

Database Server: The database product. Click the dropdown menu on the right side of the entry area to
list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each database.
These drivers provide robust, configurable, high-availability functionality to RDBMS brands. The drivers are
pre-configured and do not require performance tuning.

Database URL: The preconfigured URL for the selected database server. You must edit the default entry
to replace (1) <ser ver > with the machine's DNS-resolvable hostname or IP address and port , and (2)
<dat abase nane> with the database name that was set up (typically case-sensitive).

Authentication: The authentication technique required for the Datasource. Most drivers default to Basi ¢
where the Username and Password fields are available, and offer Keber os as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

Username: The user credentials that enable connection to the database. The credentials are encrypted
when the database access file is exported for deployment.

Password: The specified user's password.

Catalog Filter and Schema Filter: Patterns that refine the metadata that will be imported.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding.

Progress Corticon : Data Integration: Version 6.3 49

Chapter 7: Getting Started with ADC

Import the queries
To access the queries for use in Decision Services, click the QUERIES Import button:

Custom Data Types | Query ~_Patient Data

QUERIES COMNMNECTION
chy Import | 3 Clear B Test [l Delete Datasource

The current query names in the Query Datasource are accessed and brought into the local persistent cache.
Whenever query names are revised, you need to re-import the queries. If the query defs referenced by a query
name change, the latest defs will be accessed by the query name. .

Import ADC Datasource metadata into a Vocabulary

When the database schema exists, its metadata can be imported into Corticon Studio to refine and complete
the mappings between the Vocabulary and the metadata.

You can control the tables that are accessed to transfer metadata to the Vocabulary. When only a small subset
of tables will supply the metadata that is needed, the time and space overhead of the process is reduced by
delimiting the tables.

In the Vocabulary editor with the ADC database connection established, select the Vocabulary root, and then
select the tab of the database connection metadata you want to import. In its panel, click METADATA Import.

In the dialog, accept Import all tables or click Choose tables for database metadata import, and then click
Next.

The panel lists all the tables in the connected database.

If you do not want all, click Deselect All, and then choose specific tables.

& Import Database Metadata O ﬂ
Import Database Metadata \
What do you want to import? =

Table Mame ﬂ
PatientRecords.dbo. CORTICON_ADC_READ —
PatientRecords.dbo. CORTICON_ADC_READ _DEFS
PatientRecords.dbo. CORTICON_ADC _WRITE
PatientRecords.dbo, CORTICON_ADC _WRITE_DEFS
PatientRecords,dbo, CORTICOMN_BATCH_READ
PatientRecords.dbo.Patient
PatientRecords.dbo. Treatment
PatientRecords.sys.all_columns j

Select All Deselect All

< Back | Finish | Cancel

50

Progress Corticon : Data Integration: Version 6.3

Use an ADC connection as a Ruleflow service callout

In this example, just two tables are selected. The query tables listed do not have metadata so they can be
deselected.

Click Finish to perform the task.

As database metadata is imported into a Vocabulary, the Vocabulary Editor’s automatic mapping feature
attempts to find the smart match for each piece of metadata. An entity will be auto-mapped to a table if the two
names are spelled the same way, regardless of case.

Use an ADC connection as a Ruleflow service callout

Note: Using the sample: The Ruleflow objects and their runtime properties are already defined in the sample.

To use an ADC connection in a service callout:

1. In a Ruleflow where you want to use an ADC connection, create a Service Call-out object on the Ruleflow
canvas. In this example, the Ruleflow is defined with the project's Rulesheet plus a Service Call-out to read
and another one to write back to the database table after rule processing, as shown:

g Medical.ecore E@ Determinelpproval.ers ‘& *ProcedureApproval.edf 52 | % ProcedureApproval.ert

=

‘5% Get Patient Data - Q Determine Approval e Save Approvals

4 o

The ADC sample points out that you can have one ADC connection that has several read and write actions.
2. Click on the Get Patient Data object, and then, on the object's Properties tab.

3. On its Service Call-out tab, click the Service Name pulldown to select the service you want for this use,
as shown here where the sample uses Corti conADC. r ead for this service, as illustrated:

] Properties &2

Service Call-out Marme: | Get Patient Data

Runtime Properties

Service Mame: |CDrticu:unADC.read

CorticonADC.read
Corticon&DC write

4. On its Runtime Properties tab. Use the Property pulldown to:

Progress Corticon : Data Integration: Version 6.3 51

Chapter 7: Getting Started with ADC

O Properties 22 | [2/ Problems AT = g
-
Service Call-out
Runtime Properties Property Value
Datazource Ma... Patient Data
Query Name AllPatients v

IndicatedF‘atients

TreatmentDetails

a. Select Datasource Name, and then, for its value, use the dropdown menu to select the Datasource that
corresponds to the name of the appropriate ADC definition. For the ADC sample, choose Patient Data.

b. Select Query Name, and then, for its value, use the dropdown menu to select the appropriate query.
For the ADC sample, choose AllPatients. The listed values are initially imported and are updated by
the QUERIES: Import function on the Query tab.

Test the rules when reading from the ADC database

Open the sample's Ruletest, Pr ocedur eAppr oval . ert . It opens on the Testsheet No Input Data. Click Run
to compile and run the rules. The output shows patient and treatment data.

=7 One Patient | =7 Multiple Patients |

/ADC Database Connectivity/Procedurefpproval.erf

Input Output
-] Patient [1] il
.= dob [09/23/72 12:00:00 AM]
.= gender [F]
.= patientld [1]
.= patientName [Teri Rivera]
.= region [NE]
=-¢— treatment (Treatment) [1]
E approved [false]
.= medicalCode [9WB8XDZ] ~|

Right-click anywhere in the output column, and then choose Collapse All, as shown:

Input Output
R [Paicn B
..... = do Undo
..... EI gel of Cut
..... EI pa] =
..... w3 et 151COPY
""" B reg 3 Delete
o= tre Comment]
=
= E
Expand 4ll

Now we can see that all the patient records and their treatments were retrieved.

52 Progress Corticon : Data Integration: Version 6.3

Test the rules when reading from the ADC database

Input Output
R==g Patient [1]
H-=5 Patient [2]
f-=5 Patient [3]

[
[
[
#-E5 Patient [4]

So too for the One Patient and Multiple Patients Testsheets. That is not what we want in this use case.

Looking at the Service Call-out's Query Name, we see thatitis Al | Pati ent s:

[] Properties &2 |2/ Problems ©'] Error Log

Service Call-out

Property | Value
Datasource Ma... Patient Data

Query Name

Runtime Properties

We got what we asked for!

Time for some SQL

That query was really two queries combined:

SELECT * FROM Pati ent
SELECT * FROM Treatnent WHERE patientld IN ({Patient.patientld})

Together, the two queries tell ADC to get all the patients and all the treatments for those patients. There are
two queries. One query gets the set of Patients, and the other gets the set of Treatments for each patient. All
the needed data is retrieved with these two queries and the associations are automatically established in
Corticon working memory.

Run test with a different query

Change the Service Call-out's Query Name to | ndi cat edPat i ent s. Then, return to the Ruletest. When you
run the test for the No Input Data testsheet, you get no results. When you run the Testsheet for the One Patient
and Multiple Patients Testsheets, you get exactly that one patient and the specified three patients.

The first part of this SQL statement is:
SELECT * FROM Patient WHERE patientld IN ({Patient.patientld})

The curly braces indicate tokens in the query that will be replaced by the data passed to Corticon -- in this
case, selecting the patients to process.

In other words, { Pati ent . pati ent | d} indicates that one or more attributes defined in the vocabulary can
be used in the parameterization of your query. These value for each query parameter can be provided in the
request message or set by rules to conditionally fetch data from the database.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

Progress Corticon : Data Integration: Version 6.3 53

Chapter 7: Getting Started with ADC

Test the rules when writing to the ADC database

In the database, the approval status is being evaluated but it is not being entered into the database, as shown:

treatmentld | approved
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

W ota =~ Oh ol = Ra

[ury
=

medicalCode
OWBEXDZ
BL30YDZ
OWBEXKL
FO97177
03130090
FO9Z0KZ
BDA1777
BL30Z77Z
B512777
FO9Z0KZ

providerld
1234
5678
5678
1234
4531
1234
1234
4531
8765
4531

treatmentDate | patientld

2017-07-15
2017-08-01
2017-03-12
2017-07-01
2017-08-05
2017-09-28
2017-08-03
2017-06-12
2017-10-30
2017-10-04

B T = R e W L =2 T L T R)

On the Ruleflow canvas, click on the Save Appr oval s Service Call-out on the canvas. Its Query Name is
Updat eTr eat nent whose query SQL is:

UPDATE Treat ment SET approved={Treat ment. approved} WHERE
treatnentl d={Treatnment.treat nentl d}

When you run the Testsheet, the approval values are written to the database for patient treatments, as shown:

treatmentld | approved

L=l

False
MULL
False
MULL
MULL
False
True

True

MULL
MULL

W 0 =l O n = o

=
=

Where to now?

medicalCode
OWBEXDZ
BL30YOZ
OWBBXKZ
FO9Z17Z
0313090
FO9ZOKZ
BD41777
BL30ZZZ
B512777
FO9ZOKZ

providerld
1234
5678
5678
1234
4321
1234
1234
4321
8765
4321

treatmentDate
2017-07-15
2017-08-01
2017-03-12
2017-07-01
2017-09-05
2017-09-28
2017-08-03
2017-06-12
2017-10-30
2017-10-04

patientld

e N = = I o T R SN B =L T S Sl ol

The flow of this document leads to next Getting Started with Multiple Database Connectivity on page 55, and
then Deploying projects that use data integration on page 89, an important preparation for Getting Started with
Batch on page 93. Beyond that, the material focuses less on the samples by using various configurations to

present advanced topics.

54

Progress Corticon : Data Integration: Version 6.3

Getting Started with Multiple Database
Connectivity

Corticon's database connectivity reaches another level when it enables a rules project to access more than
one Datasource. You could mix one EDC Datasource with several ADC Datasources, performing
Rulesheet-based action and filters while the ADC implementation uses multiple Service Call-outs on a Ruleflow.
Together, these enable the Decision Service to be running queries on one database, processing that data, and
then possibly branching to write to either of two other databases.

To load the Multiple Database Connectivity sample:

In Corticon Studio, choose the menu item Help > Samples. Select the Advanced Sample Multiple Database
Connectivity, and then click Done. Follow the Import dialog to bring the sample into your workspace.

The Multiple Database sample expands on the ADC sample's medical treatment approval scenario. Now the
patients and the treatments they have received are in one database, while each treatment's description and
clinical trial status is in another database. The rules connect to both databases to determine whether a treatment
is approved.

Note: If you are just starting to follow the samples hands-on, all the resources for the Corticon Studio and for
SQL Server are included. If you are following along after walking through Getting Started with ADC on page
41, there are a few things to adjust to make this section flow smoothly:

* |n Corticon Studio, choose File > Close All.

* Execute the Corticon SQL script cns for your database in your database management tool's editor.

For details, see the following topics:

* Define multiple table namespaces

Progress Corticon : Data Integration: Version 6.3 55

Chapter 8: Getting Started with Multiple Database Connectivity

* Create and map the multiple database schemas

* Define multiple database connections

* Define and import queries for multiple databases

* Import multiple Datasource metadata into a Vocabulary

* Use multiple database connections as Ruleflow service callouts
* Test the rules when reading from multiple databases

¢ Test the rules when writing to multiple databases

Define multiple table namespaces

Note: Using the sample: This sample uses two namespaces. If you completed Getting Started with EDC on
page 29 or Getting Started with ADC on page 41, you can just continue with its database, PatientRecords,
as-is. You need to add another namespace, CMSDetail. If you choose to put one of these databases on another
brand, you will need to use the brand's queries and data loaders supplied in Corticon Studio.

Set up your database product in a network-accessible location, and then define a database name. Note the
database URL and port as well as the new database name. Be sure that your database will not deny connection
using credentials -- for example, using SQL Ser ver Aut henti cati onand notW ndows Aut henti cati on.
These parameters are all that is typically required to connect the Vocabulary to the database, create the schema
for the persistent entities, and then bring the database metadata back to the VVocabulary.

If you want to use database installations on different machines, the database connections will handle the
connection information.

Note: Refer to the Progress Software web page Corticon Supported Platforms Matrix to review the currently
supported database brands and versions.

Create and map the multiple database schemas

Note: Using the sample: For the Multiple Database sample, you need to have executed the Corticon SQL
scripts pat i ent , adc and cns for your database in your database management tool's editor. The metadata,
primary keys, and join expressions are already mapped to the database.

Create the schema in the databases

Typically, the database administrator creates the tables in the namespaces, and then the columns with their
data types, the declared primary key, and any joins between tables.

Create the entities and their identity, then their attributes, and associations

1. Define the database tables that will participate in rules as Corticon entities. For the sample, the first table
is Pati ent :

56 Progress Corticon : Data Integration: Version 6.3

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

Create and map the multiple database schemas

=T ot

= 4 Columns
¢ patientld (PK, bigint, not null)

=] dob (datetime2 (7, null)

B gender (varchar(255), null)

B patientMame (varchar(255), null)

B region (varchar(255), null)

2. Add the required columns for that table as Corticon attributes with corresponding data types.

3. Specify the Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

r‘d Medica

Datasource: | Patient Data

l.ecore &3

B

=L Medical

EN=|

B

Patient

=% treatment (Treatrment)
Treatment

= treatmentld *

= approved

= clinicalTrial

= description

= medicalCode

= patientld

= providerld

= treatmentDate

= 0
Basic Properties =
Property Mame Property Value
Entity Mame Patient
Inherits From
Patient Data Datasource Properties 3
Entity Identity patientld
Table Mame
Treatment Data Datascurce Properties dob
ender
Entity dentity ptentd
Table Mame patientMame
regicn

4. Add additional tables, such as the sample's Tr eat nent table:

=Y o Tresment

= L4

Columns

{ treatmentld (PK, bigint, not null)

B approved (bit, null}

=] medicalCode (varchar(255), null)

=] providerd (bigint, null)
=] treatmentDate (date, null)

¥ patientld (FK, bigint, null)

5. Specify its Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

Progress Corticon : Data Integration: Version 6.3

57

Chapter 8: Getting Started with Multiple Database Connectivity

[g Medical.ecore &3 = O
Datasource: | Patient Data j Basic Properties &
21 Medical Property Mame Property Value
| E3 Patient Entity Mame Treatment
& atien] Inherits From
----- = patientld *) .
_____ = dob Patient Data Datasource Properties &
_____ = gender Entity Identity treatmentld
..... B patientMame Table Name J
..... B region Treatment Data Datascurce Properties :ﬁrﬁlir:;;'?rial
..... = treatment (Treatment) | Entity Identity description
E-E5 [Treatment Table Mame medicalCode
----- = treatmentld * patientld
..... EI apprg\red F'r':l"-"llerIIj
linicalTrial treatmentDate
----- = cinicalTri

..... = description

..... = medicalCode
..... = patientld

----- = providerld

..... = treatrmentDate

6. The Treatment entity also links to another database through the attribute nedi cal Code

L@ Medical.ecore 52 = 0
Datasource: | Patient Data j Basic Properties F-3
i Property Mame Property Value
-] Medical
= [:' N |c§ Attribute Name medicalCode
=55 Patient Data Type String
-2y patientld ® Mandatory Mo
/B dob Maode Base
E gE:dELN Patient Data Datasource Properties E-S
- patientMame
P . Column Mame
[B region
.= treatment (Treatment) Treatment Data Datasource Properties %
=-=5 Treatment Column Mame treatmentCode
[treatmentld *
[approved
- clinicalTrial

.= description
BT, cicoCoe
[patientld
. providerld
[y treatmentDate

7. Each nedi cal Code needs to link to the Primary Key (PK) Tr eat ment Code in the table Tr eat nent Det ai | s
in the CMSDet ai | database

=lE=] dbo. TreatmentDetails

= 3 Columns
=] treatmentCode (varchar(255), not null)
=] description (warchar(255), null)
Z] clinicalTrial (bit, null)

8. In Corticon Studio on the Vocabulary's Datasource tab, click METADATA: Import. The mapping metadata
from the database is added into the VVocabulary for the Entities (tables), Attributes (columns), and Associations

58 Progress Corticon : Data Integration: Version 6.3

Define multiple database connections

(join expressions). If the imported tables and columns do not align with entities and their attributes, those
values will require manual mapping.

9. One such case is noted here. SmartMatching won't infer the table name through a link based on an attribute
so you need to pull down the Table Name options to choose CMSDet ai | . dbo. Tr eat ment Det ai | s table,
as illustrated:

[{¢ Medical.ecore 52 = 0
Datacource: ‘Treatment Data j Basic Properties #
. i Property Mame Property Value
-] Medical
= U EEF'IC: ; Attribute Mame medicalCode
& i IE”_ . Data Type String
""" =] patientld Mandatory Mo
----- == dob Maode Base
""" = gen.der Patient Data Datasource Properties =
----- = patienthMame
. Column Mame
..... E region
_____ —£ treatment (Treatment) Treatment Data Datasource Properties *
=25 Treatment Column Mame treatmentCode
----- = medicalCode *
_____ B approved ;Iinic_al'tl'_rial
escription
----- = clinicalTrial
----- =y description
----- = patientld

..... = providerld
----- == treatmentDate
..... = treatmentld

If other imported tables and columns do not align with entities and their attributes, those values will require
manual mapping. For more about mapping, see Mapping ADC database metadata on page 157.

Define multiple database connections

Note: Two ADC database connections are defined in the Vocabulary. Just enter their credentials, and then
test each connection.

Progress Corticon : Data Integration: Version 6.3 59

Chapter 8: Getting Started with Multiple Database Connectivity

To connect a Vocabulary to a defined database where you will use SQL queries, define the connection as an
ADC Datasource. In the project's Vocabulary editor, select the Vocabulary command Add Datasource > Add
ADC Datasource, as shown:

Vocabulary

]

g
|

Add Damain
Add Entity
Add Attrnibute

Add Association...

Find References

Refactar...

Add Datasource
Datasource Configuration File
Add Decument Mapping

Populate Vocabulary From Datascurce

Set to Read/Write
Show Vocabulary Details

Localize...

Report...

Export WSDL...
Export X50...

Add EDC Datasource
Add ADC Datasource
Add Query Datasocurce
Add REST Datascurce

An ADC tab is added to the root level of the Vocabulary. The ADC sample renamed the first Datasource to

Patient Data which is now the name on its tab, as illustrated:

Custom Data Types | Cuery | Patient Data

w Import || X Clear » Clear E' Test

METADATA MAPPING | COMMECTIOM | DATASOURCE

'm Delete

Datasource Mame: | Patient Data

Description:

Databasze Server: | Microsoft SOL Server

URL: | jdbciprogress:sglserver//localhost: 1433, databaseMame=PatientRecords

Authentication | Basic

Username: | a

AR

Password:

Catalog Filter: |

5cherna Filter: |

60

Progress Corticon : Data Integration: Version 6.3

Define multiple database connections

where:

* Datasource Name: The connection name that displays on the Vocabulary tab. This is also its name that
will bind this ADC connection to an instance of the service call-out in a Ruleflow. While you can change this
name, it is a good idea to do so before you specify it in Ruleflow Service Call-out's Service Name. When
you add additional ADC Datasource tabs, the default names will increment n in ADC_n.

* Description: An informative description of the use of the Datasource you are adding.

* Database Server: The database product. Click the dropdown menu on the right side of the entry area to
list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each database.
These drivers provide robust, configurable, high-availability functionality to RDBMS brands. The drivers are
pre-configured and do not require performance tuning.

* Database URL: The preconfigured URL for the selected database server. You must edit the default entry
to replace (1) <ser ver > with the machine's DNS-resolvable hostname or IP address and port , and (2)
<dat abase nane> with the database name that was set up (typically case-sensitive).

* Authentication: The authentication technique required for the Datasource. Most drivers default to Basi ¢
where the Username and Password fields are available, and offer Keber os as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

* Catalog Filter and Schema Filter: Patterns that refine the metadata that is imported during Import Database
Metadata

Note: Filters are a good idea for production databases that might have hundreds or even thousands of
schemas. As the Catalog filter value does not support wildcards, distinguishing two metadata import filters
enables the use of wildcards in the Schema filter value: Underscore (_) provides a pattern match for a single
character. Percent sign (%) provides a pattern match for multiple characters (similar to the SQL LIKE clause.)
For example, you could restrict the filter to only schemas that start with DATA by specifying: DATA% The
ability to specify patterns is especially valuable when testing performance on RDBMS brands with applications
that use multiple schemas.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding.

Another database connection

When another ADC tab is added to the root level of the Vocabulary, you define a separate database connection.
In the sample, the second Datasource was renamed to Treatment Data which is now the name on its tab, as
illustrated:

Progress Corticon : Data Integration: Version 6.3 61

Chapter 8: Getting Started with Multiple Database Connectivity

Custom Data Types | Cuery | Patient Data | Treatment Data

METADATA MAPPING | COMMECTION | DATASOURCE
E| Import | | 3 Clear » Clear E-Test m Delete

Datasource Mame: | Treatment Data

Description:

Databasze Server: | Microsoft SOL Server 2014 w

URL: | jdbc:progress:sqlserver://localhost:1433; databaseMame=CMSDetail

Authentication ‘ Basic »

iR

Password:

Catalog Filter: |

Username: | a3 |

Schema Filter: |

Confirm that you have a valid connection before proceeding to define a Query Datasource.

Define and import queries for multiple databases

Queries are essential to how ADC functions. With just a few queries, a lot of the SQL tasks are minimized as
the rules processing handles complex conditions and actions.

Running the sample's adc script created five tables that will be referenced by the query service. ADC_READ
and ADC_W\RI TE access their DEF table to do the steps requested by your Ruleflow Service Call-outs.

E|l:.|

[Database Diagrams

= 1 Tables

[Systermn Tables

[FileTables

1| dbo, CORTICON_ADC_READ

1| dbo. CORTICON_ADC_READ_DEFS
| dbo, CORTICON_ADC_WRITE

= dbo. CORTICOMN_ADC WRITE_DEFS
1| dbo, CORTICOM_BATCH_READ
=] dbo.Patient

=1 dbo.Treatment

HEHBEHHKNERKBKGEHK

Note: The BATCH READ table inserts the queries you will use in Getting Started with Batch on page 93. For
more about the sample's Corticon's queries, see How Corticon is expressed in SQL on page 166.

62 Progress Corticon : Data Integration: Version 6.3

Define and import queries for multiple databases

Define the Query Datasource connection

No matter how many ADC connections you make for the Vocabulary in your project, you need to define one
and only one Query Datasource that will be used by all services and batch processes in the project's Decision
Services.

To connect a Vocabulary to a defined database where you will read the SQL queries, define the connection
as a Query Datasource. In the project's Vocabulary editor, select the Vocabulary command Add Datasource
> Add Query Datasource, as shown:

Vocabulary
¢ Add Domain
| Add Entity
Add Attribute -]

Add Association...

Find References

Refactor...

Add Datasource > Add EDC Datasource
Datasource Configuration File * Add ADC Datasource
Add Decument Mapping] Add Query Datasource
Populate Vocabulary From Datasource Add REST Datasource

Set to Read/Write
Vz Show Vocabulary Details

Localize...

Report...

Export WSDL...
Export X50...

The Query tab is added to the root level of the Vocabulary as a fixed-name tab, as illustrated:

Progress Corticon : Data Integration: Version 6.3 63

Chapter 8: Getting Started with Multiple Database Connectivity

Custom Data Types | Cuery . PatientRecords

QUERIES COMMECTION | DATASOURCE
) Import || X Clear Bl Test Til Delete

Description:

Database Server; | Microsoft SCL Server 2014 e

URL: | jdbciprogressisglserver//localhost:1433; databaseMame=PatientRecords

Authentication | Basic »

drdrd R AR A

Password:

Catalog Filter: |

Username: | =3 |

Schema Filter: |

where:

Description: An informative description of the Query Datasource.

Database Server: The database product. Click the dropdown menu on the right side of the entry area to
list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each database.
These drivers provide robust, configurable, high-availability functionality to RDBMS brands. The drivers are
pre-configured and do not require performance tuning.

Database URL: The preconfigured URL for the selected database server. You must edit the default entry
to replace (1) <ser ver > with the machine's DNS-resolvable hostname or IP address and port , and (2)
<dat abase nane> with the database name that was set up (typically case-sensitive).

Authentication: The authentication technique required for the Datasource. Most drivers default to Basi ¢
where the Username and Password fields are available, and offer Keber os as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

Catalog Filter and Schema Filter: Patterns that refine the metadata that will be imported.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding.

64

Progress Corticon : Data Integration: Version 6.3

Import multiple Datasource metadata into a Vocabulary

Import the queries
To access the queries for use in Service Callouts in Ruleflows, click the QUERIES Import button:
Custom Data Types | Query ~_Patient Data
QUERIES COMMECTION
chy Import | 3 Clear B Test [l Delete Datasource

The current query names in the Query Datasource are accessed and brought into the local persistent cache.
Whenever query names are revised, you need to re-import the queries. If the query defs referenced by a query
name change, the latest defs will be accessed by the query name.

Import multiple Datasource metadata into a
Vocabulary

When the database schema exists, its metadata can be imported into Corticon Studio.

You can control the tables that are accessed to transfer metadata to the Vocabulary. When only a small subset
of tables will supply the metadata that is needed, the time and space overhead of the process is reduced by
delimiting the number of tables.

To import the metadata from the databases into the Vocabulary:

1. Open the project's Vocabulary into its editor.

2. Select the Vocabulary root

3. Select, in turn, each database connection tab:
a. Click Test Connection to confirm that there is a good connection..
b. Click METADATA Import

c. Inthe dialog, accept Import all tables or click Choose tables for database metadata import, and then
click Next. The panel lists all the tables in the connected database.

d. If you do not want all, click Deselect All, and then choose specific tables. For the sample's Patient Data
Datasource, just two tables are selected. The query tables listed do not have metadata so they can be
deselected.

Progress Corticon : Data Integration: Version 6.3 65

Chapter 8: Getting Started with Multiple Database Connectivity

& Import Database Metadata 0 ﬂ

Import Database Metadata

What do you want to import?

Table Mame ﬂ
PatientRecords.dbo. CORTICON_ADC_READ —
PatientRecords.dbo. CORTICON_ADC_READ_DEFS

PatientRecords.dbo. CORTICON_ADC _WRITE

PatientRecords.dbo. CORTICON_ADC_WRITE_DEFS

PatientRecords.dbo, CORTICON_BATCH_READ

PatientRecords.dbo.Patient

PatientRecords.dbo. Treatment

PatientRecords.sys.all_columns j

&

Select All Deselect All

< Back ‘ Finish | Cancel

e. Click Finish to perform the task.

4. As database metadata is imported into a Vocabulary, the Vocabulary Editor’s automatic mapping feature
attempts to find the smart match for each piece of metadata. An entity will be auto-mapped to a table if the
two names are spelled the same way, regardless of case.

Importing another Datasource's metadata

When the Vocabulary is supporting multiple database connections, each source is mapped separately to its
respective tables. For the sample's Treatment Data Datasource, just one table is selected.

{ Import Database Metadata O ﬂ

Import Database Metadata
What do you want to import?

Table Mame j

CMSDetail INFORMATION_SCHEMANIEWS =l

CMSDetail INFORMATION_SCHEMANIEW _COLUMN_USAGE

CMSDetail INFORMATION_SCHEMAVIEW TABLE_USAGE
CMSDetail. dbo. TreatmentDetails

CM5Detail.sys.all_columns

CM5Detail.sys.all_objects

CMSDetail.sys.all_parameters

CMSDetail.sys.all_sgl_modules

CMSDetail sys.all_views j

Select All Deselect All

< Back | Finish | Cancel

66 Progress Corticon : Data Integration: Version 6.3

Import multiple Datasource metadata into a Vocabulary

A closer look at MDB metadata

When the two Datasources defined in the Vocabulary text bring in their metadata, the Tr eat nent Entity is
shown to have bindings to both Datasources through the Attribute nedi cal Code.

Figure 6: Multiple Datasources bound to the Treatment Entity

Datasource: | Patient Data

=] Medical

£5 Patient

5 = e

[treatmentld *
-[B approved
= clinicalTrial
= description
B medicalCode
.= patientld
-[m providerld
-..jme treatmentDate

j Basic Properties

Property Mame Property Value
Entity Name Treatment
Inherits From

Patient Data Datasource Properties

Entity [dentity treatmentld

Table Name

Treatment Data Datasource Properties

Entity Identity medicalCode

Tahle Name CMSDetail.dbo. TreatmentDetails

bl

bed

r

The linkage enables each execution to take the medi cal Code value in the request to access the corresponding
t r eat ment Code and the data in its row in the other Datasource.

Figure 7: Multiple Datasources bound to the medicalCode Attribute

Datasource: | Treatment Data

=1 Medical

=-E5 Patient

=-E5 Treatment

M= csicoCode”

.[==| approved
- clinicalTrial
= description
.= patientld
.= providerld
... treatmentDate
.. treatrmentld

j Basic Properties

Property Name Property Value
Attribute Mame medicalCode
Data Type String
Mandatory Ma

Mode Base

Patient Data Datascurce Properties
Column Name
Treatment Data Datasource Properties

Column MName treatmentCode

b3

b+

bl

You can consolidate the data from tables and columns residing in different schemas into one intelligent
vocabulary entity that can apply rules across the consolidated data. The rules modeler does not need to be
concerned about how the data is sourced -- rules can be written to one, simplified semantical representation

of the underlying database model.

Progress Corticon : Data Integration: Version 6.3

67

Chapter 8: Getting Started with Multi

ple Database Connectivity

The descri pti on value is in grey indicating that SmartMatch found an unambiguous match of precisely the
same name in the CVSDet ai | s Datasource.

Figure 8: Lookup of description value from the related Datasource

Datasource: | Treatment Data

=21 Medical

£5 Patient

=-E5 Treatment

== medicalCode *
== approved
- clinicalTrial
B=] d=scription
== patientld
== providerld
.= treatmentDate
= treatmentld

j Basic Properties

b

Property Name Property Value
Attribute Name descripticn
Data Type String
Mandatory MNo

Mode Base

Patient Data Datasource Properties

Column Mame

Treatment Data Datasource Properties

Column Mame

bl

bl

When tests are run, both Datasources are connected to seamlessly provide the output of their combined data.

Figure 9: Ruletest that gets output from multiple Datasources

g *Procedureh.. 510 = B8
|5/ MolInputData |= OnePatient | |= Multiple Patients |
/Multiple Database Connectivity/ProcedureApproval.erf Differences: 0 | .| | |
Input Output Expected
g Patient [1] g~ Patient [1] -
L. patientld [1] | i == dob [09/23/72 12:00:00 AM]

..... = gender [F]

----- B patientld [1]

----- =] patientMame [Teri Rivera]

----- == region [NE]

El-4— treatment (Treatment) [1]

«

..... =] approved [false]

----- == clinicalTrial [true]

----- j=| description [Chiropractic Manipulation of Rib
----- = medicalCode [YWBSXDZ]

..... [=| patientld [1]

..... = providerld [1234]

----- == treatmentDate [07/15/17]

----- =] treatmentld [1]

<— treatment (Treatment) [8]

..... [=| approved [true]

----- =] cIinicaITriai [false] Jﬂ
3

[] Rule Statements ¢ Comments [Rule Messages 53 = 8
Sewverity | Message | Entity |
EIm"n Treatment code IWBEXDZ approval set to false Treatment[1]

Infa Treatment code 9WBSXDY is clinical trial, approval set to false Treatment][1]

Info Treatment code BL30Y0Z approval set to true Treatment[2]

Info Treatment code 9WBSXKZ approval set to false Treatment]3]

Info Treatment code 9WBEXKZ is clinical trial, approval set to false Treatment[3]

Info Treatment code F09Z177 approval set to false Treatrment[4]

Info Treatment co

2l

de 0313090 approval set to false

Treatment[5] -
_ o | R

68

Progress Corticon : Data Integration: Version 6.3

Use multiple database connections as Ruleflow service callouts

Use multiple database connections as Ruleflow
service callouts

Note: The Ruleflow objects and their runtime properties are already defined in the sample.

To use multiple ADC connections in service callouts:

1. In a Ruleflow where you want to use multiple ADC connections, create Service Call-out objects on the
Ruleflow canvas. In this example, the Ruleflow is defined with the project's Rulesheet plus a Service Call-out
to read and another one to write back to the database table after rule processing, as shown:

g Medical.ecore Eg DetermineApproval.ers Eg ClinicalTrial.ers ‘& ProcedureApproval.erf &2 | g ProcedureApproval.ert

57 Get Patient Data 57 Get CMS Details E@ DetermineApproval Eg Deny Clinical Trials 57 Save Approvals

4 o

This sample points out that you can have two ADC connections that have read and write actions.
2. Click on the Get Patient Data object, and then, on the object's Properties tab.

3. On its Service Call-out tab, click the Service Name pulldown to select the service you want for this use,
as shown here where the sample uses Corti conADC. r ead for this service, as illustrated:

] Properties &3

Service Call-out Mame: | Get Patient Data

Runtime Properties

Service Mame: |CDrticu:unADC.rr=ad

CorticonADC.read
Corticon&DCowrite

4. On its Runtime Properties tab. Use the Property pulldown to:

(] Properties 1 | [* Problems + v = q
~
Service Call-out
Runtime Properties Property Value
Datasource Ma... Patient Data
Query Name AllPatients "

‘AllPatients
IndicatedPatients

TreatmentDetails

Progress Corticon : Data Integration: Version 6.3 69

Chapter 8: Getting Started with Multiple Database Connectivity

a. Select Datasource Name, and then, for its value, use the dropdown menu to select the Datasource that
corresponds to the name of the datasource to which you want to apply a query. For the ADC sample,
choose Patient Data.

b. Select Query Name, and then, for its value, use the dropdown menu to select the appropriate query.
For the ADC sample, choose AllPatients. The listed values are initially imported from the Query
Datasource, and are updated by the QUERIES: Import function on the Query tab.

Defining a Service Call-out to another database

Another Service Call-out object on the canvas can access another database:
1. Click on the Get CMS Details object, and then, on the object's Properties tab.

2. Onits Service Call-out tab, click the Service Name pulldown to select the service you want for this use,
as shown here where the sample again uses Corti conADC. r ead .

3. On its Runtime Properties tab. Use the Property pulldown:
O] Properties 52

Service Call-out

: . P Val
Runtime Properties - ropey, e
Datasource Mame Treatment Data
Query Mame TreatrmentDetails

a. Select Datasource Name, and then, for its value, use the dropdown menu to select the Datasource that
corresponds to the name of the appropriate ADC definition. For the ADC sample, enter Treatment Data.

b. Select Query Name, and then, for its value, use the dropdown menu to select the appropriate query.
For the ADC sample, choose TreatmentDetails. The listed values are initially imported and are updated
by the QUERIES: Import function on the Query tab.

Test the rules when reading from multiple databases

Open the sample's Ruletest, Pr ocedur eAppr oval . ert . It opens on the Testsheet No Input Data. Click Run
to compile and run the rules. The output shows patient and treatment data.

70 Progress Corticon : Data Integration: Version 6.3

Test the rules when reading from multiple databases

Mo Input Data One Patient | Multiple Patients |
I'Multiple Database Connectivity/ProcedureApproval.erf

Input Output

=] Patient [1] -
..... = dob [09/23/72 12:00:00 AM]

----- =] gender [F]

----- =) patientld [1]

----- [=| patientName [Teri Rivera]

----- =] region [NE]

El-<— treatment (Treatment) [1]

----- =) approved [false]

1= clinicalTrial [true]

.= description [Chiropractic Manipulation of |
----- ==| medicalCode [9WB8XD7]

----- =] patientld [1]

----- =] providerld [1234]

----- == treatmentDate [07/15/17]

----- == treatmentld [1]

El-<— treatment (Treatment) [8]

..... =] approved [true]

----- = clinicalTrial [false]

----- =] description [Magnetic Resonance Imaging
----- = medicalCode [BL30ZZZ] b
4| | ’

The highlighted treatment attributes differentiate this sample from the ADC sample. Here, information read
from the first database provided the lookup value for the read in the second database. And the added Rulesheet
simply states that treatments for clinical trials are not approved.

Run test with a different query

Change the Service Call-out's Query Name to | ndi cat edPat i ent s. Then, return to the Ruletest. When you
run the test for the No Input Data testsheet, you get no results. When you run the Testsheet for the One Patient
and Multiple Patients Testsheets, you get exactly that one patient and the specified three patients.

The first part of this SQL statement is:
SELECT * FROM Patient WHERE patientld IN ({Patient.patientld})

The curly braces indicate tokens in the query that will be replaced by the data passed to Corticon -- in this
case, selecting the patients to process.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

Progress Corticon : Data Integration: Version 6.3

71

Chapter 8: Getting Started with Multiple Database Connectivity

Test the rules when writing to multiple databases

In the database, the approval status is being evaluated but it is not being entered into the database, as shown:

treatmentld | approved
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

W ota =~ Oh ol = Ra

[ury
=

medicalCode
OWBEXDZ
BL30YDZ
OWBEXKL
FO97177
03130090
FO9Z0KZ
BDA1777
BL30Z77Z
B512777
FO9Z0KZ

providerld
1234
5678
5678
1234
4531
1234
1234
4531
8765
4531

treatmentDate | patientld

2017-07-15
2017-08-01
2017-03-12
2017-07-01
2017-08-05
2017-09-28
2017-08-03
2017-06-12
2017-10-30
2017-10-04

B T = R e W L =2 T L T R)

On the Ruleflow canvas, click on the Save Appr oval s Service Call-out on the canvas. Its Query Name is
Updat eTr eat nent whose query SQL is:

UPDATE Treat ment SET approved={Treat ment. approved} WHERE
treatnentl d={Treatnment.treat nentl d}

When you run the Testsheet, the approval values are written to the database for patient treatments, as shown:

treatmentld | approved

L=l

False
MULL
False
MULL
MULL
False
True

True

MULL
MULL

W 0 =l O n = o

=
=

Where to now?

medicalCode
OWBEXDZ
BL30YOZ
OWBBXKZ
FO9Z17Z
0313090
FO9ZOKZ
BD41777
BL30ZZZ
B512777
FO9ZOKZ

providerld
1234
5678
5678
1234
4321
1234
1234
4321
8765
4321

treatmentDate
2017-07-15
2017-08-01
2017-03-12
2017-07-01
2017-09-05
2017-09-28
2017-08-03
2017-06-12
2017-10-30
2017-10-04

patientld

e N = = I o T R SN B =L T S Sl ol

The flow of this document leads to Deploying projects that use data integration on page 89, an important
preparation for Getting Started with Batch on page 93. Beyond that, the material focuses less on the samples
by using various configurations to present advanced topics.

72

Progress Corticon : Data Integration: Version 6.3

Getting Started with REST

Corticon's REST connectivity allows you to access data via REST services such that rule payloads can be
enriched with REST data similar to database data. Corticon uses the Progress Data Direct Autonomous REST
Connector to provide support for REST callouts. This allows you to access a REST service similar to the way
you access a database. When integrated with Corticon, the Datasource can use mechanisms for smart data
integration and Vocabulary mapping. Rules use these Service Callouts to retrieve data as steps in a Ruleflow,
even allowing you to substitute payload attributes into REST URLs before execution.

For details, see the following topics:

Overview of the Autonomous REST Connector
Define a Datasource connection for REST

Create and map the REST schema

Use REST data sources in a Ruleflow

Test rules when importing from the REST Datasource

Revise Connection and Service Call-out to retrieve data

Overview of the Autonomous REST Connector

The Progress DataDirect Autonomous REST Connector for JDBC is a driver that supports SQL read-only
access to JSON-based REST API data sources. To support SQL access to REST services, the driver creates
a relational map of the returned JSON data and translates SQL statements to REST API requests. The driver
can either infer a map at the beginning of a session or can leverage a configuration REST file that allows you
to modify and persist a map.

Progress Corticon : Data Integration: Version 6.3

73

Chapter 9: Getting Started with REST

The use of the Autonomous REST Connector allows Corticon to present REST services as if they are relational
databases. You map a Corticon vocabulary to a REST service as if you are mapping to a database. The only
difference is in the configuration of the data source. Internally, the Autonomous REST Connector stores data
in an in-memory database which Corticon accesses with SQL queries - the same as it does for database data
sources.

This sample introduces the Autonomous REST Connector to retrieve reimbursement rates for medical procedure
codes from a REST service. A procedure may have more than one rate where each rate has its range of
effective dates.

To use REST services:

1. Add a REST data source to your vocabulary - Specify a REST URL, and then provide authentication
credentials, and specify any parameters.

2. Map your vocabulary to a REST Datasource - In the Corticon vocabulary editor, map the entities, attributes,
and associations that transform data retrieved from the REST Datasource.

3. Add the REST Service callout to a Ruleflow - In the Corticon Ruleflow editor, when you add a Service
Call-out to a Ruleflow, you configure it to use the REST Datasource and identify the queries to be performed
by selecting whether to do specific or bulk reads.

When all steps are completed you are ready to deploy your Ruleflow or test it in the Corticon tester. You can
use multiple REST Services in a Ruleflow.

The following topics walk through the REST Connectivity sample. You are encouraged to follow along in Corticon
Studio. After this sample has completed, advance to the Mixed Connectivity sample where relational database
and REST Datasources work together seamlessly.

Define a Datasource connection for REST

The REST Connectivity sample already has a REST data source defined in its vocabulary. To use your own
REST data source you would first add it to your vocabulary. To add a REST data source, select the Vocabulary
command Add Datasource > Add REST Datasource, as shown:

74 Progress Corticon : Data Integration: Version 6.3

Define a Datasource connection for REST

Vocabulary
5] Add Domain
| Add Entity
Add Attribute »

Add Association...

Find References

Refactor...

Add Datasource H Add EDC Datasource
Datasource Configuration File -] Add ADC Datasource
Add Document Mapping * Add Query Datasource
Populate Vocabulary From Datascurce Add REST Datascurce

Set to Read/Write
Vo Show Vocabulary Details

Localize...

[E] Report..

Export WSDL...
Export X50...

A REST Service tab is added to the root level of the Vocabulary. The REST sample renamed this Datasource
to Rate Data which is now the name of its tab, as illustrated:

[:a Medical.ecore 3 = 5
Datasource: Customn Data Types | Rate Data
v UEM\EdiCEI MAPPING SCHEMA COMMECTION | DATASQOURCE
Rate
5 ReimbursementRates X Clear 5 Discover @ Import [il Export || X Clear m Delete

Datasource Wame: | Rate Data |

Description:
REST URL: | https://bj36i9kibb.execute-api.us-east-2. amazonaws.com/prod/ReimbursernentRate
Authentication | None w
Query Parameter Default Value Type
procedureCode B31204Z URL

where:

* Datasource Name: The connection name that displays on the Vocabulary tab. This is also its name that
will bind this REST Datasource connection to an instance of the service call-out in a Ruleflow. While you
can change this name, it is a good idea to do so before you specify it in Ruleflow Service Call-out's Service
Name.

* Description: Provide an informative description of the use of the Datasource you are adding.

Progress Corticon : Data Integration: Version 6.3 75

Chapter 9: Getting Started with REST

* REST URL: The URL for the REST service. The protocols ht t p and ht t ps are supported. If the URL
includes a query, the parameters and their values are moved to the Query Parameters table.

* Authentication: There are five options for security on a REST Service connection:

Authentication | v

Maone

Basic

HTTP Header Token
LURL Parameter Token

The default setting is None. When a REST service requires no authentication, it is appropriate for accessing
an unsecured REST service. For example, government census data in the public domain. For information
on the other options for security and authorization on REST Services, see Authentication on REST Service
connections on page 172.

* Query Parameters and their respective Default Values. The query parameters on a REST URL when it
was pasted in were transformed into Query Parameter/Default Value pairs. You can edit, add, and delete
from the table as needed for your use case.

When configuring usage of a REST data source in a Ruleflow you can identify entity attributes to substitute
for query parameter values at runtime. This allows you to pass dynamic data values from the payload being
processed, such as a "customer id", to your REST service. If you don't specify an entity attribute for a query
parameter in the Ruleflow, the static value specified on the Datasource will be used at runtime. Any Post
parameters are sent as name/value pairs in JSON format in the request body.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding to discover
or import the schema, and then to refine the mapping.

Create and map the REST schema

To use a REST data source, Corticon needs to know how to map the JSON from the REST service to relational
tables. The easiest way to do this is to discover the schema. The Autonomous REST Connector used by
Corticon has the ability to query a REST service and infer a relational schema from the JSON returned.

1. In Corticon Studio on the Vocabulary's Datasource tab, click SCHEMA: Discover. Corticon will query the
REST service using the REST URL and query parameters defined on the data source. The JSON returned
will be used to generate a schema for mapping JSON from the REST service to a relational representation.
The metadata for this schema is added to the Vocabulary for the Entities (tables), Attributes (columns), and
Associations (join expressions). If the imported tables and columns do not align with entities and their
attributes, those values will require manual mapping.

The schema for how to map the JSON from a REST service to a relational model is stored in the vocabulary.
You can export this schema to a text file using Export then import it back to your vocabulary using Import
after any modifications.

Note: When using discovery to generate the schema, the JSON returned needs to be representative of
the data which would be returned at runtime. Any data elements not represented, will not be in the generated
schema and therefore not available for mapping to your vocabulary.

2. The sample has two entities Rei nbur senent Rat es and Rat e, as illustrated:

76 Progress Corticon : Data Integration: Version 6.3

Create and map the REST schema

g Medical.ecore &3

Datasource: | Rate Data

w [Z] Medical

w 5 Rate
= position *
o procedureCode *
== endDate
== rate
== ctartDate

w 5 ReimbursementRates
=5 procedureCode ™
=& rate (Rate)

Each of these entities has already been mapped to the REST Datasource. Clicking on either entity will show
the Table Name of the table the entity to which it is mapped.

3. Specify the Primary Key (PK) in the table as the Entity Identity by clicking the Entity Identity Property Value
to open its menu, and then choose from the listed attributes. Here there is only one attribute,

pr ocedur eCode:
g Medical.ecore 53

Datasource: |m o

w [Z] Medical

w 5 Rate
=] position *
= procedureCode ™
=5 endDate
== rate
== startDate

w [ReimbursementRates
=5 procedureCode *

- rate (Rate)

= 8

Basic Properties =
Property Name Property Value
Entity Mame ReimbursementRates
Inherits From

Rate Data Datasource Properties S
Entity |dentity [procedureCode hd
Table Mame AUTOREST.REST_DATA.

4. The sample's Rate entity is a JSON collection. The added attributes are added to uniquely identity the data's
position inside the collection. Because there is no enforced uniqueness in the REST Datasource, two

transient attributes are added to handle possible duplicates:

Progress Corticon : Data Integration: Version 6.3

77

Chapter 9: Getting Started with REST

g *Medical.ecore 53 = O
Datasource: | Rate Data .| Basic Properties 2
v [Z] Medical Property Marme Property Value
= Rat Entity Mame Rate
nherits From
v Ej " bions Inherits F
osition

= ErncedureCnde * Rate Data Datasource Properties ry

=5 endDate Entity |dentity | {position, procedureCode}

W rate Table Mame AUTOREST.RATES

== startDate

w =5 ReimbursementRates
=5 procedureCode *
- rate (Rate)

5. You specify its Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choosing both posi t i on and pr ocedur eCode from the listed
attributes. The posi ti on attribute was created by the Autonomous REST Connector as a synthetic value
that will ensure uniqueness of the primary key.

6. REST Data could have multiple rates that are an array of objects that Corticon will manage as a one-to-many
association with the Rei mbur sermrent Rat es pr ocedur eCode

g Medical.ecore 53 = O
Datasource: | Rate Data | | Basic Properties £
v [Medical Prnpert}r_Name Property Value
= nat Association Role Mame rate
v E5 Rate I Source Entity Mame ReimbursementRates
& position Target Entity Name Rate
B procedureCode Cardinalities 1->*
=5 endDate Mavigability ReimbursementRates-=rate
=5 rate Mandatory Mo
=5 startDate Rate Data Datasource Properties %
v 5 ReimbursementRates [loin Expression | AUTOREST.REST_DATA.PROCEDURECODE=A...

=5 procedureCode *
-4 rate (Rate)

which is easier to see in the Join Expression dialog:
& Join Expression >

Source Table Source Column Target Table Target Column ~
AUTOREST.REST DATA [PROCEDURECODE +] AUTOREST.RATES REST_DATA_PROCEDURECODE

For more about REST data mapping, see Mapping REST Service metadata on page 179.

78 Progress Corticon : Data Integration: Version 6.3

Use REST data sources in a Ruleflow

Use REST data sources in a Ruleflow

To use a REST data source, you need to add a call-out to it in your Ruleflow. The REST Connectivity sample
already has it added. If using your own REST services, you would add call-outs where needed in your Ruleflow
to access them. If you have multiple REST data sources, you can access those you need from your Ruleflow.

A Ruleflow could use several REST connectivity service callouts to enrich data before and after other processing
steps. The sample uses one REST connectivity callout.

To use REST service callouts:
1. In a Ruleflow where you want to use a REST Service connection, add a Service Call-out to the Ruleflow

canvas. In this example, the Ruleflow has a single call-out Get Rates to retrieve rate data from the REST
service and a Rulesheet which produces rule messages from the rate data, as shown:

‘& “ReimbursementRate.erf 3 = 0
o2 Palette [
[y & &
= Connection
E Rulesheet
re Get Rates Q RateMessage ‘& Ruleflow
5 Service Call-out
oz Branch
B Subflow
() Iterative
] Properties 53 " = 8
Ruleflow Activity Rule Vocabulary: | /REST Connectivity/Medical.ecore
Rulers & Grid

Major Version: | 1 |

Minor Version: |] |

Yerzion Label: | |

Effective Date: rr v | Time: II: II: E:
Expiration Date: | / / v | Time II: IE: E:

Total Mumber of Rules: | [

< >

2. Click on the Get Rates object, and then, on the object's Properties tab.

3. On its Service Call-out tab, click the Service Name pulldown to select the read-only service you want for
this use, Corti conREST. i nport Dat a . The import will create new entity instances for the data returned.
The alternative, retrieve, would update existing entity instances. The alternative,

Corti conREST. retri eveDat a, will be used later in this sample run.

4. Click the Runtime Properties tab:

Progress Corticon : Data Integration: Version 6.3 79

Chapter 9: Getting Started with REST

g Medical.ecore ‘& “ReimbursementRate.erf &3 = O

.2 Palette [
[:S & E
= Connection

Q Rulesheet
n 5 Get Rates Q RateMessage ‘& Ruleflow

S Service Call-out
=5 Branch
=2 Subflow

O [terative

[T Properties E3

Service Call-out Mame: Get Rates

Runtime Properties Service Name: | CorticonREST.importData

Progress Corticon's REST Service Callout to import data from a
REST service. Import will create new entity instances from the
Description: returned JSON data using the mappings defined in the vocabulary.

O] Properties 532

Service Call-out

Runtime Properties Property Value
Datascurce Mame Rate Data
Primary Entity ReimbursementRates

a. In the Property column, click on Datasource Name. Choose the Datasource that corresponds to the

name of the appropriate REST Service definition. For the REST Service sample, choose Rate Data.

b. Select Primary Entity, and then, for its value, use the dropdown menu to select the appropriate
Vocabulary Entity. For the REST Service sample, choose ReimbursementRates.

Test rules when importing from the REST Datasource

Open the sample's Ruletest Rei mbur senment Rat e. ert . This Ruletest has 3 Testsheets. The REST call-out
in the Ruleflow is defined to do an import from the REST service. An import will create new entity instances
for the data returned from the REST service. Select the No Input Data and run click Run Test to run it.

80 Progress Corticon : Data Integration: Version 6.3

Revise Connection and Service Call-out to retrieve data

¢ *ReimbursementRate.ert &3 = 8
Mo Input Data One Procedure Multiple Procedures
/REST Connectivity/ReimbursementRate.erf Differences: 0
Input Output Expected
w =] ReimbursementRates [1] A

=| procedureCode [B5120Z7]

w ¢— rate (Rate) [1]
=| endDate [06/01/17]
=] position [0]
=| procedureCode [B5120Z7]
= rate [0.850000]
= startDate [01/01/17]

w o— rate (Rate) [2]
=| endDate [12/31/17]
=] position [1]
=| procedureCode [B5120Z7]

W

|5 Rule Statements Comments [Rule Messages % |
Severity Message Entity &3
i Info B5120Z7Z rate is 0.850000 from 01/01/17 to 06/01/17 ReimbursementRates[1]

Info B5120Z7 rate is 0.830000 from 06/02/17 to 12/31/17 ReimbursementRates[1]

Info B512Z7Z7 rate is 0.700000 from 09/16/17 to 12/31/17 ReimbursementRates[2]

Info B312Z77 rate is 0.680000 from 01/01/17 to 09/13/17 ReimbursementRates[2]

Info GWBEXDZ rate is 0.680000 from 07/01/17 to 12/31/17 ReimbursementRates[3]

Info SWBBXDZ rate is 0.710000 from 01,/01/17 to 01/31717 ReimbursementRates[3]

Info GWBEXDZ rate is 0.700000 from 02/01/17 to 06/30/17 ReimbursementRates[3]

Info SWBBXEZ rate iz 0.720000 from 01/01/17 to 12/31/17 ReimbursementRates[4]

Info BL30YOZ rate is 0.940000 from 01/01/17 to 12/31/17 ReimbursementRates[5]

Info BL30ZZY rate is 0.330000 from 01/01/17 to 12/31/17 ReimbursementRates[6] v

The Output for the Testsheet will contain a list reimbursement rates returned from the REST service. Where
an import operation was performed, new entities were created for each reimbursement rate. To compare this
to the JSON returned from the REST service, copy the REST URL from the Rate data source and paste it into
your browser. The One Procedure and Multiple Procedures Testsheets have pr ocedur eCodes defined in
the Input of the Testsheet. These Testsheets will be used in later sections to show how to perform a retrieve
operation to get rates for specific procedure codes. If you run either of these Testsheets while the Get Rates
call-out in the Ruleflow is configured to perform an import, you'll see the Output contains both the input data
and new entities for all the rate data from the REST service.

Note: It is important to remember that an import will create new entity instances.

Revise Connection and Service Call-out to retrieve
data

To update existing entities in the payload being processed by your rules, you need to change the REST call-out
to perform a retrieve operation. When performing a retrieve operation your REST data source must have one
or more query parameters to identify the instance of data required. For example, if your rules were processing
mortgage applicants you might pass the social security number of an applicant to a REST service to get credit
information about the applicant being processed. The REST service used by the REST Connectivity sample
accepts the query parameter pr ocedur eCode to get rate information about a specific procedure. In this
section you will convert this sample to perform a retrieve operation.

Progress Corticon : Data Integration: Version 6.3 81

Chapter 9: Getting Started with REST

1. In the Vocabulary editor's root, click the Rate Data tab.
2. Click SCHEMA Clear.

Note: When changing the URL or adding query parameters you must first clear the existing schema.

Enter the query parameter pr ocedur eCode, and then enter the value B5120ZZ, a known pr ocedur eCode
value. This returns JSON representative of the JSON which could be returned at runtime.

4. Click SCHEMA Discover, as shown:

Custom Data Types | Rate Data

MAPPING SCHEMA CONMECTION | DATASOURCE

X Clear ¥ Discover w Import Export Clear [%' Test @] Delete

Datasource Mame: | Rate Data

Description:

REST URL: | https:_e‘_e'bjBEaiEi'ki66.execute-api.us-east-l.amazonaws.cnmf’prnd;‘ReimbursementRate|

Authentication | Mone

> |

Cuery Parameter Default Value Type
procedureCode B512077 URL

URL

5. Open the Rulefllow editor, and then click the Get Rates object to access its Properties tab.
6. Click its Service Call-out tab, and then choose the Service Name Corti conREST. retri eveDat a:

[Properties 3 v =g

~

Runtime Properties

Service Call-out MName: | (et Rates | |:|

Service Name: |iCorticonREST.retrieveData

Do

Progress Corticon's REST Service Callout to retrieve data from a REST
service, Retrieve will update existing entity instances using the
Description: returned JSON data and mappings defined in the vocabulary. The
property for Primary Entity must identify the entity type to be updated
and the query parameters must uniquely identify the entity instance.

7. Click its Runtime Properties tab, and then add the Property pr ocedur eCode and the Value
Rei nbur senent Rat e. pr ocedur eCode:

82 Progress Corticon : Data Integration: Version 6.3

Revise Connection and Service Call-out to retrieve data

] Properties 57 4 ¥ = 40
~
Service Call-out

Runtime Properties Property Value

Datascurce Ma... Rate Data
Primary Entity ~ ReimbursementRates

procedureCode ReimbursementRates.procedureCede

v
8. Open the Ruletest and run all tests.
The Multiple Procedures tab shows the specified procedureCodes and the related rates:
[g Medical.ecore ‘€ ReimbursementRate.erf ¢ ReimbursementRate.ert 53 |
Mo Input Data One Procedure | =/ Multiple Procedures
/REST Connectivity/ReimbursementRate.erf Differences: 0
Input Output Expected
+ =] ReimbursementRates [1] + = ReimbursementRates [1]
= procedureCode [B5120Z7] = procedureCode [B5120Z7]
+ = ReimbursementRates [2] w o— rate (Rate) [2]
= procedureCode [$WBEXDZ] = endDate [06/01/17]
+ = ReimbursementRates [3] = position [0]
= procedureCode [FOSZ0KZ] =] procedureCode [B5120Z7]
= rate [0.850000]
= startDate [01/01/17]
<— rate (Rate) [3]
+ = ReimbursementRates [2]
= procedureCode [$WBEXDZ]
<— rate (Rate) [4]
<— rate (Rate) [3]
<— rate (Rate) [6]
+ = ReimbursementRates [3]
= procedureCode [FOSZ0KZ]
<— rate (Rate) [1]
£ Rule Messages &3 = B8
Severity Message Entity
Info B5120Z< rate is 0.850000 from 01/01/17 to 06/01,/17 ReimbursementRates[1]
Info B5120Z7 rate is 0.830000 from 06/02/17 to 12/31/17 ReimbursementRates[1]
Info SWBBXDZ rate is 0.700000 from 02/01/17 to 06/30/17 ReimbursementRates[2]
Info GWBEXDZ rate is 0.680000 from 07/01/17 to 12/31/17 ReimbursementRates[2]
Info SWBBXDZ rate is 0.710000 from 01,/01/17 to 01/31717 ReimbursementRates[2]
Info FO9ZOKZ rate is 0.760000 from 01/01/17 to 12/31/17 ReimbursementRates[3]

The pr ocedur eCode specified in Input where substituted as query parameter values and used to make calls
to the REST service. For comparison, select the No Input Data Testsheet and click Run Test. No data shows
in Output. This is because the Get Rat e Dat a call-out is configured to do a retrieve, not an import, operation.
Where no procedure codes where provided, there were no existing entities to update.

Progress Corticon : Data Integration: Version 6.3 83

Chapter 9: Getting Started with REST

84 Progress Corticon : Data Integration: Version 6.3

10

Mixing REST and database access

Often rules need to access data in both databases and REST services. Corticon lets you access both types
of Datasources within a single Decision Service. This section expands on Getting Started with Multiple Database
Connectivity on page 55 sample by adding the retrieval of reimbursement rates as described in the Getting
Started with REST on page 73 sample.

The Multiple Database Connectivity sample Ruleflow contains two steps to retrieve data from a database,
(1) Get Patient Data, and (2) Get CMS Details. Step (3) Save Approvals then saves approval decisions to
a database.

"% GetPatient Data S Get CMS Details Q DetermineApproval Q Deny Clinical Trials ks Save Approvals

@ (2] @

The REST Connectivity sample Ruleflow contains step (4) Get Rates to retrieve reimbursement rates for a
procedure code.

- (et Rates) RateMessage

Progress Corticon : Data Integration: Version 6.3

Chapter 10: Mixing REST and database access

The Mixed Connectivity sample combines these to create a Ruleflow that accesses both databases and a
REST service.

B8 GetPatient Data B Get CMS Details Q Determinefpproval Q Deny Clinical Trials

D 2

7> et Rates

@

The steps in Mixed Connectivity are largely the same as in the other sample Ruleflows with the one note being
the Get Rates REST call-out has been configured to perform a retrieve operation — such that it updates existing
entities.

s Save Approvals Q RateMessages

Data flow in the sample

In the Ruleflow the interaction of call-outs is as follows:

* Get Patient Data retrieves information about a patient and the treatments they received from a database.
Each treatment has a corresponding medicalCode identifying the treatment.

* GET CMS Details retrieves detailed information about a type of treatment from a second database by
looking up the treatment using its medicalCode.

* Get Rates retrieves reimbursement rates for a type of treatment by querying a REST service, passing the
medicalCode as a query parameter to get rates for a specific type of treatment. Note, the REST service
takes the query parameter named procedureCode, the value of nedi cal Code is passed as the value for
pr ocedur eCode.

* Save Approvals saves the decisions on which procedures are approved for each patient back to the patient
database.

Explore the sample
1. Add the Mixed Connectivity sample to your workspace.

2. Open the vocabulary.
g Medical.ecore 53

Datasource: Custom Data Types | Query | Patient Data | Rate Data - Treatment Data

MAPPING SCHEMA COMMECTION | DATASOURCE
E Patient
= Rate K Clear 5 Discover || () Import || ¢l Export || X Clear B Test [Delete
E Treatment

Note: Patient Data, Treatment Data and Rate Data Datasources are the same as those used in the other
samples.

3. Open the Ruleflow and examine each callout to see the call-out performed and the Datasource used.
Corticon allows a Datasource to be used multiple times in a Ruleflow. Each of the Datasources is used one
or more times.

86

Progress Corticon : Data Integration: Version 6.3

4. Click on Get Rates on the Ruleflow canvas. This is retrieve operation that will require Runtime Properties
that include, in this example, pr ocedur eCode. While you could type in the name, a pulldown lists the
attributes in the primary entity:

[Properties 23 M ¥ = 0

Service Call-out

Runtime Properties Property Walue

Datasource Mame Rate Data
Prirnary Entity Treatment

procedureCode v
Treatment.approved

Treatment.clinicalTrial

Treatment.description
Treatment.medicalCode

Treatment. patient!d
Treatment.procedureCodeParameter
Treatment.providerld
Treatment.treatmentDate
Treatment.treatrmentld

5. Save the Ruleflow.

Run the sample

1. Open the Ruletest for the sample.
2. Open the One Patient Testsheet.
3. Click Run Test.

Progress Corticon : Data Integration: Version 6.3

87

Chapter 10: Mixing REST and database access

¢ “Procedurefpproval.ert 53

=l Mo Input Data =l Multiple Patients

/Mixed Connectivity/ProcedureApproval.erf

Input
w =] Patient [1]
= patientld [1]

Output
~ =] Patient [1] A
== dob [09/23/72 12:00:00 AM]
==l gender [F]
= patientld [1]
= patientName [Teri Rivera]
== region [NE]

v 4— treatment (Treatment) [1]
= approved [false]
= clinicalTrial [true]
== description [Chiropractic Manipulation of
=| medicalCode [IWB8XDZ]
= patientld [1]
= procedureCodeParameter [JWB8XDZ]
= providerld [1234]
= treatmentDate [07/15/17]
= treatmentld [1]
w ¢— rate (Rate) [3]
= endDate [01/31/17]
& position [0]
= procedureCodeParameter [JWB8XDZ]
= rate [0.710000]
= startDate [01/01/17]
w ¢— rate (Rate) [6]
= endDate [06/30/17]
&1 position [1]
= procedureCodeParameter [SWB8XDZ]
= rate [0.700000]
= startDate [02/01/17]
w ¢— rate (Rate) [7]
== endDate [12/31/17]
& position [2]
= procedureCodeParameter [SWB8XDZ]
= rate [0.680000]
= startDate [07/01/17]
w ¢— rate (Rate) [8]
== endDate [01/31/17]
& position [0]
[[— Avrw il A m D b OATDOWNTT R
< >

The Output shows the data retrieved from each Datasource and the results of the rule processing. Given
just the patient ID, Corticon was able to retrieve data from multiple databases and REST data sources, and
assemble it according to the vocabulary mappings to allow it to be processed by the rules.

88

Progress Corticon : Data Integration: Version 6.3

11

Deploying projects that use data integration

The data integration samples you have worked with to this point in this guide have demonstrated and tested
database connectivity entirely from the development environment. To move out of development and into
production, you generate Decision Service files and corresponding Datasource Configuration files that will be
positioned for servers to deploy them.

For details, see the following topics:

* Export the Datasource Configuration file

* Package a project in Corticon Studio for Corticon Server

Export the Datasource Configuration file

When packaging a project on Corticon Studio for deployment as a Decision Service on a Corticon Server, a
Datasource Configuration file provides the database configurations and credentials that were used in the project.

Note: When you are running and testing in Corticon Studio, the Datasource configuration and mapping
information is saved in the project's Vocabulary file. It does not need a Datasource Configuration file.

To generate a Datasource Configuration file:

1. With the project's Vocabulary open in its editor, select Vocabulary > Datasource Configuration File >
Export, as shown:

Progress Corticon : Data Integration: Version 6.3

89

Chapter 11: Deploying projects that use data integration

Veocabulary
41 Add Domain
Add Entity
Add Attribute !

Add Association...

Find References

Refactor...

Add Datascurce !

Datasource Configuration File » Export...
Add Document Mapping » Import...

Populate Vocabulary From Datasource Import Database Access Properties...

Set to Read/Write
Vo Show Vocabulary Details

Localize...

Report...

Export WSDL...
Export X50...

2. All the defined connections to external data sources are packaged into a single file XML, typically named,
dat asour ces. xmi . The file content might look like this:

When aut henti cati on-type="Ker ber os", the user nane andpasswor d parameters are not included.

You can specify a preferred name and location for the file, although colocating it with its Decision Service file,
or within its related project folder is a good idea.

Note: Because data integration carries the potential for data loss or corruption due to unintended updates, it
is a good idea to use a test instance of a database whenever testing database-enabled Rulesheets and Ruleflows
from Studio. Then, if unintended changes or deletions are made during rule execution, only test database
instances have been changed, not production databases. Even when using test instances, you may want to
restrict the ability to read and update connected databases to those users who understand the possible impact.
For other rule modelers without a solid understanding of databases, you may want to provide them with read-only
access.

There are several techniques for deployment, as described in the section "How to package and deploy Decision
Services" in the Deployment section. This section will focus on one, "Use Studio to compile and deploy Decision
Services" in the Deployment section.

Managing user access on Corticon Server

Typically, enterprises constrain developers to appropriate database products. As data integration carries the
potential for data loss or corruption due to unintended updates, developers are typically limited a test instance
of a database when testing from Studio. If unintended changes or deletions are made during rule execution,
then only test database instances have been changed. When deploying to Corticon Server, it is a good practice
to have servers reserved for developer integration testing to the test databases through the user-acceptance
test phase.

90

Progress Corticon : Data Integration: Version 6.3

Export the Datasource Configuration file

Managing database connections on Corticon Server

The handoff to production administrators will typically recast the Datasource configurations to the pre-production
server locations and credentials followed by validation tests. Production might require another adjustment of
the database configuration.

However, notice that the username and password values are very different from the credentials that were
entered. These values were encrypted when the database access file was created and will be decrypted when
they are implemented in a decision service. You can use the following utility to encrypt the required credentials.

Encrypting database credentials defined in the Datasource Configuration File
To use Corticon's proprietary encryption algorithm to encrypt credentials:

1. Obtain the credentials you want for each of the Datasources. Use those values to replace nySer ver User
and ny Ser ver User Passwor d in the following procedure.

2. In a Corticon Server installation, open a Command Window at [CORTI CON_HOVE] \ Ser ver\ bi n\ .

3. TypecorticonManagenent -en -i mnyServer User.An encrypted String for the user nane is output.
Then type corti conManagenment -en -i mnyServer User Passwor d. An encrypted String is output.
The procedure looks like this:

EA Administrator: CA\ProgramData\Microsoft\Windows\5tart Menu\Programs'Progress\Corticon... - |0 ﬁ

B

C:“Program Files“Progress‘\Corticon &.1%5erver‘ibin=corticonManagement -en -1 myServerlUser —

C:“Program Files‘ProgressyCorticon &.1%\5erver\bin=echo off
Defining Corticon 6.1 runtime environment.

Original String = myServerlUser
Encrypted 5tring = 035054048044038004042049010016010032

C:“Program Files“Progress‘\Corticen 6.1%Server‘bin>corticonManagement -en -i myServerUserPassword
C:“Program Files"Progress'Corticon 6.1%5erveribinsecho off
Defining Corticon 6.1 runtime environment.

Original String = myServerlUserPassword
Encrypted String = 035054048044038004042049010016010032036008048028025033061007

=
4| | »

4. Copy the encrypted String to the appropriate Datasource in the Datasource configuration file and enter it
as the value for the username. Then similarly copy the encrypted password String as the value for the user's
password.

5. Colocate the revised Datasource configuration file with the appropriate instance of the Decision Service on
the Corticon Server.

Note: When using CDD deployment, the database access properties file is identified within the CDD file. When
using the Web Console or APIs for deployment you specify the file at the time of deployment.

Using the Datasource XSD file

Every Corticon Studio and Corticon Server installs an XSD file that specifies how to formally describe the
elements in Datasource configuration XML files. You can use this file to verify the content in your documents.
The file dat asour ceConfi g. xsd is located at [CORTI CON_HOME] / St udi o/ |'i b.

Progress Corticon : Data Integration: Version 6.3 91

Chapter 11: Deploying projects that use data integration

Package a project in Corticon Studio for Corticon
Server

There are several techniques for deployment, as described in the section "How to package and deploy Decision
Services" in the Deployment section. This section will focus on one, "Use Studio to compile and deploy Decision
Services" in the Deployment section.

To make the project into a Decision Service and stage it to a server:

1. In Corticon Studio's Project Explorer, right-click on ADC Database Connectivity, and then choose Package
and Deploy Decision Services. In its dialog, choose Package and save for later deployment, and then
save it as Procedur eApproval _v1. 1. eds where the server will be able to access it.

2. In the ADC project's Vocabulary, choose the menu command Vocabulary > Datasource Configuration
File > Export, and then save itas ADC_Sanpl e_Confi g. xm , typically colocated with the Decision Service
file you just created.

(See Export the Datasource Configuration file on page 89)

92 Progress Corticon : Data Integration: Version 6.3

12

Getting Started with Batch

Batch processing is a server-based function that provides additional power to external data source functionality.
Elevating an external data source solution to a batch job means that Corticon Server can take several

pati ent | ds from the database's Pat i ent table at once and pass them in as a set to the Decision Service

for processing — a very efficient way to perform processing — where the Decision Service retrieves additional

data for each request from the Datasource for rule conditions and to enrich the record in a relational database
with results. You get greater control over queries and insert statements that are used. This is beneficial when
you need finer control for performance or need to retrieve large amounts of data.

How batch processing works - Fetching the transaction identifying data from the underlying data source that
will be injected into the rules engine — seed data retrieval — takes place outside the Decision Service. As such,
Decision Service requests that are usually individual transactions are instead fetched in chunks for the rules
engine, and then dispersed across multiple processing threads to concurrently process the incoming requests.
Batch processing produces no return payload per request — however, the result of each rule processing is
persisted in a relational Datasource.

The Datasource for a batch processing is typically to a relational database through an ADC or EDC connection.
You can use a REST service to read data that enhances the data; however, REST latency could compromise
your batch processing's performance requirements. Try it! Use the Mixed Connectivity sample in a batch
scenario. For each batch item, all data to drive the sample comes from a database, while the Ruleflow calls a
REST service to get the rate data.

Progress Corticon : Data Integration: Version 6.3

Chapter 12: Getting Started with Batch

Note:
For this sample, you must have:
1. Completed the steps in Getting Started with ADC on page 41 that:
a. Run the scripts pat i ent and adc that set up the database with the schema and data.
b. Imported the metadata into the Vocabulary.
c. Set the Ruleflow's Get Patient Data query to | ndi cat edPat i ent s.
2. Packaged and saved the Decision Service file and its Datasource Configuration file where the server will
be able to access them.

3. Installed Corticon Server with the server and Web Console options, and then started the server.

To load the batch sample:

In Corticon Studio, choose the menu item Help > Samples. Select the Advanced Sample Batch Rule
Processing, and then click Done. Follow the Import dialog to bring the sample into your workspace. The batch
sample is just two SQL queries that will be used later in this topic, yet that step completes setup.

Note: For details on defining and running batch processes, see the section "Batch Configurations" in the Web
Console Guide.

Batch configuration depends on the Server where the Web Console connects to have access to::

* A Decision Service that has Ruleflow Service Callouts that reference the databases and queries
* The Decision Service project's Datasource Configuration

* BATCH_READ queries loaded in the query service database

To run the batch sample:

1. In your browser, connect to the Web Console, typically ht t p: / /| ocal host : 8850/ corti con, using the
default credentials Adni n/ Admi n.

2. In the Web Console, choose Decision Services, and then click Add Decision Service for just a single
Decision Service. In the dialog box:

a. Name your service. For example, nyADC Sanpl e 1.0.
b. Choose the Decision Service file you created.

c. Choose its server location.

94

Progress Corticon : Data Integration: Version 6.3

The settings will look similar to this:

Add Decision Service

Decision Service Database Advanced Monitored Attributes

When adding a Decision Service you must specify a mame, select a server and provide
the EDS file of the Decision Service. Other properties are optional. To add the Decision
Service to an existing Application select "Add to an Existing Application’

Name

MyADC_Sample 1.0

Description

Deploys the ADC Database Connectivity sample project's Decision Service

EDS File Choose File...

ProcedureApproval_v1_0.eds

Servers

local server =

Add to an Existing Application

Save & Deploy Cancel

d. On the Database tab, choose your Datasource Configuration File.

Datasource Configuration File Choose File...

ADC_Sample.xml

e. Click Save and Deploy.

3. Choose Batch Configurations, and then click New Batch Configuration. In the dialog box:

Name the batch configuration. For example, ny ADC Bat ch.

b. Choose your deployed Decision Service.

c. Choose its Datasource. This is a specific database name within the Datasource configuration file.

(See Export the Datasource Configuration file on page 89)

d. Choose the AllPatients query.

Progress Corticon : Data Integration: Version 6.3

95

Chapter 12: Getting Started with Batch

The settings will look similar to this:

New Batch Configuration

Schedule

Basic Properties Advance

Name

myADC_Batch

Description

Decision Service DataSource

myADC_Sample 1 0 v Patient Data v

Query

AllPatients

e. Save the batch configuration.

4. The Batch Configuration page lists the new configuration:

Batch Configurations

Batch Configurations

)
i

=
* Batch Configurations
@ Batch Configurations created using the Web Conscle, can be fully managed here.
a08, Batch Configuration 4 -~ Dedision Service -~ StartTime - Time to Completion{mins) - FinishTime -~ Processed Count - Server ~ | Scheduled -
o (] Jan 10,2018 Jan 10,2018 (]
v m yADC_Batch s B
@) : myADC_Sample 1.0 3:30:14 PM 3:30:15 PM ocalhost:8850/axis

Run the batch job by clicking on its Batch Configuration name, and then clicking Execute:

96 Progress Corticon : Data Integration: Version 6.3

J myADC_Batch

¥ General Properties

@ 38 @M Jy

Name
Description:
Decision Service:

¥ Statistics

Start Time:

Finish Time:
Running Time:

Time to Completion:

Batch Configurations

Batch Configuration: myADC_Batch

myADC_Batch

myADC_Sample 1.0 (]

Jan 10, 2018 5:02:41 PM
Jan 10, 2018 5:02:42 PM
0 mins

0 mins

Batch Configuration: ...

P Execute # Edit @ Delete < Back
Server: localhost:8850
DataSource Patient Data
Query: PatientsByRegion €

Processed Count: 4
Retrieved Count: 4

5. On the Batch Configuration page detail page you can see the Processed Count each time you run it.

6. Test that the database is getting updates by looking at the Treatment table's Appr oved column.

Note: Clearing sample writes - To reset the approval values written to the database Treatment table to
NULL, run the Batch sample's cl ear _appr oved script in your DB management tool.

Parameters in queries

Batch configurations can access queries that are defined to request parameter values. The BATCH_READ query
Pat i ent sByRegi on runs the query:

SELECT patientld FROM Pati ent WHERE regi on I N ({Patient.region})

To run a parameterized batch job:

1. Create batch configuration named MyADC_Batch_Regional. Select the Decision Service you deployed,
its Datasource, and the query PatientsByRegion. That adds another field to accept the values of your
Query Parameters. Enter the value NE. The settings will look similar to this:

Query

PatientsByRegion

Name

region

Query Parameters

Value

NE

2. Save and then run this batch job. When you inspect the Treatment table you see that only patients from the
NE region have been processed.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

Progress Corticon : Data Integration: Version 6.3

97

Chapter 12: Getting Started with Batch

Creating additional sample records in the database

As the sample set of patient/treatment records is very small, the efficiency of rapid batch processing can be
difficult to observe. A SQL utility is provided that will generate PATI ENT_COUNT additional records for your
tests. It is a good idea to also adjust the FI RST_PATI ENT_I| Dand FI RST_TREATMENT | D so that they are
not overwriting each time you execute the utility

To create large data sets and run large batch tests:
1. Open the script in the Batch sample's gener at e_pat i ent s script in your DB management tool.
2. Change the values for:

SET @PATI ENT_COUNT=1000
SET @ RST_PATI ENT_| D=1000
SET @ RST_TREATMENT | D=1000

These set the number of patients you want generated, and the starting ids for patients and treatments.

3. Run the batch job with this newly generated data, and then look at the Decision Service page to see the
counters and charts.

98 Progress Corticon : Data Integration: Version 6.3

13

A closer look at how Corticon relates to
Datasources

All Corticon's data integration techniques enable sophisticated interaction with database architectures.

For details, see the following topics:

Add your own database driver

Supported databases

Authentication on EDC and ADC connections

SmartMatching of Vocabularies to databases

Validation of names against SQL keywords and database restrictions
Support for catalogs and schemas

How to filter catalogs and schemas

Fully-qualified table names

Support for database views

Associations as join expressions

Progress Corticon : Data Integration: Version 6.3 99

Chapter 13: A closer look at how Corticon relates to Datasources

Add your own database driver

Corticon includes a wide range of database drivers from the Progress DataDirect library. Yet there some drivers
that you might want to use that are not predefined. You can define your own for use as a Datasource or as a
source for Vocabulary generation. If you can obtain the driver for an unlisted database driver, you can configure
its database definition information, and then deploy the two files so that Studio can use them and so that every
Decision Service can use them.

Contact Progress Corticon support or your Progress Corticon representative for more information.

Supported databases

Corticon's ADC and EDC provide access to many different databases. This allows you to enrich the data being
processed by your rules as well as persist the results of rule processing to your database. For the list of
supported databases and versions, see the Corticon Resource Center.

Common Guidelines on Database Usage

Some Corticon features are not supported in certain supported databases. Data manipulations and database
startup functions that might be required to ensure error-free interaction between Corticon EDC and a database
are noted.

The mapping of database columns to a Corticon Vocabulary through SQL might experience problems when
database columns have hyphens, spaces or other special characters (even though some databases and SQL
parsers allow them). The generally accepted valid values are all alphanumeric characters and the underscore
character. It is a plus to use all-lowercase names to avoid platform case inconsistencies. For more information
on Corticon's accepted names, see the topic "Vocabulary node naming restrictions” in the Quick Reference
Guide.

The feature of importing database metadata will infer associations when the information (foreign keys) is
available in the data source's metadata.

Note: For the current list of supported databases and versions, access the web location Corticon Supported
Platforms Matrix.

Guidelines on Progress OpenEdge Usage

Because OpenEdge and Corticon are companion products in the Progress portfolio, additional features are
provided in both products to simplify their interaction. Corticon typically makes a Progress OpenEdge connection
with port 5566 and OpenEdge credentials. Database Access actions let you create a Business Resource
Vocabulary Definition (BRVD) file to create the database schema. You can import a . br vd file created in
OpenEdge (see Progress OpenEdge documentation for details.) The function of importing into Corticon is
described in "Import an OpenEdge Business Rules Vocabulary Definition file" in the Quick Reference Guide.

100 Progress Corticon : Data Integration: Version 6.3

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html
https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

Authentication on EDC and ADC connections

Note: Startup of OE server - It is recommended that you start the OpenEdge database server with the
following parameters within the Proenv window, shown here with values used in a test environment:

proserve db_nane -n 65 -M1 20 -Mpb 4 -Ma 20 -M 3 -S port_nunber
where:

* db_nane is the database name

* port_nunber is the port number

* Other OpenEdge parameters as described in OpenEdge Database Server parameters.

Authentication on EDC and ADC connections

When you choose to create an EDC or ADC Datasource, its tab in the Vocabulary lets you specify the
authentication you will require. The Database Server you select for the Datasource lists its available
authentication options on the Authentication dropdown.

Most database servers allow two Authentication options:

* Basic: When available, the Basi ¢ option is pre-selected, and the Username and Password fields are
displayed, enabled, and required.

* Kerberos: Many database drivers offer Kerberos support. If your target Database Server is in a Kerberos
realm, you need to ensure that you have proper target session keys. See "How fo enable Kerberos
Authentication in Studio and Server" in the Web Services Guide for more information. When you select that
option, the username and password fields are not available.

The Microsoft Dynamics 365 driver has three Authentication options:

* None: When a Dynamics Datasource requires no authentication, it is appropriate for accessing public data,
such as weather information. None is the default setting.

* OAuth2: Uses authorization tokens to prove an identity without giving away your password. When you
choose the QAut h2 option, you need to specify the Client ID, Token URI, Client Secret, and Refresh Token
for the connection.

* NTLM: Uses challenge/response authentication that allows a client to prove its identity without sending a
password to the server. The Username, Password, and Domain fields are required entries.

SmartMatching of Vocabularies to databases

Corticon's Vocabulary binds to database metadata, and then stores the database connection and database
metadata (tables, columns, primary keys, and foreign keys) that Corticon loads into its working memory as
CDOs for use in rule execution. Corticon attempts to infer the "'SmartMatch’ for database table names, column
names and related information such as the association join expressions. When a value is inferred this way,
that value is not stored in the model; rather, the system dynamically infers the derived value whenever the
Vocabulary Properties table is refreshed.

You can override the inferred value by choosing an explicit value from a drop-down list, or by entering a value
manually. The explicitly-specified value is displayed in black font if it exists, otherwise it displays in orange.
Corticon displays inferred properties in light gray font to distinguish them from explicitly-specified values.

Progress Corticon : Data Integration: Version 6.3 101

https://docs.progress.com/bundle/openedge-startup-and-parameter-reference-122/page/OpenEdge-Database-Server-parameters-DBS.html?labelkey=product_openedge_122

Chapter 13: A closer look at how Corticon relates to Datasources

You should favor inferred values whenever possible, because these values are automatically updated as
database metadata evolves.

Table 1: Corticon inference rules for SmartMatching

Vocabulary Database Inference rules for mapping metadata to the Vocabulary
property element
Entity Tabl e Derived from table metadata. The first table located in database metadata

that matches the entity name (ignoring case) is chosen. This matching
process ignores catalog, schema and domains. The inferred value is
displayed as a fully-qualified name including catalog and schema, if
applicable.

Attribute Col um Derived from first column in database metadata that matches the attribute
name (ignoring case). For this purpose, the Table Name (whether
explicitly-specified or inferred) is used.

Associ ation [|Join Complex derivation algorithm involving table data, column data, primary
Expressi on key and foreign key definitions. The algorithm attempts to find the best
matching join expression that defines the relationships between database
columns, typically along the lines of foreign keys.

Validation of names against SQL keywords and
database restrictions

Commercial databases, such as Microsoft SQL Server and Oracle, use specific words for defining, manipulating,
and accessing databases. These reserved keywords are part of the grammar used to parse and understand

statements. Do not use database reserved words for Corticon Entity, Attribute, and Association names when
creating the schema in Corticon. Your database support pages list reserved words—for example, Microsoft's
Reserved Keywords—that you should review as you prepare your Vocabulary for enterprise data connection.

Corticon makes a best-effort to validate the names against the SQL keywords against the database restrictions
for column and table naming (such as length of a table name), and then validates generated column names
(such as Foreign Key (FK) columns) against SQL keywords and table/column name restrictions.

Note: Itis good practice to ensure that database columns not have hyphens, spaces or other special characters
(even though some databases and SQL parsers allow them). The generally accepted valid values are all
alphanumeric characters and the underscore character. It is a plus to use all-lowercase names to avoid platform
case inconsistencies. For more information on Corticon's accepted names, see the topic "Vocabulary node
naming restrictions" in the Quick Reference Guide.

Support for catalogs and schemas

Catalogs and schemas refer to the organization of data within relational databases. Data is contained in tables,
tables are grouped into schemas, and then schemas are grouped into catalogs. The concepts of schemas and
catalogs are defined in the SQL 92 standard yet are not implemented in all RDBMS brands, and, even then,
not consistent in their meaning.

102

Progress Corticon : Data Integration: Version 6.3

http://msdn.microsoft.com/en-us/library/ms189822.aspx
http://msdn.microsoft.com/en-us/library/ms189822.aspx

How to filter catalogs and schemas

For example, in SQL Server, tables are grouped by owner and catalogs are called databases. In that case, a
list of database names is filtered by a Catalog filter, and a list of table owners is filtered by a Schema filter. The
owner of all tables is typically the database administrator, so if you do not know the actual owner name, select
'dbo' (under SQL Server or Sybase), or the actual name of the database administrator.

Note: The term schema, as used in Corticon's Import Database Metadata feature, does not refer to the
'schema objects' that the mapping tool manipulates.

How to filter catalogs and schemas

Once a database connection to a running database instance is established, the Database Metadata can be
imported into the Vocabulary by clicking the METADATA Import button on the database tab. Then, the
class:table property of each Entity is populated with a list of the fully qualified names (cat al og. schena. t abl e
or schenm. t abl e) of all tables in the database.

Typically, it is a good idea to filter the metadata to specific database catalogs and/or schema.

Note: Whether or not these settings actually do filter the list depends, in part, on the type of database used
and/or the JDBC driver used. For example, Oracle JDBC drivers do not honor these filters. However, the Import
Database Metadata feature does apply a second layer of filtering beyond the JDBC driver to minimize the
amount of metadata imported.

Note: Wildcards - Some DatabaseMetaData methods take arguments that are String patterns. Within a pattern
String, "%" means match any substring of 0 or more characters, and "_" means match any one character. Only
metadata entries matching the search pattern are returned. If a search pattern argument is set to null, that
argument's criterion are dropped from the search.

The ability to map entities to fully qualified table names makes it possible to map a single Vocabulary to more
than one catalog/schema provided they are all accessible through the same JDBC connection.

When tables are generated to the database, they will use the default Catalog/Schema unless you specify
otherwise.

Note: Schema map - You might need to specify the location for the temp files for a driver when the default
temp location is not be the preferred one. The schemanap option is set in the Database server entry of
Datasource connection. For example, when a Microsoft Dynamics 365 database will run its Decision Services
as .NET on an |IS server, you need to provide the Database server entry with the explicit path (delimited by
forward slashes) to a location where the IS process has write access. For example:

j dbc: progr ess: dynani cs365: ser vi ceur | =ser ver ; schenanap=C / i net pub/ wwr oot / axi s/ | ogs; t ransact i onMbde=i gnor e

Fully-qualified table names

Whenever table names appear in properties, Corticon uses fully-qualified names; thus, a table name may
consist of up to three nodes separated by periods. The JDBC specification allows for up to three levels of
qualification for a table name -- Catalog, Schema, and Table.

Progress Corticon : Data Integration: Version 6.3 103

Chapter 13: A closer look at how Corticon relates to Datasources

For databases that support all three levels of qualification, table names take the form:

<cat al og>. <scheme>. <t abl e>

Microsoft SQL Server uses all three levels of qualification. For example, Pat i ent Recor ds. dbo. Pat i ent

Others, such as Oracle, do not use Catalog Name, using only schema and table. For example,
corticon. Pati ent . Corticon can infer which levels of qualification are applicable by checking for null values
in database metadata.

Support for database views

Many RDBMS brands support views, a virtual table that is essentially a stored query. Your database administrator
might have set up views to:

* Combine (JOIN) columns from multiple tables into a single virtual table that can be queried

* Partition a large table into multiple virtual tables

* Aggregate and perform calculations on raw data

* Simplify data enrichment

Itis common practice to constrain staff users to accessing only views in their database connection credentials.

Corticon's Enterprise Data Connector supports mapping a Vocabulary to an RDBMS view.

Using Associations

When Corticon Entities are mapped to View tables that were created without any WHERE clause in the Select
statement (in other words, Corticon filters are NOT applied), Associations (in a View table) are not required as
the Entities mapped to the View tables with no Join Expressions in the Vocabulary returns the expected results
that include the Association.

Note: When Entities are mapped to View tables that were created with a WHERE clause in the Select statement
(in other words, Corticon filters are applied), results are incorrect: Associations are required even when there
is a View table for the Join Expressions. Attempts to map the View tables to the Entities in the Vocabulary will
generate validation warnings for lost Join Expressions. A Join Expression currently cannot be mapped to its
related View tables.

Associations as join expressions

Each association in a Corticon Vocabulary will have a join expression that is used to establish the relationships
between matching columns in the database. The syntax is similar to the SQL WHERE clause and are illustrated
here by examples.

One to Many Association with Single Primary Keys

The samples in this guide have a bidirectional one-to-many relationship between tables:

104 Progress Corticon : Data Integration: Version 6.3

Associations as join expressions

PatientRecords.dbo.Patient ‘ PatientRecords.dbho.Treatment

patientld int (PK) treatmentld int (PK)
patientld int (FK)

Pat i ent Recor ds. dbo. Pat i ent has the integer primary key pati ent | d, and

Pat i ent Recor ds. dbo. Treat nent hastreat nent | d as its primary key.

Pat i ent Recor ds. dbo. Treat nent . pati ent | d is a foreign key that “points” to primary key

Pat i ent Recor ds. dbo. Pati ent. pati ent | d. In such case the join expressions would be as follows:

Vocabulary Join Expression
Association

Patient.treatnent |Pati ent Records. dbo. Patient.patientld =
Pat i ent Recor ds. dbo. Treat nent. patientld

Treatnent. patient [Pati ent Records. dbo. Treat ment . patientld =
Pat i ent Records. dbo. Patientld. patientld

Note that in a bidirectional association, the two join expressions are mirror images of one another. Unlike ANSI
SQL, the order of operands in the join expression is significant.

In Corticon Studio, the sample association mapping in the data integration samples is:

<«

=+ Medical Basic Properties

== Patient

»

Patient Data Datasource Properties

4

= dob Join Expression [PatientRecords.dbo.Patient.patientld=PatientRecords.dbo.Treatment. patientld

<«

Treatment Data Datasource Properties

== patientMame

----- == region

------ —£ treatment (Treatment)
=] Treatment

A closer look at the expression shows the correct inferred join expression for the Pat i ent :

PatientRecords.dbo.Patient.patientld=PatientRecords.dbo.Treatment. patientld

Clicking |Lein Expression | opens the Join Expression dialog for the connection, as shown:
e Join Expression ﬁ
Source Table Source Column | Target Table Target Column il
PatientRecords.dbo.Patient patientld PatientRecords.dbo. Treatment | patientld
QK | Cancel ‘

If you want to revise the expression, each field entry area opens a dropdown menu for that field where you can
choose a value that is in the scope of the connection, or clear the value. You can also just click in the box and
enter a value.

Progress Corticon : Data Integration: Version 6.3 105

Chapter 13: A closer look at how Corticon relates to Datasources

One to Many Association with Multiple Primary Keys

Consider the sample as having a multi-column primary key. All key columns must be specified in the join
expression; in such case, the join expression becomes a set.

This is a one-to-many, bidirectional association between Pat i ent Recor ds. dbo. Pat i ent and
Pat i ent Recor ds. dbo. Tr eat nent , where both have multi-column primary keys (pati ent | d,
pati ent Name, treatnentld, PatientCode), and Pati ent Records. dbo. Tr eat ment also has

multi-column foreign key (Tr eat ment . pati entld, Treatnent. pati ent Nanme). The join expressions
would be as follows:

Vocabulary Join Expression
Association

Patient.treatnent |{ Patient Records. dbo. Patient.patientld =
Pat i ent Recor ds. dbo. Treat nent . pati ent | d,
Pat i ent Recor ds. dbo. Pati ent . pati ent Nane =
Pat i ent Recor ds. dbo. Treat nent . pati ent Nane }

Treatnent. patient [{ Patient Records. dbo. Treat nent. patientld
Pat i ent Recor ds. dbo. Pati ent. patientld,

Pat i ent Recor ds. dbo. Tr eat ment . pati ent Nane
Pat i ent Records. dbo. Pati ent. pati ent Nane }

Note the braces surrounding the comma-separated relational expressions, denoting that in this case, the join
expressions are sets. To extend the Pat i ent association to enter the multiple keys, add another line in the
Join Expression dialog box, as shown:

e Join Expression ﬂ
Source Table Source Column Target Table Target Column il
PatientRecords.dbo Patient | patientld PatientRecords.dbo, Treatment | patientld
PatientRecords.dbo.Patient hd

dob

gender j
patientld

patientMame

region oK | Cancel ‘

In this case, the join expression was extended as shown:

e Join Expression ﬂ
Source Table Source Column | Target Table Target Column i‘
PatientRecords.dbo.Patient | patientld PatientRecords.dbo. Treatment patientld
PatientRecords.dbo Patient | patientMame PatientRecords.dbo, Treatment patientMame

=l
oK | Cancel |

When you click OK, the expression is constructed as shown, a bit hard to read yet exactly as described:

{PatientRecords.dbo.Patient.patientld=PatientRecords.dbo Treatment. patientld, PatientRecords.dbo.Patient. patientName=PatientRecords.dbo. Treatment.patientMame}

106 Progress Corticon : Data Integration: Version 6.3

Associations as join expressions

Let's create the same construct using simple tokens:

e Join Expression ﬂ
Source Table | Source Column Target Table Target Colurmn i‘
A al B al
A a2 B a2

QK | Cancel ‘

The resulting join expression is:

{4.a1=B.al, A.a2=B.a2}

The braces surround the comma-separated relational expressions: The join expressions are sets.

Best effort at inferring Join Expressions

Because join expressions are cumbersome to enter, it is crucial that Corticon have the best possible logic for
automatically inferring them from metadata. For one-to-many associations, the join expression can frequently
be inferred from primary and foreign key metadata, assuming that the entities can be successfully mapped to
particular tables, and the foreign key relationships between those tables are properly declared. Exceptions to
this rule include:

* Unary one-to-one associations (that is, self-joins), where it is impossible to infer which side of the association
corresponds to the primary or foreign key

* Unary many-to-many associations, where it is impossible to infer which of the join table foreign keys should
be used for each side of the association

* Tables that have multiple foreign key relationships between them with different meanings for each.

Corticon recognizes when it is not possible to unambiguously infer the proper join expression, and allow the
user to choose from a set (drop-down list) of choices.

Corticon infers the join expressions in all cardinalities.

Progress Corticon : Data Integration: Version 6.3 107

Chapter 13: A closer look at how Corticon relates to Datasources

108 Progress Corticon : Data Integration: Version 6.3

14

Advanced EDC Topics

This section describes advanced setup and operational functions of Corticon's Enterprise Data Connector.

For details, see the following topics:

* How to set EDC Vocabulary properties

* Mapping and validating EDC database metadata

* Set additional EDC Datasource connection properties

* How data from an EDC Datasource integrates into rule output

e EDC data caching

* Metadata for Datastore Identity in XML and JSON Payloads

* Relational database concepts in the Enterprise Data Connector

* How EDC handles transactions and exceptions

How to set EDC Vocabulary properties

Note: Database, Datasource, Datastore - These terms are used throughout this document. Database is an
external installation of a relational database management system that provides structured tables and accepts
connections. Datasource is Corticon's term for a database that has a connection defined and tested through
a Vocabulary. Datastore is generic term for an external repository; however, in Corticon's EDC settings, the
term refers to a table in a Datasource that is mapped to an Entity in Corticon.

Progress Corticon : Data Integration: Version 6.3 109

Chapter 14: Advanced EDC Topics

Edit Entity EDC properties

When an EDC Datasource has been added to the Vocabulary, its Entity properties for database interaction are
displayed. Notice that several properties are conditionally modifiable based on other properties.

Note: The basic and document mapping Entity properties are discussed in "Add and edit entity nodes and
their properties” in the Quick Reference Guide.

Table 2: Enterprise Data Connector (EDC) Entity Properties

Property Description Applicability Values and Defaults
Entity Identity Specifies which attributes | - Choose multiple attributes
(if any) act as its Entity's on the pulldown list by
primary key. opening the list then

holding Ct r | while
clicking the selections.

Datastore Persistent Indicates whether this Required. Yes, No, defaults to No.
entity will be database
bound.

Table Name Name of database table, |Optional, only active when [Value selected. When not
chosen from a drop-down | the entity is Datastore specified, the system
list of all database table |Persistent infers the best matching
names, fully-qualified with table from database
catalog and schema if metadata.
applicable.

110 Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

Property

Description

Applicability

Values and Defaults

Datastore Caching

Caching technique,
chosen from a drop-down
list. Indicates whether
instances of this entity are
subject to caching.

Optional, only active when
the entity is Datastore
Persistent.

Values are:

* No Cache or blank
(default) - Disable
caching.

* Read Only - Caches
data that is never
updated

* Read/Write - Caches
data that is sometimes
updated while
maintaining the
semantics of "read
committed" isolation
level. If the database is
set to "repeatable
read," this concurrency
strategy almost
maintains the
semantics. Repeatable
read isolation is
compromised in the
case of concurrent
writes.

* Nonstrict Read/Write
- Caches data that is
sometimes updated
without ever locking the
cache. If concurrent
access to an item is
possible, this
concurrency strategy
makes no guarantee
that the item returned
from the cache is the
latest version available
in the database.

Identity Strategy

Strategy to generate
unique identity for this
entity.

Enabled when Entity
Identity is not specified
and DataStore Persistent
is set to Yes

Nati ve, Tabl e,

I dentity Sequence,
UUI D (These are
described in the following
table.)

Identity Column Name

Name of the identity
column, chosen from a
drop-down list consisting
of all column names
associated with the table.

Enabled when Entity
Identity is unspecified.

System attempts to create
a match as
entityNane_ | D.

Progress Corticon : Data Integration: Version 6.3

111

Chapter 14: Advanced EDC Topics

Property

Description

Applicability

Values and Defaults

Identity Sequence

The fully-qualified name of
the sequence to be used.

Applicable when Entity
Identity is unspecified and
Identity Strategy is
Sequence.

System attempts to create
a match as
ent it yName_SEQUENCE.

Identity Table Name

The fully-qualified name of
the identity table to be
used, chosen from a
drop-down list of all table
names and sequence
names.

Applicable when Entity
Identity is unspecified and
Identity Strategy is Table.

When not specified, the
value defaults to
SEQUENCE_TABLE.

Identity Table Name
Column Name

The name of the column
in the identity table that is
used as the key (the name
of the entity). Choose from
a drop-down list of all
columns in the table
selected in the Table
Name field.

Applicable when Entity
Identity is unspecified and
Identity Strategy is Table.

When not specified, the
Name column name of the
Identity Table defaults to
SEQUENCE_NAME with
data type (String).

Identity Table Value
Column Name

The name of the column
that holds the identity
value. Chosen from a
drop-down list of all
columns in the table
selected in the Table
Name field.

Applicable when Entity
Identity is unspecified and
Identity Strategy is Table.

When not specified, the
Value column of the
Identity Table defaults to
NEXT_VAL with data type
(Big Integer).

Version Strategy

Strategy to control
optimistic concurrency.

Optional. Tells Hibernate
how to handle table
locking. See the
Hibernate Developer's
Guide for more
information.

Ver si on Nunber,
Ti mest anmp

Version Column Name

Name of the column that
contains the version
number or the timestamp.

Applicable and required
when Version Strategy is
specified.

The specified column
name is created when you
update the database
schema.

Note: Identity and strategy concepts are general relational database concepts. Refer to your RDBMS brand's
documentation for more information, especially the identity strategies that are specific to certain brands. Also
see "ldentity strategies” and "Advantages of using Identity Strategy rather than Sequence Strategy" in the

Data Integration Guide .

Table 3: Description of the Identity Strategy values

Strategy

Description

Nati ve

Allows database to choose best possible identity strategy.

112

Progress Corticon : Data Integration: Version 6.3

https://docs.jboss.org/hibernate/orm/4.0/devguide/en-US/html/ch05.html
https://docs.jboss.org/hibernate/orm/4.0/devguide/en-US/html/ch05.html
https://docs.jboss.org/hibernate/orm/4.0/devguide/en-US/html/ch05.html

How to set EDC Vocabulary properties

Strategy Description

Tabl e Uses a database table, whose name is specified in Identity Table Name. This table will
have two columns: a name column and a value column. (Previously referenced as
"increment".)

| dentity Uses the native identity capability in DB2, SQL Server (the column is defined as an
"identity" column in the database schema).

Sequence Uses sequence capability in DB2, PostgreSQL and Oracle.

uul D Generates 128-bit UUID string of 32 hex digits. (Previously referenced as "uuid-hex".)

Note: Databases mentioned in the Identity Strategy table do not imply that they are currently supported RDBMS
brands. For the current list of supported RDBMS brands, access the web location Corticon Supported Platforms
Matrix.

Note: PostgreSQL limitation in EDC—Hibernate has a limitation when you attempt to perform write operations
to a PostgreSQL view where a sequence is used for a column in the view. Hibernate is not updating its in-memory
object, and always returns the same initial number, so the Database Sequence number is not incremented.
Alternative approaches include modifying the view schema to not use a sequence on a column, developing a
customer callout to perform the operation, or utilizing ADC.

Edit Attribute EDC properties

When an EDC Datasource has been added to the Vocabulary, its Attribute properties for database interaction
are displayed.

Note: The basic and document mapping Attribute properties are discussed in "Add and edit attribute nodes
and their properties” in the Quick Reference Guide.

Table 4: Enterprise Data Connector (EDC) Attribute Properties

Property Description Values Applicability

Column Name

Name of the database
column, chosen from a
drop-down list consisting
of all column names
associated with the Entity
Table Name (see Entity
Properties).

Optional, if not specified,
system will infer best
match from database
metadata.

Progress Corticon : Data Integration: Version 6.3

113

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html
https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

Chapter 14: Advanced EDC Topics

Property Description Values Applicability
Value Strategy Strategy to use to Native, Tabl e, Optional. Only enabled if
generate unique value for || dentity, Sequence, |attribute is an element of
this column. uul D the Entity Identity set. Only
value strategies that make
sense with respect to the
attribute data type will be
presented in the
drop-down list.
Value Sequence The fully-qualified name of Only enabled if attribute is
the sequence to be used. an element of the Entity
Identity set and Identity
Strategy is Sequence.
Required if enabled.
Value Table Name The fully-qualified name of Only enabled if attribute is
the identity table to be an element of the Entity
used, chosen from a Identity set and Identity
drop-down list of all table Strategy is Table.
names and sequence Optional. If not specified,
names. the value will default to
SEQUENCE_TABLE.
Value Table Name The name of the column Only enabled if attribute is
Column Name in the identity table that is an element of the Entity
used as the key (this Identity set and Identity
column will contain the Strategy is Table. If not
name of the entity). specified the value will
Chosen from a drop-down default to
list of all columns in the SEQUENCE_NAME
table selected in the Table (String).
Name field.
Value Table Value Column | The name of the column Only enabled if attribute is
Name which holds the identity an element of the Entity
value. Chosen from a Identity set and Identity
drop-down list of all Strategy is Table. If not
columns in the table specified the value will
selected in the Table default to NEXT VAL
Name field. (Big Integer).
Table 5: Description of the Value Strategy values
Strategy Description
Nati ve Allows database to choose best possible value strategy.
Tabl e Uses a database table, whose name is specified in Identity Table Name. This table will

have two columns: a name column and a value column. (Previously referenced as
"increment".)

114

Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

Strategy Description

| dentity Uses the native identity capability in DB2, SQL Server (the column is defined as an
"identity" column in the database schema).

Sequence Uses sequence capability in DB2, PostgreSQL and Oracle.

uul D Generates 128-bit UUID string of 32 hex digits. (Previously referenced as "uuid-hex".)

Note: Databases mentioned in the Value Strategy table do notimply that they are currently supported RDBMS
brands. For the current list of supported RDBMS brands, access the web location Corticon Supported Platforms
Matrix.

Note: PostgreSQL limitation in EDC—Hibernate has a limitation when you attempt to perform write operations
to a PostgreSQL view where a sequence is used for a column in the view. Hibernate is not updating its in-memory
object, and always returns the same initial number, so the Database Sequence number is not incremented.
Alternative approaches include modifying the view schema to not use a sequence on a column, developing a
customer callout to perform the operation, or utilizing ADC.

When a database Datasource (ADC) has been added to the Vocabulary, its Attribute properties for database
interaction are displayed. These properties and their usage are discussed in the Data Integration Guide.

Table 6: Database Datasource Attribute Properties

Property Description Values Applicability

Column Name Name of the database Required.
column, chosen from a
drop-down list consisting
of all column names
associated with the Entity
Table Name (see Entity
Properties).

Import possible values of an attribute from database tables

A database connection can also provide designers and testers of Rulesheets and Ruletests with lists of
enumerations, also known as possible values. While these lists can be created and maintained by hand on the
Custom Data Types tab of a Vocabulary, you can retrieve lists from the connected database.

Consider the general behavior of enumerations, especially when retrieving labels and values from a database:

* There can be only one instance of any label and any value in the list, whether created manually or imported.
An exception will make the Vocabulary invalid. The database retrieval will work as expected but you will
have to groom the results to make the lists valid. You can get optimal results when your database source
prevents duplicates in the table columns you are using for your values or label-value pairs.

* If you chose a label in a Rulesheet and that label is no longer available after an update, an error will occur.
Any Rulesheet expressions that refer to the defunct label will be flagged as invalid. You must update the
Rulesheet expressions to correct the problem.

* If you chose a label in a Rulesheet and that label takes on a different value after an update, the current
value is what is evaluated.

Progress Corticon : Data Integration: Version 6.3 115

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html
https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

Chapter 14: Advanced EDC Topics

* The value assigned - whether directly or as the label's value - at the time of deployment does not change
thereafter on the server.

It is good practice to ensure that the data types of the retrieved values in the database are consistent with the
Custom Data Type, and then extend the corresponding base data value in the attribute.

Procedures

The steps to implement custom data types retrieved from a database are, in summary, as follows:
* A - Create or locate the database table and columns you want to retrieve.

* B - Verify the database connectivity, and then import its metadata.

* C - Define the Custom Data Type lookup information.

* D - Import the enumeration elements.

* E - Check the lists for duplicates.

* F - Set the Data Type of appropriate attributes to the Custom Data Type.

* G - Verify that the list functions correctly.

A - Create or locate the database table and columns you want to retrieve.

Note: This step uses the procedures detailed in the EDC Tutorials' steps for populating the database.

Note: See the tutorials Modeling Progress Corticon Rules to Access a Database using EDC and Connecting
a Progress Corticon Decision Service to a Database using EDC. If you use the database you created in the
tutorials, you need to refer to the database as Tr ansport ati on — not Car go -- to stay in synch with this
example. You could instead simply create a Car go database in SQL Server, and then import the sample data
in the Studio's Tut ori al / Tut ori al - Done folder, Car go_dat a. sql .

You need to add two tables to the SQL Server database to demonstrate both value-only and label+value
enumerations:

1. Start the SQL Server Management Studio, and then expand the tree for Databases : Cargo : Tables.
Right-click on Tables and choose New Table. Enter Model as the only column name, as shown:

116 Progress Corticon : Data Integration: Version 6.3

https://progress-dev.zoominsoftware.io/bundle/corticon-edc-modeling-tutorial/page/Tutorial-Modeling-Progress-Corticon-Rules-to-Access-a-Database-using-EDC.html
https://progress-dev.zoominsoftware.io/bundle/corticon-connect-to-db-using-edc/page/Tutorial-Connecting-a-Progress-Corticon-Decision-Service-to-a-Database-using-EDC.html
https://progress-dev.zoominsoftware.io/bundle/corticon-connect-to-db-using-edc/page/Tutorial-Connecting-a-Progress-Corticon-Decision-Service-to-a-Database-using-EDC.html

How to set EDC Vocabulary properties

2 Microsoft SQL Server Management Studio

= [jj MNBBEDGSAINTMAL (SQL Server 10.50 =
-] [Databases
+ [System Databases
= | Cargo
[_J Database Diagrams
1 Tables
& [System Tables
= dboAircraft
[dbo.Cargo
= dbo.FlightPlan
3 Views
3 Synenyms
[Programmability

m

o

File Edit View Debug TableDesigner Tools Window Community Help

S NewQuery | [}y |[3 |5 W 0 &g

S |SACSBEHE,

Object Explorer >~ 1 x dbo.Table_1*

Connect~ 3 Column Name Data Type
» Model

Column Properties

[E=N ECR =x=

-

Allow Mulls

>

2l

m 3

Ready

2. Choose the menu command File > Save Table_1, enter the name Pl anes, and then click OK.

Choose Mame

Enter a name for the table:

(2 e

Planes

| oK

Cancel |

3. Create another table, now with two columns named pl aneCarri er and pl anel D, savingitas Carri er.

4. Click New Query, copy/paste the following text, and then click Execute.

I NSERT | NTO Car go. dbo. Pl anes
| NSERT | NTO Car go. dbo. Pl anes
I NSERT | NTO Car go. dbo. Pl anes
I NSERT | NTO Car go. dbo. Pl anes
| NSERT | NTO Car go. dbo. Carri er
| NSERT | NTO Car go. dbo. Carri er
| NSERT | NTO Car go. dbo. Carri er
| NSERT | NTO Car go. dbo. Carri er
| NSERT | NTO Car go. dbo. Carri er

5.

(Mbdel)
(Mbdel)

VALUES (' DC 1
VALUES (' MD-1
(Model) VALUES (' 747');
(Model) VALUES (' 777');
(pl aneCarri er, pl anel D)
(pl aneCarri er, pl anel D)
(pl aneCarrier, pl anel D)
(pl aneCarrier, pl anel D)
(pl aneCarri er, pl anel D)

")

0
1

’

VALUES
VALUES
VALUES
VALUES
VALUES

¢
(I
(.
(I
(

UPS' , ' N1001');
FedEx', ' N1002');
DHL', ' N1003');
GreatWall', ' N1004');
Heavylift',' N1005');

In the tree, right-click on dbo.Planes, and then choose Edit Top 200 Rows.

Progress Corticon : Data Integration: Version 6.3

117

Chapter 14: Advanced EDC Topics

2 Microsoft SQL Server Management Studio EI@
File Edit View Debug QueryDesigner Tocls Window Community Help
2 New Query | [y | [| 5 =g
ST Change Type~ | ¥ bag = “‘j -
Object Explorer > 1 X dbo.Planes - ¥
Connect~ 3 Model
5 [NBBEDGSAINTMAL (5QL Server1050 ~ || » | TesT
= 1 Databases MD-11
[Systemn Databases 747
= |J Cargo E 777
[_J Database Diagrams 3 i
= 1 Tables
3 System Tables
= dbo.Aircraft
= dbo.Cargo
=] dbe FlightPlan
= dbo.Planes
3 Views =
A I ’ 1 of4 | b Bk
Ready

The Planes data is as we intended. It is ready for our use in the Corticon Studio.

6. Similarly, right-click on dbo.Carrier, and then choose Edit Top 200 Rows.

~p Microsoft SQL Server Management Studio EI@
File Edit View Debug QueryDesigner Tools Window Community Help
o NewQuery | [y | [| 5 o
O ey Change Type~ | ¥ b | (2 T3 & -
Object Explorer > X NEBEDGSAINTMA1\...go - dbo.Carrier| = X
Connect~ 34 planeCarrier planelD
[NBBEDGSAINTMAL (SQL Server 10.50.1600 - sa) Sy | N1001
= [d Databases FedEx M1002
[dl System Databases DHL N1003
B W Cargo 1 Greatwal N1004
Database Di
[Datahase Liagrams Heawylift MN1005
= 1 Tables
[System Tables * ML ALLL
= dbo.bircraft
= dbe.Carge
= 3 dbo.Carrier
= @ Columns
=] planeCarrier (nchar(ld), not null)
=] planelD {nchar(10), net null)
® [Keys i 1 of5 [b b b i
m i_(Cnnctraints X
Ready

The Carrier data

is as we intended. It is ready for our use in the Corticon Studio.

B - Verify the database connectivity, and then import its metadata.

We want to bring the information about the table definitions into the Studio:

1.
EDC on page 29

illustrated:

In Corticon Studio, confirm that you have the same good connection you achieved in Getting Started with

. With Car go. ecor e open its editor, select the Vocabulary root, and the click METADATA Import, as

118

Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

Custom Data Types | EDC

METADATA MAPPIMNG SCHEMA ENUMERATION
mport ear alidate ear reat ate mport
ch Imp X Cl) Valid ¥ 3 Create/Upd b Imp

C - Define the Custom Data Type lookup information.

We now can specify how we want to use the data and then bind it to the appropriate database table and
columns:

1. Click on Car go to get to its top level, and then select the Custom Data Types tab.

2. Click on the next empty row, enter nodel as the Data Type Name, select St ri ng as the Data Type, and
Yes as the Enumeration.

3. Click on the Lookup column in the row to expose its dropdown, and then choose Car go. dbo. Pl anes that
we imported in the database metadata.

Custom Data Types | Database Access

Data Type Mame Base Data Type Enumeration .. | Lookup Table Name Labels Column | Values Column | = Label Value -
containerType String Yes
rmodel String Yes
Cargo INFORMATION_SCHEMANVIEWS -

m

Cargo INFORMATION_SCHEMANEW_COLUMMN_USAGE

Cargo INFORMATION_SCHEMANVIEW_TABLE_USAGE
Cargo.dbo.Aircraft

Cargo.dbo.Cargo

Cargo.dbo.Carrier

Cargo.dbo.FlightPlan

Cargo.sys.all_celumns

Cargo.sys.all_objects 2

4. We are using a values-only lookup, click on the row's Values Column to select its one database column,
Model :

5. For the other table, click on the next empty row, enter carri er as the Data Type Name, select St ri ng
as the Data Type, and Yes as the Enumeration.

6. Click on the Lookup Table Name in the row to expose its dropdown, and then choose Car go. dbo. Carri er
that we imported in the database metadata.

7. We are using a label-values lookup, so click on the row's Labels Column to select planeCarrier, and then
in the Values Column to select pl anel D

Custom Data Types | Database Access

Data Type Mame | Base Data Type | Enumeration .. Loockup Table Mame @ Labels Column | Values Column
containerType String Yes
maodel String Yes Cargo.dbo.Planes Model
carrier String Yes Cargo.dbo.Carrier planeCarrier planelD

Progress Corticon : Data Integration: Version 6.3 119

Chapter 14: Advanced EDC Topics

Everything we have entered is red! That's because Studio has no data for either of these enumeration sets.

D - Import the enumeration elements.

Once you have defined the database table and columns you want, you can retrieve the data:

1. Choose the menu command Database Access > Import Enumeration Elements, as shown:

Custorn Data Types |EDC

METADATA MAPPING SCHEMA ENUMERATION
ch Import | | X Clear (& Validate | | X Clear ¥ Create/Update ch Import

2. The retrieved values are displayed in the associated Labels and Values window to the right, as shown for
the nodel :

Custom Data Types | Database Access

Data Type Mame | Base Data Type Enumeration .. Lockup Table Mame | Labels Column | Values Column » Label Value -
containerType String Yes 4T
model String Yes Cargo.dbo.Planes NI
carrier String Yes Cargo.dbo.Carrier planeCarrier planelD L ‘DC-10" |
i ‘MD-11' 3
Progress Corticon Studio @

':0:' Enumeration elements were imported successfully.

E - Check the lists for duplicates.

Unless you enforced uniqueness in the source database. To demonstrate what happens, we'll add an existing
value to the nodel enumerations.

1. In the Values retrieved column, enter a new value that is already there, such as 777, as shown:

L¢ *Cargo.ecore 71 =0
Datasource: | EDC | | Custom Data Types | Database Access
[Cargo Data Type Name | Base Data Type | Enumeration .. Lookup Table Name Labels Column | Vazlues Column |~ Label Value -
= Aircraft containerType String Yes = 747" =
argo model trin es argo.dbo.Plane ~ odel
H Carg del String ¥ C dbo.P| Model — | | TIT
®=| container carrier String Yes Cargo.dbo.Carrier planeCarrier planelD 'DC-10"
== manifestlumber ‘ME—}].'
m=| needsRefrigeration
== volume
=] weight

The duplicates are both highlighted in red, and the Car go. ecor e file is marked as being in an error state.

2. Remove the line (or change it to something unique) and the Vocabulary is again valid.

F - Set the Data Type of appropriate attributes to the Custom Data Type.

With our enumeration lists imported from the database and verified as free of duplicate labels or values, we
can link them to the attributes that will use them:

1. Aircraft.aircraftType:

120

Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

g Cargo.ecore 22

Datasource: | EDC

=2 Cargo

2. Aircraft.tailNumber:

[cargo.ecore 32

B Aircraft

=y maxCargoVelume
= maxCargoWeight

= tailNumber

.—£ flightPlan (FlightPlan}
Cargo

=--E= FlightPlan

j Basic Properties

Property Name
Attribute Name
Data Type
Mandatory
Mode

EDC Datasource Properties

Column Mame

Value Strategy

Value Sequence

Value Table Mame

Value Table Name Column Mame
Value Table Value Celumn Name

Datasource: | EDC

=2 Cargo

B-E5 Aircraft

- aircraftType *

- maxCargoVolume
- maxCargoWeight
=

-—€ flightPlan (FlightPlan)
= Cargo

m-E=] FlightPlan

j Basic Properties

Property Mame
Attribute Name
Data Type
Mandatory
Mode

EDC Datascurce Properties

Column Name

Value Strategy

Value Sequence

Value Table Mame

Value Table Name Column Mame
Value Table Value Calumn Name

G - Verify that the list functions correctly.

To verify that the lists perform as expected, use them in a Rulesheet or Ruletest :

b

Property Value
aircraftType
String
Boolean
Decimal
DateTime
Date

Integer

String
carrier
containerType

»

Property Value
tailNumber
String
Boolean
Decimal
DateTime
Date

Integer

Stri nE

containerType
maodel
Time

1. In a Rulesheet Actions area, enter two new lines, one with the attribute syntax Ai rcraft. ai rcraft Type
and the other with Ai rcraft. tai | Nunmber, as shown:

2. Click on the ai r cr af t Type where it intersects with column 1, as shown:

Aircraft.aircraftType
Aircraft.tailNumber

4T
T
‘DC-10°
‘MD-11'
null

The pulldown displays our imported values, as well as blank and nul | .

3. Click onthe t ai | Nunber where it intersects with column 1, as shown:

Progress Corticon : Data Integration: Version 6.3

121

Chapter 14: Advanced EDC Topics

Aircraft.aircraftType
Aircraft.tailMumber -

DHL
FedEx
GreatWall
Heawylift
UPS

The pulldown displays our imported label, as well as blank. The label is a place holder for its value.
For more information about enumerations and retrieving values from databases, see:

* "Enumerations retrieved from a database" in the Rule Modeling Guide

Enumerated values

You can define lists of values that are the set of allowable values associated with a Vocabulary attribute. In
the Basic Tutorial, you saw how we could delimit the options for a cont ai ner Type by defining labels and
their respective values:

[¢ Cargo.ecore 2 =8
(2] Cargo Custom Data Types

= Aircraft

=l Carge Data Type Mame Base Data Type | Enumeration Constraint Expression » Label Value -

=] FlightPlan String Yes standard ‘standard’
oversize ‘oversize'

heavyweight | 'heavyweight'

reefer ‘reefer’

Then, when you are in the Rulesheet, the defined values -- as well as nul | and blank -- were offered.

Actions a LI [
Post Message(s) EA i i i
A Cargo.container standard | oversize [=]] heavyweight reefer
B
C
D
E
F
G -
COwerrides 1,4} 11,3}

Importing enumerated values from a database

When you use the Enterprise Data Connector and establish connection to a database, additional functionality
is added to the DataTypes tab:

Custom Data Types - EDC

Data Type Mame | Base Data Type | Enumeration Lockup Table Mame Labels Column Walues Calumn o Label Value o
containerType String Yes standard ‘standard’
ovErsize 'oversize’
heawvyweight ‘heavyweight'
reefer ‘reefer’
[~ =

You can specify a column within a table of the connected database to retrieve and import the name and values
(or just the values) to populate the selections to the specified attribute.

122 Progress Corticon : Data Integration: Version 6.3

Mapping and validating EDC database metadata

Note: For more information about enumerations and retrieving values from databases, see:
* Import possible values of an attribute from database tables on page 115

* Mapping EDC database tables to Vocabulary Entities on page 124

* "Enumerations defined in the Vocabulary" in the Rule Modeling Guide

* "Enumerations retrieved from a database" in the Rule Modeling Guide

Edit Association EDC properties

When an EDC Datasource has been added to the Vocabulary, its Association properties for database interaction
are displayed.

Note: The basic and document mapping Association properties are discussed in "Add and edit association
nodes and their properties” in the Quick Reference Guide.

Table 7: Enterprise Data Connector (EDC) Attribute Properties

Property Description Applicability
Join Expression Expression that defines the Required for all database-mapped
relationships between foreign key |associations. Inferred in most
columns in the database instances from database metadata

(exceptions: unary associations and
certain many-to-many associations).

Mapping and validating EDC database metadata

Mapping data between a Corticon Vocabulary and relational database is not always perfect. When there are
issues, you need to review the mappings to resolve incomplete or conflicting mapping data.

Progress Corticon : Data Integration: Version 6.3 123

Chapter 14: Advanced EDC Topics

Mapping EDC database tables to Vocabulary Entities

Not all Vocabulary entities must be mapped to corresponding database tables - only those entities whose
attribute values need to be persisted in the external database should be mapped. Those entities not mapped
should have their Datastore Persistent property set to No. Mapped entities must have their Datastore
Persistent property set to Yes, as shown circled in orange in the following figure:

Figure 10: Automatic Mapping of Vocabulary Entity

Datasource: | EDC j Basic Properties %
=21 Medical Pru:u_pert_',r Mame F'ru:u_pert_',r Value
: Entity Mame Patient
B-E5 m e Inherits From
g EZEEH EDC Datasource Properties b3
_____ B4 gender Entity Identity patientld
_____ = patientName Datastore Persistent es
. Table Name
""" B4 region Datastore Caching
----- = treatment (Treatment) Identity Strategy
== Treatment Identity Column Mame
----- B treatmentld * Identity Sequence
----- = approved Identity Table Mame
..... = clinicalTrial Identity Table Name Column Mame
_____ B description Identity Table Value Column Mame
----- = medicalCode iers?un étrlategy N
_____ =5 patientld ersicn Column Mame
----- = providerld
----- = treatrmentDate

It is also possible for an external database to contain tables or fields not mapped to Vocabulary entities and
attributes - these terms are simply excluded from the Vocabulary.

Assume that database metadata containing a table named Pat i ent was imported. Because the table’s name
spelling matches the name of entity Pat i ent , the Table Name field was mapped automatically. Automatic
mappings are shown in light gray, as shown above. Also, note that the primary key of table Pat i ent is a
column named pat i ent | d. The Vocabulary Editor detects the primary key and determines that the property
Entity Identity should be mapped to attribute pati ent | d.

124 Progress Corticon : Data Integration: Version 6.3

Mapping and validating EDC database metadata

If the automatic mapping feature fails to detect a match for any reason (different spellings, for example), then
you must make the mapping manually. In the Table Name field, use the drop-down list to select the appropriate

database table to map, as shown:
Figure 11: Manual Mapping of Vocabulary Entity

Datasource: | EDC j Basic Properties 2
=& Medical Pru:u.pert_',r Mame F'ru:u.pert_*,r‘-falue
: } Entity Mame Patient
=5 F'EtIEﬂt. Inherits From
----- B patientld * _
_____ wd dob EDC Datasource Properties 3
_____ ®4 gender Entity Identity patientld
_____ = patientName Datastore Persistent Yes
_____ 53 region Table Mame
g Datastore Caching ;
""" —« treatment (Treatment) Identity Strategy PatientRecords.dbo.Patient
=4 Treatment Identity Column Name PatientRecords.dbe. Treatment
----- = treatrnentld * Identity Sequence
----- = approved Identity Table Mame
..... = clinicalTrial Identity Table Mame Column Mame

Identity Table Yalue Column Name
Version Strategy
Version Column Mame

..... = description

..... = medicalCode
..... B patientld

..... = providerld

..... = treatmentDate

Progress Corticon : Data Integration: Version 6.3 125

Chapter 14: Advanced EDC Topics

Mapping EDC database fields (columns) to Vocabulary Attributes

Automatic mapping of attributes works the same as entities. If an automatic match is not made by the system,
then select the appropriate field name from the drop-down in field:column property, as shown:

Figure 12: Manual Mapping of Vocabulary Attribute

[lj Medical.ecare 3

Datasource: | EDC j Basic Properties
- . Property Mame Property Value
Medical
= U EEPIE: ; Attribute Mame patientMame
E-= Fatien _) Data Type String
""" = patientld Mandatory Mo
""" = dob Mode Base
""" =4 gender EDC Datasource Properties

..... = patientMame
P Column Mame

----- = region
g Value Strategy i

el

el

----- = treatment (Treatment) Value Sequence dob
== Treatment Value Table Mame gender
----- = treatrentld * Value Tahle Mame Column Mame pat?enﬂcl
----- = approved Value Table Value Column Mame patientName

P . region
..... =1 clinicalTrial ?

..... = description

..... = medicalCode
..... = patientld

..... = providerld

..... = treatrentDate

Note: Handling data in a CHAR database column

The database column type CHAR has a constant length. When a Corticon string attribute is mapped to such a
column, the string retrieved from the database always has the length that is specified in the database definition.
When a string shorter than the specified length is assigned to the attribute, the database adds spaces at the
end of the string before storing it in the database. When the attribute is retrieved from the database, the value
returns with the padded spaces at the end of the string.

If this is not the intended behavior, change the database type for the column from CHAR to variable-length
character data type. If the database schema cannot be changed, either use at r i nSpace operator to strip the
trailing spaces from the returned attribute value or redefine the query string to allow for its full length including
added spaces.

Mapping EDC database relationships to Vocabulary Associations

Automatic mapping of associations works substantially the same as entities. However, rather than entry text
boxes and pulldowns for mappings, a more visual approach is provided. If an automatic match is made by the
system, it is displayed in grey as shown:

126 Progress Corticon : Data Integration: Version 6.3

Mapping and validating EDC database metadata

Diatasource: | Patient Data | Basic Properties

-1 Medical Property Name Property Value
! = Patient Association Role Name treatment

»

) Source Entity Mame Patient
- patientld * Target Entity Name Treatment
Cardinalities 1-»*
= gender Mavigability Patient-»treatment
- patientMame Mandatery Mo

-[m region

Patient Data Datasource Properties
: ~— treatment (Treatment) [Join Expression |
=-E5 Treatment

»

If you want to revise the join expression, click on the Join Expression Property Name, as shown:
[Join Expression |

The Join Expression dialog box opens with a deconstruction of the join expression, as shown:
G Join Expression ﬂ

Source Table Source Column Target Table Target Column i‘
PatientRecords.dbo.Patient patientld PatientRecords.dbo. Treatment patientld

QK Cancel |

Use the pulldown lists in each column to refine the join expression. You can add lines to define complex join

expressions where appropriate. As all revised join expressions are not validated, they are always displayed in
black.

For more information and examples of complex joins, see Associations as join expressions on page 104

Validate EDC database mappings

Once the Vocabulary has been mapped (either automatically or manually) to the imported database metadata,
the mappings must be verified by clicking the MAPPING Validate button on the Datasource panel, as shown:

Custom Data Types EDC
METADATA MAPPING SCHEMA ENUMERATION

) Import | X Clear (& Validate | X Clear 3 Create/Update) Import

If all the mappings are valid, then a confirmation window opens:

Progress Corticon Studio @

[0} Mo mapping issues were detected.

Progress Corticon : Data Integration: Version 6.3 127

Chapter 14: Advanced EDC Topics

If anything in the mappings does not validate, then a list of problems is generated:

€ Mapping Issues @

Mapping issues were detected.

Mo identifier specified for entity: corticoncdo.ECustomerCDO

Copy | [OK

These problems must be corrected before the Decision Service can be deployed.

Note: For a more detailed discussion of validation, see Types of mapping validation and validation errors on
page 128

Writing rules that access data through the EDC connection

With the EDC connection established, mapped, and validated, you can proceed to the Rule Modeling Guide
section "How to write rules to access external data" to create and test rules that use the EDC connection.

Types of mapping validation and validation errors

When EDC is enabled, the Vocabulary elements - Entity, Attribute, and Association - each have additional
properties that can be entered by the user or inferred from database metadata. Corticon EDC validates these
Vocabulary-to-Database mappings and displays error conditions in a window. There are three aspects to the
database validation function:

Dynamic Validation

Corticon Studio validates against imported database metadata as property values change in a Vocabulary. For
example, for a database-persistent entity, if you specify a table name that does not exist in the database
metadata, the system posts a validation message in the Problems View. Dynamic validation uses internal
Corticon algorithms to attempt validation without accessing Hibernate which would connect to the Datasource
to do full validation. Studio creates other error and warning validation messages depending on the severity of
the issue detected, such as:

* Data type mismatch between an attribute and a column that cannot be coerced.
* Property values are explicitly contradicted by database metadata.

* You select a property value, then re-import metadata, only to find that the selected value no longer exists
in the database schema.

Warnings are also created for "soft" errors, such as:

* If you designate a Vocabulary entity as datastore persistent, the system is unable to infer which database
table best matches the entity name, dynamic validation issues a warning message.

* Ifthe system is unable to unambiguously determine the join expression for a given association, the association
is flagged as a warning until you select one of the allowable values.

128 Progress Corticon : Data Integration: Version 6.3

Set additional EDC Datasource connection properties

Note: Dynamic validation is always performed against the imported copy of database metadata. You must
ensure that metadata is imported into the Vocabulary whenever the database schema is modified.

On-Demand Validation

In addition to dynamic validation, Corticon Studio provides the Datasource action Validate Mappings, as
illustrated in Validate EDC database mappings on page 127, so that you can validate the Vocabulary, as a
whole, against the database schema. Unlike dynamic validation, on-demand validation is performed against
the actual schema so it is considered the definitive test of Vocabulary mappings.

Internally, the system performs on-demand validation by building annotated Corticon Data Objects (CDOs)
from Vocabulary metadata, then asking Hibernate to evaluate the readiness of those CDOs with respect to the
database schema. If Hibernate "blesses" the CDOs, the system displays a message box indicating that the
Vocabulary mappings are valid, and that the Vocabulary is considered fit-for-use in a Decision Service. If
Hibernate detects any errors, the system presents the errors to the user in a scrolling dialog window. The
on-demand validation action simply presents raw information returned from Hibernate with no additional
transformations or interpretation.

Validation at Deployment

Corticon Server leverages on-demand validation functionality whenever a decision service is deployed. If
Corticon Server detects a problem, it throws an exception and prevents deployment.

Set additional EDC Datasource connection properties

There are additional properties you might want to set for an EDC Datasource connection.

Note: It is a good practice to test your connection before and after changing additional properties.

Connection Pooling

Corticon uses C3P0, an open source JDBC connection pooling product, for connection pooling to Hibernate.
The following properties might help tune connection pooling.

The following properties let you tune connection pooling:

Table 8: Settable C3P0 properties and their default value

Property Name Default Comment
value
hi ber nat e. c3p0. m n_si ze 1 | Minimum number of Connections a pool will maintain at any
given time.
hi ber nat e. ¢3p0. max_si ze 100 [Maximum number of Connections a pool will maintain at any
given time.

Progress Corticon : Data Integration: Version 6.3 129

Chapter 14: Advanced EDC Topics

Property Name Default Comment
value
hi ber nat e. ¢3p0. ti meout 1800 | Number of seconds a Connection will remain pooled but

unused before being discarded. Zero sets idle connections
to never expire.

hi ber nat e. ¢c3p0. max_st at emrent s 50 | Size of C3P0's Pr epar edSt at enent cache.

Enter zero (0) to turn statement caching off. Then--depending
on the alternative connection pooling mechanism
requirements--you might need to declare required JAR and
configuration files on the classpath.

You can bypass the use of C3P0 for connection pooling by setting the Property name
hi ber nat e. use. ¢3p0. connecti on_pool to the value f al se.

Note:

For more information about C3P0 and its use with Hibernate, see their JDBC3 Connection and Statement
Pooling page at htt p: / / ww. nthange. cont pr oj ect s/ ¢3p0/ i ndex. ht ml #appendi x_d.

Corticon has no recommendations for adjusting the properties in the Hibernate product. Refer to their web
location for details. Then consult with Progress Corticon Support to note the behaviors you are attempting to
adjust before making changes.

Database Time Zone
When your application stores date/time values in the database, you might need to set the following property:

com corticon. edc. dat eTi mezone. This property pertains to only the DateTime data type, and lets you
declare how DateTime values are expressed in the database:

Value Purpose

JDK_DEFAULT_TI MEZONE Declares that date/time values will be expressed in the Java Virtual
Machine (JVM) time zone. Use this setting if your date/time values are
expressed in “local” time.

urc Declares that date/time values will be expressed in GMT. This setting is
typical for internet applications that are used across time zones.

Anmeri ca/ Los_Angel es Declares that date/time values will be expressed in America/Los Angeles
time.

Eur ope/ Pari s Declares that date/time values will be expressed in Europe/Paris time.

Gvr+01: 00 Declares that date/time values will be expressed in time zone GMT plus
one hour.

Set your override values in the Property table of the Vocabulary editor's EDC tab, as illustrated:

130 Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

Property Mame Property Value i‘
hibernate.c3pl.min size 5
com.corticon.edc.dataTimezone uTcC

3

How data from an EDC Datasource integrates into rule
output

An EDC connector enables interaction with its connected database, its Datasource, to read and write data from
rule executions. Without database connectivity, Decision Service execution takes data in the request payload,
modifies it through rules, and then returns the data in the response. When EDC is used, the Datasource can
enrich the data in the request, and can store the result in the database. The following sections show separately
the effects in read-only and read-update scenarios. Included in these examples are variations that use the
Extend to Database feature to further enrich results.

To enable adequate complexity, the scenarios use data provided and the familiar Car go. ecor e Vocabulary:.

(¢ Cargo.ecore 2

E

4 5 Aircraft

= tailMumber *

B aircraftType

= maxCargoVolume

=y maxCargoWeight

= flightPlan (FlightPlan)
a4 = Cargo

= manifestMumber *

= container

= needsRefrigeration

= volume

= weight

— flightPlan (FlightPlan]
4 =4 FlightPlan

B flightMumber *

}— aircraft (Aircraft)

= cargo (Cargo)

Progress Corticon : Data Integration: Version 6.3 131

Chapter 14: Advanced EDC Topics

The sample Rulesheet is defined as shown:

Figure 13: Sample Rulesheet for EDC database examples

Conditions 0 1
a E a |AircraftaircraftType = T4T
== aircraftType b
b= maxCargoWeight ;
Filters Actions q T
1 -~ Post Message(s) |
2 A | Aircraft.rmaxCargoWeight=250000
3 E
4 C
5 D
6 E
T % Overrides
(] Rule Statements &2 | &I Rule Messages
Ref ID Post Alias Text
1 1 Info Aircraft 747z have been upgraded to carry 250,000 |bs of cargo

The Datasource data in this section was established in a Microsoft SQL Server installation as described in the
topic "Quick Steps for setting up the Cargo sample” in the Rule Modeling Guide.

Note: If you are just getting started, see the EDC tutorial, Modeling Progress Corticon Rules to Access a
Database using EDC. While not precisely the setup used for the examples in this chapter, you will get a detailed
walkthrough where the Datasource is Microsoft SQL Server.

When Datasource access is Read Only
In Read Only mode, data may be retrieved from the database in order to provide the inputs necessary to
execute the rules. But the results of the rules won’t be written back to the database — hence, read-only.

Open the project's Ruletest, and then set the menu option Ruletest > Testsheet > Database Access > Read
Only.

The variations that will be explored in Read Only mode are:

* Payload contains a record new to the database, and the entity is not extended to database on page 133
* Payload contains a record new to the database, and the entity is extended to database on page 134

* Payload contains existing database record on page 135

* Payload contains existing database record, but with changes on page 136

Finally, the section Effect of rule execution on the database on page 137 shows that the read-only functions did
not change the database but perhaps they should have.

132 Progress Corticon : Data Integration: Version 6.3

https://progress-dev.zoominsoftware.io/bundle/corticon-edc-modeling-tutorial/page/Tutorial-Modeling-Progress-Corticon-Rules-to-Access-a-Database-using-EDC.html
https://progress-dev.zoominsoftware.io/bundle/corticon-edc-modeling-tutorial/page/Tutorial-Modeling-Progress-Corticon-Rules-to-Access-a-Database-using-EDC.html

How data from an EDC Datasource integrates into rule output

Payload contains a record new to the database, and the entity is not extended to
database

Let’s look at a Studio Test with an Input Ruletest (simulating a request payload) containing a record not present
in the database. The initial database table dbo. Ai r cr af t is as shown:

Figure 14: Initial state of database table Ai r cr af t

dbo.Aircraft
tailMumber aircraftType maxCargoVolume — maxCargoWeight
M1001 747 400,00 200000, 00
M1002 DC-10 300.00 150000, 00
M1003 747 400,00 200000, 00
M1004 MD-11 350.00 175000,00
: Hi-_ ALEL ALEL ALEL MLEL

And the Studio Input Ruletest is as shown in the following figure.
Figure 15: Input Ruletest Testsheet with new record, in Read Only mode

Input
= Aircraft [1]
= aircraftType [747]
=] tailMumber [M1005]

We know from our Vocabulary that t ai | Nunber is the primary key for the Ai rcr af t entity. We also know
by examining the Ai r cr af t table that this particular set of input data is not present in our database, which
only contains aircraft records with t ai | Nunber values N100O1 through N1004. So when we execute this Test,
the Studio performs a query using the t ai | Nunber as unique identifier. No such record is present in the table
so all the data required by the rule must be present in the Input Ruletest. Fortunately, in this case, the required
ai r cr af t Type data is present, and the rule fires, as shown:

Figure 16: Results Ruletest with new record

Input Output
= Aircraft [1] 4 = Aircraft [1]
Bl aircraftType [747] B aircraftType [747]
= tailNumber [M1005] = maxCargoWeight [250000.000000]

= tailMumber [N1005]

[Rule Statements | B Rule Messages &3

Severity Message
Info 7475 have been upgraded to carry 250,000 kgs. of cargo

Progress Corticon : Data Integration: Version 6.3 133

Chapter 14: Advanced EDC Topics

Again, since EDC is Read Only for this test, no database updates are made and the end start of the Al RCRAFT
table, as shown, is the same as the original state:

Figure 17: Final state of database table Ai rcr aft

dbo.Aircraft
tailMumber aircraftType maxCargoVeolume — maxCargoWeight
M1001 747 400,00 200000, 00
M1002 DC-10 300.00 150000, 00
M1003 747 400,00 200000, 00
M1004 MD-11 350.00 175000,00
: Ht-_ ALEL ALEL ALEL MLEL

Payload contains a record new to the database, and the entity is extended to database

This scenario assumes the rule shown in Sample Rulesheet for Synchronization Examples makes use of an
alias extended to the database. By placing the Ai r cr af t Entity in the Scope of Rulesheet, we can right-click
on Ai r craft and then choose Extend to Database as shown:

Scope
4 (=] Aircraft
= aircl of Cut

= max Copy

Delete
Extend to Database I}

Localize...

Matural Language...

See the Rule Modeling Guide chapter "Writing Rules to Access External Data" for more information about this
setting. In that guide, you might want to learn about "Optimizing Aggregations that Extend to Database" which
pushes these collection operations onto the database.

134 Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

When our sample rule uses an alias extended to the database instead of the root-level entity shown in Sample
Rulesheet for Synchronization Examples, different behavior is observed. When an Input Ruletest or request
payload contains data not present in the database, as in test case N1005 above, and the database access
mode is Read-Only, the rules engine dynamically merges the input or payload with records in the database
table.

Figure 18: Results Ruletest showing merged records

Input Output Expected

=] Aircraft [1]
j=| aircraftType [747]
=] tailMumber [N1005]
=] Aircraft [2]
= aircraftType [747]
=] maxCargoVaolume
p=| maxCargoWeight
= tailMumber [N1001]
= Aircraft [3]
= aircraftType [DC-10]
=] maxCargoVeolume
=] maxCargoWeight
= tailMumber [N1002]
= Aircraft [4]
=l aircrafiType [747]
=] maxCargeVolume
=] maxCargeWeight
== tailMumber [N1003]
= Aircraft [5]
=] aircraftType [MD-11]
=] maxCargeVolume
= maxCargoWeight
= tailMumber [N1004]

£ Aircraft [1]
j=| aircraftType [747]
=4 maxCargoWeight [250000.000000]
=] tailNumber [N1005]
= Aircraft [2]
= aircraftType [747]
= maxCargoVolume [400.000000]
= maxCargoWeight [250000.000000]
== tailMumber [N1001]
= Aircraft [3]
= aircraftType [DC-10]
= maxCargoVolume [300.000000]
= maxCargoWeight [150000.000000]
= tailMumber [N1002]
= Aircraft [4]
=] aircraftType [747]
=] maxCargcVolume [400.000000]
=] maxCargoWeight [250000.000000]
= tailMumber [N1003]
= Aircraft [5]
=] aircraftType [MD-11]
= maxCargoVolume [350.000000]
= maxCargoWeight [175000.000000]
= tailMumber [N1004]

|=] Rule Statements | & Rule Messages &3 =8
Severity Message Entity

Info 7475 have been upgraded to carry 250,000 kgs of cargo Aircraft[1]

Info 7475 have been upgraded to carry 250,000 kgs of cargo Aircraft[2]

Info 7475 have been upgraded to carry 250,000 kgs of cargo Aircraft[4]

Payload contains existing database record

Now, let’s change our input data so that it contains a record in the database. As we can see in the following
figure, the value of t ai | Nunber in the Input Ruletest has been changed to N1003. Also, the value of

ai rcr af t Type has been deleted. By deleting the value of ai r cr af t Type from the Input Ruletest, rule
execution is depending on successful data retrieval because the Input Ruletest no longer contains enough
data for the rule to execute. Data retrieval is this rule’s “last chance” — if no data is retrieved, then the rule
simply won't fire.

Progress Corticon : Data Integration: Version 6.3 135

Chapter 14: Advanced EDC Topics

Fortunately, a record with this value exists in the database table, so when the Test is executed, a query to the
database successfully retrieves the necessary data.

Figure 19: Ruletest input with existing record

Input
& Aircraft [1]
= tailMurmber [M1003]

The Results Ruletest, as shown below, confirms that data retrieval was performed.

Figure 20: Ruletest output with existing record

Output
4 = Aircraft [1]
=y aircraftType [747]
=y maxCargoVeolume [400.000000]
=y maxCargoWeight [250000.000000]
= taillMurnber [N1003]

And, finding that the aircraft with t ai | Nunber =N1003 was in fact a 747, the rule fired. But as before, no
updates have been made to the database because this Test still uses Read-Only mode. The final database
state is as shown:

Figure 21: Final state of database table Ai rcr af t

dbo.Aircraft
tailMumber aircraftType maxCargoVolume maxCargoWeight
M1001 747 400,00 200000, 00
M1002 DC-10 300.00 150000, 00
M1003 47 400,00 200000,00
M1004 MD-11 350.00 175000,00
: Hi-_ ALEL ALEL ALEL MLEL

Payload contains existing database record, but with changes

What happens when, for a given record, the request payload and database record don’t match? For example,
look carefully at the Input Ruletest below. In the database, the record corresponding to tailNumber N1003 has
anai rcraft Type value of 747. But the ai r cr af t Type attribute in the Input Ruletest has a value of DC- 10.
How is this mismatch handled?

136 Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

Studio still performs a query to the database because it has the necessary key information in the provided

t ai | Nunber . When the query returns with an ai r cr af t Type of 747, the Synchronization algorithm decides
that the data in the Input Ruletest has priority over the retrieved data — for the purposes of working memory
(which is what the rules use during processing), the data in the Input Ruletest is treated as “more recent” than
the data from the table. The state of ai r cr af t Type in working memory remains DC- 10, and therefore the
condition of the rule is not satisfied and the rule does not fire. Even though the database record defines the
aircraft with t ai | Nunber of NLOO3 as a 747, this is not good enough to fire the rule. The other piece of
retrieved data, maxCar goWei ght , is accepted into working memory and is inserted into attribute

nmaxCar goWei ght in the results Ruletest upon completion of rule execution, as shown on the right side of the
following figure:

Figure 22: Ruletest with existing record but different aircraft

Input Output
=] Aircraft [1] =] Aircraft [1]
== aircraftType [DC-10] == aircraftType [DC-10]
m=| taillumber [N1003] = rmaxCargeVolurme [400.000000]

= maxCargoWeight [200000.000000]
== tailMumber [M1003]

Let's modify the scenario slightly. Look at the next Input Ruletest, as shown on the left side off the following
image. It contains an ai r cr af t Type attribute value of 747, but the Al RCRAFTTYPE value in the Al RCRAFT
table of the database (for this value of TAIl LNUMBER) is MD- 11. How is data synchronized in this case?

Figure 23: Ruletest with existing record and same aircraft

Input Output
=] Aircraft [1] 4 — Aircraft [1]
== aircraftType [747] == aircraftType [747]
== tailllumber [N1004] = rmaxCargeVolurme [350.000000]

= maxCargoWeight [250000.000000]
== tailMumber [M1004]

Once again, when a data mismatch is encountered, the data in the Input Ruletest (simulating the request
payload) is given higher priority than the data retrieved from the database. Furthermore, the data in the Input
Ruletest satisfies the rule, so it fires and causes maxCar goWei ght to receive a value of 250000, as shown
on the right side of the figure above.

Effect of rule execution on the database

In several of the examples above, the state of data post-rule execution differs from that in the database. In
Results Ruletest with Existing Record and Results Ruletest with Existing Record, rule execution produced a
max Car goWei ght of 250000, yet the database values remained 200000. The application architect and
integrator must be aware of this and ensure that additional data synchronization is performed by another
application layer, if necessary. When Corticon Studio and Server are configured for Read Only data access,
data contained in the response payload may not match the data in the mapped database.

When Datasource access is Read/Update

In Read/Update mode, Decision Services can update the database so that data changes made by rules are
persisted. That avoids the problem of post-rule execution data mismatch experienced in Read Only, but must
be used carefully (especially when testing from Studio!) since rules will be writing to the database.

Progress Corticon : Data Integration: Version 6.3 137

Chapter 14: Advanced EDC Topics

Open the project's Ruletest, and then set the menu option Ruletest > Testsheet > Database Access >
Read/Update.

The variations that will be explored in Read/Update mode are:
* Payload contains a new record not in the database on page 138
* Payload contains existing database record on page 139

* Payload contains existing database record, but with changes on page 139

Payload contains a new record not in the database
Once again, the Studio Ruletest Input is shown in the following figure.

As before, no such record is present in the table so all the data required by the rule must be present in the
Input section. Fortunately, in this case, the required ai r cr af t Type data is present, and the rule fires, as
shown:

Figure 24: Ruletest with new record

Input
& Aircraft [1] :
=l aircraftType [747] = aircraftType [747]
= tailMumber [M1005] = maxCargoWeight [250000.000000]

== tailMumber [M1005]

Since the EDC mode is Read/Update, a database update is made and the end state of the Ai rcr af t table,
shown below, is different from its original state.

Figure 25: Final state of database table Aircraft

dbo.Aircraft
tailMumber aircraftType maxCargoVolume maxCargoWeight
S 100 1 747 400.00 25000000
M1002 DC-10 300,00 150000,00
M1003 147 400.00 250000,00
M1004 MD-11 350,00 175000,00
M1005 a7 ALEL 250000,00
#* ALEL MLEL ALEL ALEL

We can see that the database and the Ruletest Results (simulating the response payload) contain identical
data for the record processed by the rule — no post-execution synchronization problems exist.

138 Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

Payload contains existing database record

Now, let’s revisit the Input Ruletest shown in Input Ruletest with Existing Record. Setting this Test to
Read/Update mode, it appears as shown:

Figure 26: Ruletest with existing record

Input Cutput
& Aircraft [1] a = Aircraft [1]
=l aircraftType = aircraftType [747]
=] tailMurmber [M1003] ey maxCargoVolume [400.000000]

= maxCargoWeight [250000.000000]
== tailMurmber [M1003]

The Output section of the Ruletest confirms that data retrieval was performed. And, finding the retrieved aircraft
was (and still is) a 747, the rule fired.

Unlike the Read-Only example, the database has been updated with the new naxCar goWei ght data. The
final database state is as shown:

Figure 27: Final state of database table Ai r cr af t

dbo.Aircraft
tailMumber aircraftType maxCargoVeolume maxCargoWeight

M1001 747 400.00 250000,00
M1002 DC-10 300.00 150000,00
}_ M1003 M7 400,00 250000, 00
i M1004 MD-11 350.00 175000,00
M1005 747 ALEL 250000,00

* ALEL MLEL ALEL MLEL

Payload contains existing database record, but with changes

To better illustrate how the following examples affect the database when run in Read/Update mode, we will
return the database’s Ai r cr af t table to its original state, as shown:

Figure 28: Original state of database table Ai r cr af t

dbo.Aircraft
tailMumber aircraftType maxCargoVolume maxCargoWeight
M1001 747 400,00 200000, 00
M1002 DC-10 300.00 150000, 00
M1003 47 400,00 200000,00
M1004 MD-11 350.00 175000,00
Hi-_ ALEL ALEL ALEL MLEL

Progress Corticon : Data Integration: Version 6.3 139

Chapter 14: Advanced EDC Topics

When the following Ruletest is executed, we know from our experience with Read Only mode that the rule will
not fire. However, notice in Final State of Database Table Ai r cr af t that the database record has been updated
with the ai r cr af t Type value (DC- 10) present in working memory when rule execution ended. And since the
value of ai r cr af t Type in working memory came from the Input Ruletest (having priority over the original
database field), that's what's written back to the database when execution is complete. The final state of the
data in the database matches that in the Results Ruletest upon completion of rule execution, as shown in the
Results Ruletest:

Figure 29: Ruletest with existing record

Input Cutput
=l Aircraft [1] =] Aircraft [1]
=] aircraftType [DC-10] = aircraftType [[C-10]
=] tailMurmber [M1003] =y maxCargoVolume [400.000000]

=y maxCargoWeight [200000,000000]
== tailMumber [M1003]

Figure 30: Final state of database table Ai rcr aft

dbo.Aircraft
tailMumber aircraftType maxCargoVolume — maxCargoWeight
M1001 a7 400,00 250000,00
M1002 DC-10 300,00 150000,00
| P_ M1003 DC-10 400.00 20000000
i M1004 MD-11 350.00 175000,00
#* ALEL MLEL ALEL ALEL

140 Progress Corticon : Data Integration: Version 6.3

EDC data caching

As before, let’'s modify the scenario slightly. The Ruletest Input shown in the next figure now contains an aircraft
record that has an ai r cr af t Type value of 747, but the ai r cr af t Type value in the database’s Ai rcr af t
table (for this t ai | Nunber) is MD- 11. Let’s see what happens to the database upon Test execution:

Figure 31: Ruletest with existing record

Input Cutput
& Aircraft [1] =] Aircraft [1]
= aircraftType [747] =l aircraftType [747]
= tailMurmber [MN1004] By maxCargoVolume [350.000000]

= maxCargoWeight [250000.000000]
= tailMurnber [M1004)

Figure 32: Final state of database table Ai rcr aft

dbo.Aircraft
tailMumber aircraftType maxCargoVolume maxCargoWeight
M1001 47 400.00 250000,00
M1002 Dic-10 300.00 150000,00
M1003 DC-10 400.00 200000,00
P_ M1004 7 350.00 250000,00
*_ ALEL ALEL ALEL MLEL

Once again, when a data mismatch is encountered, the data in the Input Ruletest (simulating the request
payload) is given higher priority than the data retrieved from the database. Furthermore, the data in the Input
Ruletest satisfies the rule, so it fires and causes maxCar goWei ght to receive a value of 250000, as shown
above. Unlike before, however, the new maxCar goWei ght value is updated in the database.

EDC data caching

Corticon EDC supports caching of database data to accelerate decision service execution by minimizing the
retrieval of data that has already been retrieved. Caching can provide significant performance benefits when
common data such as an actuarial table or a static list of suppliers will be needed many times by a decision
service.

Corticon EDC automatically caches data within the scope of a single decision service execution. That is level
1 caching. If you want the benefits of caching to occur across decision service executions, you need to enable
level 2 caching. The difference between level 1 and 2 is how long the cached data lives in memory before
having to be queried again from the database when needed. With level 1, it only lives for a single execution.
With level 2, it lives across executions. Level 2 caching is optional but can provide significant benefit when
common data will be needed by many separate executions of your decision service.

How to use level 2 caching

There are two ways caching can be used in Corticon rules:

1. Entity cache is appropriate when common database-enabled entities are used in the input messages sent
to a Decision Service.

Progress Corticon : Data Integration: Version 6.3 141

Chapter 14: Advanced EDC Topics

e Case for using entity caching: Consider a Decision Service that expedites Shipping Requests. The
Decision Service might receive a Shipment Request for an Order entity that has a one-to-many association
with Customer entities. When the Decision Service receives an Order entity, it would query the database
to get the associated Customer entities (for example, the Decision Service needs the customer’s address
to estimate delivery lead time). When using an entity cache, the Customers could be queried once, and
that data used in expediting other Order entities.

2. Query cache optimizes lookup (query) of database data, such as when a cached entity is extended to the
database in a Rulesheet. A Query Cache is read-only: it should not be expected to receive updates from
the rules. If an update is attempted on an entity contained in a query cache, an exception occurs. A Query
Cache is optimistic; that means that updates from outside of the Decision Service will not modify or invalidate
the cache contents.

* Case for using query caching: A Decision Service that prices online orders using a query cache could
query state sales tax rates (or VAT rates) once, and then use that data when calculating the price of all
orders it receives.

* Case for using query caching: Consider a Decision Service that prices insurance policies. With a query
cache, it could query an actuarial table once, and then use the results in pricing multiple insurance
policies.

First, you specify the caching settings in the Vocabulary and Rulesheets, and then enable caching in tests and
deployed Decision Services.

How to specify caching on Vocabularies and Rulesheets

Setting caching on datastore persistent Entities in the Vocabulary

Database caching is a feature of an EDC Datasource connection, enabling both Entity caching and Query
caching.

To set Entity caching in a Vocabulary:
1. Identify the Vocabulary entities that you want cached.
2. Edit the Vocabulary.
3. Confirm (or set) each entity's Datastore Persistent property to Yes
4. Choose the preferred Datastore Caching value:
* No Cache or blank (default) - Disable caching.

* Read Only - Caches data that is never updated. This strategy works well for unchanging reference
data that might need to occasionally be flushed and repopulated. For example, countries of the world.

* Read/ Wit e - Caches data that is sometimes updated while maintaining the semantics of "read
committed" isolation level. If the database is set to "repeatable read," this concurrency strategy almost
maintains the semantics. Repeatable read isolation is compromised in the case of concurrent writes.
See https://sglperformance.com/2014/04/t-sql-queries/the-repeatable-read-isolation-level for a discussion
of this functionality.

* Nonstrict Read/ Wite -Caches data that is sometimes updated without ever locking the cache. If
concurrent access to an item is possible, this concurrency strategy makes no guarantee that the item
returned from the cache is the latest version available in the database. This works well for data that
changes and must be committed, but it does not guarantee exclusivity or consistency (and so avoids
the associated performance costs). This strategy allows more than one transaction to simultaneously
write to the same entity and is intended for applications able to tolerate caches that may at times be out
of sync with the database.

142 Progress Corticon : Data Integration: Version 6.3

https://sqlperformance.com/2014/04/t-sql-queries/the-repeatable-read-isolation-level

EDC data caching

g *Cargo.ecore &3

Datasource: | EDMC j

=21 Cargo
E Aircraft

=-E5 Cargo

..... B manifesthumber *

..... B container

..... B needsRefrigeration

----- = volume

----- = weight

----- 3 flightPlan (FlightPlan

-4 FlightPlan

| |]

Basic Properties

Property Mame
Entity Mame
Inherits From

EDC Datasocurce Properties

Entity Iclentity
Datastore Persistent

| Table Mame
- |Datastore Caching

ldentity Strategy

Identity Colurmn Mame

Identity Sequence

Identity Table Mame

Identity Table Mame Colurmn Mame
Identity Table Value Column Mame
Version Strategy

Version Column Mame

Set query caching on Entities in a Rulesheet

In a Rulesheet, caching can be set on an Entity and on a database filter. You can use either or both.

b

Property Value
Cargo

b

rmanifestfumber
Yes

Mo Cache

Read Only

Read/ Write
Maonstrict Read/Write

Note: Query caching is independent of entity caching's Datastore Caching setting.

To use query caching on an entity in a Rulesheet:

1.

In a Rulesheet, choose Advanced view to show the Scope tab. Datastore-persistent entities have a database

decoration.

Right-click on a datastore-persistent entity, and then choose Extend to Database.

3. Right-click again on the same datastore-persistent entity, and then choose Cache Query, as shown:

Scope
- =] Aircraft [plane]
a |25 Cargo [freight]
PR of Cut
=| Copy
Delete
v | Extend to Database
Cache Query

Localize...

Matural Language...

Progress Corticon : Data Integration: Version 6.3

143

Chapter 14: Advanced EDC Topics

Set query caching on database filters in a Rulesheet
To use query caching on a database filter in a Rulesheet:

1. InaRulesheet, choose Advanced view to show the Scope tab. Datastore-persistent entities have a database
decoration.

2. On the Filters tab, right-click on a filter that references an entity extended to database, and then choose
Database Filter. The filter is decorated with a database symbol.

3. Right-click on that filter again, and then choose to Cache Query, as shown:

Filters

177 plane.aircraftType= 747" -
271 | freight.weight > 2000
3 [freioht.container="reefer’

4 of Cut

3 .

6 Copy

; ¥ Delete

g Select All

10

1 4 Disable

12

13 S Insert Row

14 §+ Remove Row

13 | 3+ AddRowstoEnd
v | Database Filter

Cache Query

Precondition

Localize...

MNatural Language...

Settings for EDC caching

The cache settings described in How to specify caching on Vocabularies and Rulesheets on page 142 can be
combined to achieve your caching goals.

144 Progress Corticon : Data Integration: Version 6.3

EDC data caching

Legend:
* Vocabulary - Set caching on datastore persistent Entities in the Vocabulary
* Scope - Set query caching on Entities in a Rulesheet

* Filter - Set query caching on database filters in a Rulesheet

Settings Description

Operates only on the entities in the Decision Service request payload. Corticon

[X] \S{ggagu' ary will retrieve all missing attribute data from the database (or from its entity cache
E } il tp er if data already exists) for the requested entity instance(s). If these entities instances
are associated with other entities, then these associated entities will also be placed
in the entity cache.
The incoming entity in the request payload will add to the entity cache, whereas
{ ﬁ \S/ggagu' ary the query cache will be populated with all records from the mapped database table
[] Fil fer (if no query filter is defined). NOTE: Typically not set on an entity. Instead, set

either entity or query cache on the entity depending on the application scenario.

The incoming entity in the request payload will add to the entity cache, where the
\5/8832“' ary query cache will be populated with the filtered records from the mapped database
Filter table (defined by the filter criteria). NOTE: Typically not set on an entity. Instead,
set either entity or query cache on the entity depending on the application scenario.

X%

How to work with database caches

Corticon's EDC provides functionality for enhanced database caching at runtime. Its cache is temporary data
that duplicates data located in a database so that it can be repeatedly accessed with minimal costs in terms
of time and resources. If an application must be certain not to get stale data, then it should not use caching.
Caching is best used for reference data such as tax or actuarial tables.

What gets cached is based on settings in a project's Vocabulary and Rulesheets. Ruletests and deployed
Decision Services let you choose to enable the requested caching. The first cache usage takes some overhead
to establish the cache so that subsequent test runs get the benefit of very fast performance. When Studio or
Server restarts, its in-memory cache(s) and on-disk cache files are cleared.

Progress Corticon : Data Integration: Version 6.3 145

Chapter 14: Advanced EDC Topics

Testing caching on a Studio Ruletest to Run in Studio

Once you have Rulesheets and a Vocabulary that are prepared for database caching, choosing to enable
cache on the Studio will perform the caching functions in the Studio's space. To enable caching on the Ruletest,
choose the Ruletest menu command Testsheet > EDC Database Access > Enable Cache, as shown:

Testsheet 4 & Add Testsheet

p Run All Tests Remowve Testsheet
iwmls dm Memcsims e T ommdmle =

i=| Report I
Data k
EDC Database Access 3 Mone

v Read Onl
Execution Properties 3 sac Mty
Read/Update

Deploy
B Run Test
Output Validation »

v Enable Cache
Disable Cache

v Return All Entity Instances

Return Incoming/Mew Entity Instances Only

When you run the Ruletest in Studio, you can observe its performance against your Input. There are no local

files that are user modifiable.

Executing a Studio Ruletest against a deployed Decision Service

You can run your Ruletests against the Decision Service deployed on Corticon Server where you can tune the
cache configuration of each Decision Service instance. The optimal way to manage a cache-enabled Decision

Service is as follows:

1. In Studio, package the Decision Service and its Datasource Configuration file in a location that is accessible
from the Web Console user's machine. When you deploy a Decision Service to a Server together with its
Datasource Configuration file, all the Vocabulary and Rulesheet cache choices that you specified are

packaged in the Decision Service.

2. In aweb browser, connect to the Web Console that manages the server where you will deploy the Decision
Service—perhaps a production-quality machine reserved for testing.

3. Inthe Web Console, add a Decision Service. Locate the EDS file, and then on the Database tab, locate

the Datasource Configuration file.

4. Choose the EDC database settings that were on the Ruletest, as shown:

EDC Access Mode
None ® Read Only ©) Read/Update

EDC Entities Returned Mode

® All Entities Incoming and New Entities

EDC Caching

Save & Deploy Cancel

5. Click Save and Deploy.

146

Progress Corticon : Data Integration: Version 6.3

EDC data caching

Note: Once deployed, you can run Ruletests in Studio by changing the Test Subject to Run against Server,
and then choosing your deployed Decision Service. However, the EDC Database Access settings on the
Ruletest are ignored. Instead, use the corresponding options on the deployed Decision Service through the
Web Console.

If you want to tune the cache configuration, see Modifying a cache configuration on page 148.

Important: Turning caching on or off - If you want to enable or disable caching on a deployed Decision
Service, the mechanisms of caching require that you undeploy and delete the Decision Service, and then add
and deploy the Decision Service again with the cache enablement setting you want.

Cache files and configuration on Corticon Server
On Corticon Servers:

* Each Decision Service maintains its own cache, and cached data is never shared between Decision Services.
Undeploying a Decision Service immediately clears its cache in memory and on disk.

* Each Decision Service records its configuration in its properties file,
[CORTI CON_WORK DI R] / et ¢/ ehcache_<DSNanme> v<M n». xm where <DSName>_ v<M.m> is the
named and versioned Decision Service. For example,
[CORTI CON_WORK DI R\ et c\ ehcache_Cargo_vO0. 16. xm .

Properties in a cache configuration

The first run of the Decision Service on a Corticon Server creates its cache configuration file. The default
properties and values for the deployed Decision Service ehcache_Car go_v0. 16. eds are in its configuration
file encache_Cargo_v0. 16. xm :

<?xm version="1.0" encodi ng="UTF-8"?>
<ehcache>
<di skSt ore pat h="[CORTI CON_WORK_DI R\ Server\etc\ Cargo_v0. 16. xm " />
<def aul t Cache
over f | owToDi sk="t rue"
ti meTolLi veSeconds="120"
ti meTol dl eSeconds="120"
eternal ="f al se"
maxEl enent sl nMenor y="1000" />
</ ehcache>

where:
* di skStore path is the location where overflows to disk are written.

* overfl owToD sk sets whether elements can overflow to disk when the in-memory cache has reached
the maxEl enent sl nMenor y limit.

* tinmeTolLi veSeconds is the maximum number of seconds an element can exist in the cache regardless
of use. The element expires at this limit and will no longer be returned from the cache. If the value is 0, no
TTL eviction takes place (infinite lifetime).

* tineTol dl eSeconds is the maximum number of seconds an element can exist in the cache without being
accessed. The element expires at this limit and will no longer be returned from the cache. If the value is 0,
no TTL eviction takes place (infinite lifetime).

* eternal sets whether elements are eternal. When eternal is t r ue, timeouts are ignored and elements
are never expired.

* maxEl enment sl nMenory is the maximum number of objects that will be created in memory. When set to
0, there is no limit.

Progress Corticon : Data Integration: Version 6.3

147

Chapter 14: Advanced EDC Topics

Modifying a cache configuration

If you want to modify any of the cache configuration properties for a Decision Service deployed on Corticon
Server, you need to follow these steps for each Decision Service instance, as illustrated for
ehcache_Cargo_v0. 16. xm :

1. Run the deployed Decision service with its cache enabled to create its default configuration file in et c.
2. Edit the file to specify your preferred property values and then save it.

3. Add the folder and the explicit filename, in this case et c\ ehcache_Car go_v0. 16. xmi , to the server
classpath.

4. Edit the Decision Service's deployed Datasource Configuration file to add the location of the configuration
file relative to the classpath as a property, as illustrated:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<deci si onServi ce>
<dat asour ces>
<edc useFor QueryService="fal se" description="" nane="EDC'>
<connection-url >j dbc: progress: sql server://local host: 1433
dat abaseNane=Pat i ent Recor ds</ connecti on-url >
<dat abase-dri ver>com corti con. dat abase. i d. MsSql </ dat abase-dri ver>
<passwor d>062046016058035029061039110</ passwor d>
<user name>061046</ user name>
<properties>
<property nane="net.sf.ehcache. confi gurati onResour ceNange"
value="..\..\..\..\.. \etc\ehcache_Cargo_v0. 16. xm "/ >
</ properties>

</ edc>

</ dat asour ces>
</ deci si onServi ce>

where val ue is the appropriate relative location.

5. Restart the Server to apply the changes.

Note: For more information about the settings and behaviors of Corticon's advanced EDC caching, see the
Ehcache 2.4.3 documentation.

Metadata for Datastore Identity in XML and JSON
Payloads

When Element attributes have extra information at the Entity Element level, data such as the datastore identity
requires special handling as metadata because it is not an attribute in the Vocabulary. It is invalid to declare
the datastore identity as an Element, as shown:

<?xm version="1.0" encodi ng="UTF-8"?>
<Corti conRequest deci si onServi ceNane="MWDS">
<Wr kDocunent s>
<TestEntityl id="TestEntityl id_1">
<dat abasei d>1</ dat abaseid> this is incorrect

<t est Bool ean xsi:nil="true" />
<testDate xsi:nil="true" />
<testDateTinme xsi:nil="true" />
<testDecinmal xsi:nil="true" />
<testlnteger xsi:nil="true" />
<testString xsi:nil="true" />
<testTime xsi:nil="true" />

148

Progress Corticon : Data Integration: Version 6.3

http://www.ehcache.org/documentation/EhcacheUserGuide-2.4.pdf

Relational database concepts in the Enterprise Data Connector

</ TestEntityl>
</ Wor kDocunent s>
</ Corti conRequest >

Adding Datastore Identity to an XML Payload

For an XML payload, dat abasei d is placed inside the Element, as shown:

<?xm version="1.0" encodi ng="UTF-8"?>
<Corti conRequest deci si onServi ceNane="WDS" >
<Wor kDocunent s>
<TestEntityl databasei d="1" id="TestEntityl id_1">

<t est Bool ean xsi:nil="true" />
<testDate xsi:nil="true" />
<testDateTine xsi:nil="true" />
<testDecimal xsi:nil="true" />
<testlnteger xsi:nil="true" />
<testString xsi:nil="true" />
<testTime xsi:nil="true" />

</ TestEntityl>
</ Wor kDocunent s>
</ Corti conRequest >

Adding Datastore Identity to a JSON Payload

In JSON formatting, the #dat ast ore_i d is placed in the ___net adat a section of the Entity, as shown:

{"nane": " WDS",
"Cbjects": [{
"testDate": null,
"testDecimal ": null,
"testDateTinme": null,
"testString": null,
"t est Bool ean": null,
"testInteger”: null,
"testTime": null,
" metadata": {
"#id": "TestEntityl_ id_ 1",
"#type": "TestEntityl",
"#datastore_id": "1"

}H
}

For more information about datastore identity, see the topic Identity strategies on page 150.

Relational database concepts in the Enterprise Data
Connector

Corticon's Enterprise Data Connector integrates its Decision Services with implementations of the relational
database model.

Note: Identity and strategy concepts are general relational database concepts. Refer to your RDBMS brand's
documentation for more information, especially the identity strategies that are specific to certain brands.

Progress Corticon : Data Integration: Version 6.3 149

Chapter 14: Advanced EDC Topics

Identity strategies

Because EDC allows Studio and Server to dynamically query an external database during Rulesheet/Decision
Service execution, the Vocabulary must contain the necessary key and identity information to allow Studio and
Server to access the specific data required. There are two identity types which may be selected for each
Vocabulary entity: application and datastore.

Application Identity

With application identity, the field(s) of a given table’s primary key are present as attributes of the Vocabulary
entity. As a result, application identity normally means that the table’s primary key field(s) have some business
meaning themselves; otherwise they wouldn’t be part of the Vocabulary. The Car go sample (described in the
Basic Rule Modeling and Using EDC tutorials) illustrates entities using application identities. In the case of
entity Ai r cr af t, the unique identifier (primary key) is t ai | Nunber . In the database metadata, t ai | Nunber
is the designated primary key field. The presence in the Vocabulary of a matching attribute named t ai | Nunber
informs the auto-mapper that this particular entity must be application identity.

Datastore Identity

A Vocabulary entity uses datastore identity when it does not have an attribute that matches the database table’s
primary key field(s) . The table’s primary key is effectively a surrogate key which really has no business meaning.
If the designated primary key fields in the imported database metadata are not present as attributes in the
Vocabulary entity, then the Vocabulary Editor will assume datastore identity and insert the table’s primary key
field(s) in the datastore-identity:column property.

We have modified our Ai r cr af t table slightly to change the primary key. Previously, we assumed that

t ai | Nunber was the unique identifier for each Ai r cr af t record — in other words, every aircraft must have
a tail number and no two can have the same one. Let’'s assume now that this is no longer the case — perhaps
t ai | Nunber is optional (perhaps aircraft based in some countries don’t require one?) or we somehow acquired
two aircraft with the same t ai | Nunber . So instead of t ai | Nunber , we adopt a surrogate key for this table
named Ai r cr af t _| Dthat will always be non-null and unique. And since this field has no real business meaning
(and we never expect to write rules with it), it isn’'t included in the Vocabulary.

Note: We can get to this state by clearing the database metadata, and then -- in the database - clearing (or
deleting/recreating) the database. When we create the database schema again, the entity identities are all
defaulted to datastore identities.

150 Progress Corticon : Data Integration: Version 6.3

Relational database concepts in the Enterprise Data Connector

When the auto-mapper updated the schema, the Entity Identity was set to a NULL, and set the primary key
field(s) in Identity Column Name as | D, as shown:

Figure 33: Automatic Mapping of Datastore Identity Column

[*Cargo.ecore 33

Datasource: | EDC j Basic Properties E
- Property Mame Property Value
.
= "" lgarg Entity Mame Aircraft
B = Inherits From
- aircraftType . "
=4 maxCargoVolume - EDC Détasaurce Properties ®
oy maxCargoWeight Entity Identity
H . Datastore Persistent Yes
= tailMurnber
i .) Table Mame
L= flightPlan (FlightPlan) Datastore Caching
B= C?"g':' Identity Strategy
- FlightPlan Identity Column Mame
Identity Sequence

Identity Table Mame

Identity Table Mame Column Mame
Identity Table Value Calumn MName
Version Strategy

Version Column Mame

If the auto-mapper does not detect the correct primary key in the metadata, we may need to manually select
the field from the drop-down list, as shown:

Figure 34: Manual Mapping of Datastore Identity Column

lig *Cargo.ecore 32

Datasource: lh‘ Basic Properties

e

5] Cargo Property Mame Property Value
ey Aircraft Entity Name Aircraft
& = Ellrcr.a . Inherits From
[aircra e
i = maxCarg}r:\fnlume EDC Datasource Properties S
: - maxCargoWeight Entity Identity
: atastore Persistent =3
- tailNumber _?_ bie Persi ¥
i . . able Name
------ = flightPlan (FlightPlan) Datastore Caching
CE= Cérgn Identity Strategy
- FlightPlan Identity Column Mame

Identity Sequence

Identity Table Mame

Identity Table Name Column Name
Identity Table Value Column Mame
Version Strategy

Version Column Name

<l | ol

aircraftType
maxCargoVeolume
maxCargoWeight
tailMumber

By choosing datastore identity we are delegating the process of identity generation to Hibernate. That does
not mean that we cannot control how it does this. The Vocabulary Editor offers the following ways to generate
the identities:

* Native - Lets Hibernate choose the appropriate method for the underlying database. This usually means a
Sequence in the RDBMS. Depending on the RDBMS you use, a sequence may require the addition of a
sequence object or generator in the database.

* Table - Uses a table in the datastore with one row per table, storing the latest max id.

* Identity - Uses identity (Requires identity support in the underlying database.)

Progress Corticon : Data Integration: Version 6.3 151

Chapter 14: Advanced EDC Topics

* Sequence - Uses sequence (Requires sequence support in the underlying database.)
* UUID - A UUID-style hexadecimal identity.

All of these strategies are database-neutral except for sequence. It is generally recommended that identity
strategy be adopted for Vocabularies that are used to generate the database. When mapping to an existing
database either identity or sequence strategies are typically used, depending on the database design.

Note:

These generators can be used for both datastore and application identities. The datastore identity is always
using a strategy; if not explicitly set by the user, a default strategy is used. The application identity does not
have a default strategy.

All strategies are using the integer data type with the exception of UUID which is using a string data type. If
the type of the application identity attribute type does not fit the selected value strategy (for application identity),
you get an alert.

For examples of proper syntax for datastore identities in query payloads, see the topic Metadata for Datastore
Identity in XML and JSON Payloads on page 148

For a detailed discussion of this subject, refer to The Hibernate community documentation, section 5.1.2.2:
Identifier generator.

Advantages of using Identity Strategy rather than Sequence Strategy

EDC offers options for assigning primary keys. For SQL Server databases, you might want an Identity strategy.
For an Oracle database, you might choose a Sequence strategy. Consider the following points when deciding
whether to use identity strategy or sequence strategy:

* When using the Create/Update Database Schema function in the Vocabulary, the sequences are generated
automatically and tied to the table id fields on the database side. On the other hand, when using sequence
strategy, the sequences are not generated during the Create/Update Database Schema process. If Corticon,
at runtime, attempts to access a sequence and finds it missing, it will try to create it on the fly. But such a
dynamic creation of sequences is tricky and does not always work properly.

* Using identity strategy should result in better performance when inserting a large number of records into
the database. This is simply because the database I/O is cut in half since there is no need to retrieve the
next unique id from the database prior to adding a new record.

* Using sequence strategy tends to not be compatible with read-only database access which may result in
runtime exceptions.

* Using identity strategy makes a Vocabulary more portable across databases since not all databases support
sequences.

Hibernate supports Sequence strategy for all databases; in a case where the database does not support it --
such as SQL Server -- Hibernate emulates it. However, in a case where the database does not support Identity
strategy -- such as Oracle -- there is no emulation. This makes Sequence more portable.

Key assignments

Key designations occur automatically once an entity identity has been defined in the Vocabulary Editor.

152 Progress Corticon : Data Integration: Version 6.3

https://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch05.html#mapping-declaration-id
https://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch05.html#mapping-declaration-id

Relational database concepts in the Enterprise Data Connector

Primary Key

If the chosen (or auto-mapped) entity identity appears in the Vocabulary as an attribute (see Application
identity), then that attribute receives an asterisk character to the right of its node in the Vocabulary's TreeView.

Attributes with asterisks are part of the entity’s primary key as shown in Automatic Mapping of Vocabulary
Entity.

If the chosen (or auto-mapped) entity identity does not appear in the Vocabulary as an attribute see Datastore
identity), then no attribute receives an asterisk character. None of the attributes in the Vocabulary are part of
the entity’s primary key, as shown in Automatic Mapping of Datastore Identity Column. This causes complications
when testing and invoking Decision Services with connected databases. If no primary key is visible in the
Vocabulary, then how do we indicate in an unambiguous way the specific records(s) to be used by the Decision

Service?

In the Studio Test, an entity using Datastore identity has its key set in the entity’s Properties window. The
following figure shows that the Ruletest was chosen. Right-clicking on first Cargo entity and choosing Properties
on the menu opened the Properties tab where the Datastore ID side tab was selected. The value 23 was

entered for the test:

Figure 35: Setting the Identity for Entities Using Datastore Identity

E& *Cargo.ecore E Cargo.ers vc “Cargo.ert | &3 | [tutorial_example.erf =0
untitled_1
STuterial/Tutorial-Done/Cargo.ers
Input Output Expected
=l Cargo [1] - = Cargo [1] - =l Cargo [1] -
= container = container [standard] == container [standard]
= volume [10] = volume [10] = volume [10]
=] weight [1000] =] weight [1000] =] weight [1000]
= Cargo [2] - =l Cargo [2] - =l Cargo [2] -
] Rule Statements | C Rule Messages &3 =0
Sewverity Message Entity g
Info Carge with volume > 30 cubic meters must be packaged in an oversize con.. Cargel2] s
4 T b
El Properties 22 | [21 Problems | €] Error Log e~ =0
Ruletest 23
Testsheet
Comments
Datastore ID

Progress Corticon : Data Integration: Version 6.3

153

Chapter 14: Advanced EDC Topics

When we export the Ruletest to XML (Ruletest > Testsheet > Data > Output > Export Response XML)
illustrates how this Database ID appears in the XML message. In the following figure, we see how the Database
ID value is included in the XML as an attribute (an XML attribute, not a Vocabulary attribute). Your XML toolset
and client may need to insert this data into a Cor t i conRequest message.

Figure 36: Datastore Identity inside the XML Request

1 <?xml version="1.0" encoding="UTF-8"7> -
2 <CorticonRequest zmlnz="urn:Corticon" =zmlns:
% <WorkDocuments>
= «Cargo |databaseid="23" |id="Cargo_id 1">
<welight>1000</weight>

<volume>10</volume:>

<container xsi:inil="trme" />
B B </Cargao> =
s = <Cargo id="Cargo_id 2">

10 <weight>1000</weight>
11 <volume>40</volume:>

12 <container xsiinil="true" />
1 r </Cargao>

1 H <Cargo id="Cargo_id 3">

1 H <Cargo id="Cargo id 4">

</WorkDocuments:>

N W b L

26 - </CorticonRequest>

] T 3

Foreign Key

Foreign key relationships between database tables are represented in the Vocabulary via association mappings.
As we see in Mapping EDC database relationships to Vocabulary Associations on page 126, the association
mappings are entered (or auto-mapped) in the Join Expression field.

Composite Key

Multiple keys may be selected (if not auto-mapped) by choosing the Select All option, or by holding the Control
key while clicking on all the items you want on the Entity Identity drop-down. If multiple selections are made,
then all Vocabulary attributes will have asterisk characters to indicate that they are part of the primary key.

Conditional entities

Although all database properties will unconditionally be displayed, their applicability and enablement is often
dependent upon the values of other properties.

Universally, EDC properties are applicable only for entities whose Datastore Persistent flags are set to Yes.
For entities that are not datastore-persistent, all EDC properties for that entity, including EDC properties
belonging to the entity’s attributes and associations, will be disabled.

For datastore-persistent entities, fields that are applicable will be enabled and editable, while fields that are
not applicable will be disabled and will have a light-gray background. The applicability of fields will change
dynamically based on the values of other fields.

Generally, fields which are not applicable in a given context will be disabled; however, any values that were
previously entered into those fields will be preserved notwithstanding their lack of applicability, even if the field
itself is disabled. Specific rules governing applicability are detailed in Entity Properties, Attribute Properties and
Association Properties below.

154

Progress Corticon : Data Integration: Version 6.3

How EDC handles transactions and exceptions

Dependent tables

Sometimes the existence of a record in one table is dependent upon the existence of another record in a related
table. For example, a Per son table may be related to a Car table (one-to-many). A car may exist in the Car
table independent of any entry in the Per son table. In other words, a car record does not require a related
person — a physical object exists on its own. Likewise, a person record could exist without an associated car
(the person might not own a car). These two tables are independent, even though a relationship/association
exists between them.

Some tables are not independent. Take Cust orrer and Pol i cy tables — if each policy record must have a
person to whom the policy is “attached,” we say the Pol i cy table is dependent upon the Cust oner table. A
person may or may not have a policy, but each policy must have a person.

Dependency normally comes into play when records are being removed from a table. In the first example,
removing a person record has no effect on the associated car record. Although the person may no longer
function as the car’s owner, the car itself continues to exist. A car doesn’t automatically vanish just because a
person dies. On the other hand, removing a person should remove all associated policies. A person who
switches insurance companies (and is deleted from its database) can expect his previous company to cancel
and delete his old policies, too.

A Dependent table normally contains as part of its primary key the foreign key of the independent table. Since
a Corticon Vocabulary represents a foreign key relationship as a Join Expression in the association mapping
(see Mapping EDC database relationships to Vocabulary Associations on page 126), a dependent entity will
have a composite key with the association name participating in the key.

As we can see in the following figure, the composite key contains both i d, which is the application identity for
the Pol i cy entity and pol i cy_owner, which is the association between Cust oner and Pol i cy entities.
This indicates that Pol i cy is a dependent table, and that removing a Cust oner record will also remove all
associated policy records.

Figure 37: Primary Key of a Dependent Table Includes the Role Name

Datasource: | EDC j Basic Properties .
=21 iSample_Vocabulary Property Mame Property Value
-5 Application Entlt}fName Policy
Inherits From
-E5 Customer
= Female_Customer EDC Datasource Properties 2
= Male_Customer Entity Identity lid, policy_owner}
t Y Y pehcy
54 Palicy Datastore Persistent Yes
Table Mame

oy g *
Datastore Caching

Identity Strategy
Identity Column Mame
Identity Sequence

[Category
o COWETAQE
[y effective_date

-2y newlyCreated Idlentity Table Mame

[y premium Ielentity Table Marme Column Name
. type Identity Table Value Column Mame
.3 policy_owner (Customer) * | Version Strategy

Version Column MName

How EDC handles transactions and exceptions

Here are a few points to note about Corticon's Enterprise Data Connector:

* Each Decision Service call is one database transaction. Transactions are not per operation, per Rulesheet,
or per Ruleflow. Corticon does not currently provide for configuration of transaction management.

Progress Corticon : Data Integration: Version 6.3 155

Chapter 14: Advanced EDC Topics

* The default transaction isolation level in Corticon EDC is the same as the default transaction isolation level
of the database to which it is connected.

* When an exception occurs, the database transaction is rolled back, and the database reverts to the same
state as before the Decision Service was called.

156 Progress Corticon : Data Integration: Version 6.3

15

Advanced ADC Topics

This section describes advanced information on schemas, requirements, and SQL scripts for using ADC data
sources.

For details, see the following topics:

* Mapping ADC database metadata
* How to configure ADC
* How Corticon is expressed in SQL

* Tips and techniques in SQL data integration

Mapping ADC database metadata

For rules in a Decision Service to read or write to a database, Vocabulary elements used in the rules must map
to elements in the database. After you have imported the database metadata from an ADC Datasource, map
each Vocabulary entity, attribute, and association to the appropriate table, column, and join expression.

Mapping data between a Corticon Vocabulary and an ADC relational database is not always perfect. When
there are issues, you need to review the mappings to resolve incomplete or conflicting mapping data.

Smart matching will infer precisely matched table name and entities, and then seek column names that match
attributes in each matched table. Join expressions are inferred from matched tables and columns.

Note: Primary Key - Each database table's primary key is not inferred as the Vocabulary's Entity Identity in
each Entity. These values must be set manually.

Progress Corticon : Data Integration: Version 6.3 157

Chapter 15: Advanced ADC Topics

Note: When you are using an EDC datasource, its entity identity and decorations on the vocabulary icons are
not relevant to the ADC datasource. ADC adds no decorations to the icons.

Mapping ADC database tables to Vocabulary Entities

Not all Vocabulary entities must be mapped to corresponding database tables—only those entities whose
attribute values need to interact with the external database should be mapped.

In this example, database metadata containing a table named Pat i ent was imported. Because the table’s
name spelling matches the name of the entity Pat i ent , the Table Name field was mapped automatically, and

displayed in light gray, as shown:
Figure 38: Smart match mapping of Vocabulary Entity

b

Basic Properties

Property Mame Property Yalue

Entity Mame Patient
Inherits From
Patient Data Datasource Properties #
patientld

Entity Identity
[Table Mame |

If the automatic mapping feature fails to detect a match for any reason (different spellings, for example), then
you must make the mapping manually. In the Table Name field, use the drop-down list to select the appropriate

database table to map. The selection is displayed in black, as shown:

Figure 39: Manual Mapping of Valid Vocabulary Entity

»

Basic Properties
Property Value

Property Mame
Entity Narme Patient
Inherits Fram
Patient Data Datasource Properties 3
patientld

Entity Ielentity
[Table Mame

| PatientRecords.dbo.Paciente

If the table name in the source was changed, that table is not in the Datasource's metadata. Choose Import
Metadata to pick up the revised table name. But in the entity the property value displays in orange, as shown:

Figure 40: Manual Mapping of Invalid Vocabulary Entity

wr

Basic Properties

Property Mame Property Value

Entity Marme Patient
Inherits From
Patient Data Datasource Properties *
patientld

Entity Iclentity
[Table Name |

Click on the Table Name Property Value, and then use the drop-down list to select the appropriate database

table to map.

158

Progress Corticon : Data Integration: Version 6.3

Mapping ADC database metadata

Mapping ADC database fields to Vocabulary Attributes

Mapping of attributes is similar to the way it works for entities. A smart match displays in grey, as shown:

Figure 41: Smart match mapping of Vocabulary Attribute

Basic Properties &
Property Mame Property Value
Attribute Mame patientMarme
Data Type String
Mandatory Mo
Maode Base
Patient Data Datasource Properties 3

[Calumn Name |

If an automatic match is not made by the system, then select the appropriate field name from the drop-down
in field:column property, as shown:

Figure 42: Manual Mapping of Vocabulary Attribute

Basic Properties =
Property Mame Property Value
Attribute Mame patientMarme
Data Type String
Mandatory Mo
Mode Base
Patient Data Datasource Properties #

[Column Name | patientGuardian

A preferred, valid name displays in black. If you enter a non-existent column name or select a name assigned
to another column, the value displays in orange.

Mapping ADC database relationships to Vocabulary Associations

Automatic mapping of associations works substantially the same as entities. However, rather than entry text
boxes and pulldowns for mappings, a more visual approach is provided. If an automatic match is made by the
system, it is displayed in grey as shown:

Datasource: | Patient Data | Basic Properties

»

- . Property Name Property Value
Eu M-edlca-l Association Role Name treatrment
= - F'atlentl Source Entity Mame Patient
-y patientld Target Entity Name Treatment
= dob Cardinalities 1-»*
=4 gender Mavigability Patient-»treatrment
= patientMame Mandatary Mo
B4 region Patient Data Datasource Properties *

: .= treatment (Treatment) [Join Expression |
-5 Treatment

If you want to revise the join expression, click on the Join Expression Property Name, as shown:

[Join Expression |

Progress Corticon : Data Integration: Version 6.3 159

Chapter 15: Advanced ADC Topics

The Join Expression dialog box opens with a deconstruction of the join expression, as shown:

e Join Expression ﬂ

Source Table Source Colurmn Target Table Target Colurmn il
PatientRecords.dbo.Patient patientld PatientRecords.dbo. Treatment patientld
OK Cancel |

Use the pulldown lists in each column to refine the join expression. You can add lines to define complex join
expressions where appropriate. As all revised join expressions are not validated, they are always displayed in
black.

Note: The join expression is used by ADC to form associations in memory. The join expression is parsed by
ADC -- it is not sent to the database server as part of a query.

For more information and examples of complex joins, see Associations as join expressions on page 104

How to configure ADC

The queries used in the data integration samples are stored in several tables in the database declared as the
one to use for the query service:

Figure 43: Query Tables in SQL Server
| | CMSDetail

=
[Database Diagrarms
= [Tables
[3 Systermn Tables
[FileTables
=1 dbo.CORTICON_ADC_READ
1/ dbo.CORTICON_ADC_READ_DEFS
=1/ dbo. . CORTICON_ADC_WRITE
1| dbo.CORTICOMN_ADC_WRITE_DEFS
1 dbo.CORTICON_BATCH_READ
—1 dbo.Patient
1 dbo.Treatment

E

H H

HHMHEE

Note: As ADC is set to find specific names, the table and column names must not be modified.

160 Progress Corticon : Data Integration: Version 6.3

How to configure ADC

How to configure ADC reads

The database schema that ADC reads use is illustrated in the following diagram.

A core operation that ADC performs is retrieving data using the CORTI CON_ADC_READ table. Each
CORTI CON_ADC _READ row instance can use a different Datasource.

Figure 44: Database Schema for Corticon ADC Read Service Callouts

CORTICON_ADC_READ CORTICON_ADC_READ_DEF
ID Integer D Integer
NAME String T~ READ_ID Integer
ADDTOPAYLOAD String SEQUENCE Integer
saL String
PRIMARY_ENTITY String
PARENT_ENTITY String
PARENT_ROLENAME String
ENABLE String

Note: The schema notes in the following tables are brief. For more details about a column name, see
Configuration details on page 164

Table 9: CORTI CON_ADC_READ Table

Column Name : DataType Note

| D: Integer The Primary Key for the Table which then gets propagated down to each
CORTI CON_ADC_READ_ DEFS record.

NANME : String A logical name that you want to associate with this CORTI CON_ADC_READ.
This is the name that will be specified inside of each Service Call-out's
Runtime Properties tab for the appropriate Query Name.

ADDTOPAYLOAD : String (t r ue | Controls whether all data retrieved from the read will be added to the
orfal se) response payload. If this value is null or any value other than t r ue, the
default value is f al se.

Table 10: CORTI CON_ADC_READ_DEFS Table

The CORTI CON_ADC_READ DEFS and CORTI CON_ADC _WRI TE_DEFS Tables are the key Tables for ADC.
They contain the most pertinent information that ADC needs to perform its duties.

Column Name : DataType Note

| D: Integer The Primary Key for the Table.

READ | D: Integer (required) |[Foreign Key back to CORTI CON_ADC_READ. | Dcolumn. There can be many
CORTI CON_ADC_READ DEFS associated with a CORTI CON_ADC READ
record.

Progress Corticon : Data Integration: Version 6.3 161

Chapter 15: Advanced ADC Topics

Column Name : DataType

Note

SEQUENCE : Integer (required)

The integer value that specifies the order of execution of each
CORTI CON_ADC_READ_DEFS within a given CORTI CON_ADC_READ | D.

SQL : String (required)

An SQL Statement, a template to be used for the current
CORTI CON_ADC_READ_DEFS operation.

PRI MARY_ENTI TY : String
(required)

The Corticon Entity to which the SQL statement will map.

PARENT _ENTI TY : String and
PARENT _ROLENANME : String
(optional)

The values needed to create an Association between the Parent Entity
(PARENT_ENTI TY) to the Target Entity (PRI MARY_ENTI TY) through
Association Role Name (PARENT _ROLENANME).

ENABLE : String (t r ue or
fal se)

Suppresses or allows the CORTI CON_ADC_READ_DEFS to execute. If this
value is null or any value other than f al se, the default value is t r ue.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

How to configure ADC writes

The database schema that ADC writes use is illustrated in the following diagram.

A core operation that ADC performs is updating data using the CORTI CON_ADC WRI TE table. Each
CORTI CON_ADC_WRI TE row instance can use a different Datasource.

Figure 45: Database Schema for Corticon ADC Write Service Callouts

CORTICON_ADC_WRITE

1D Integer
NAME

String

CORTICON_ADC_WRITE_DEF
ID Integer
T~ WRITE_ID Integer
SEQUENCE Integer
SQL String
PRIMARY_ENTITY String
ENABLE String

Note: When the primary key of an inserted record is generated by the connected database, Corticon retrieves
this generated value and adds it to working memory for that Entity. This will allow follow-up database updates
on that Entity to occur, and also allows associated Entities that are dependent on that primary key value to be
stored as a foreign key value in the associated Entity..

Note: The schema notes in the following tables are brief. For more details about a column name, see
Configuration details on page 164

162

Progress Corticon : Data Integration: Version 6.3

How to configure ADC

Table 11: CORTI CON_ADC_WRI TE Table

Column Name : DataType

Note

| D: Integer The Primary Key for the Table which then gets propagated down to each
CORTI CON_ADC WRI TE _DEFS record.
NAME : String The logical name to associate with this CORTI CON_ADC_WRI TE. This is the

name that will be specified in a Ruleflow Service Call-out's Runtime
Properties tab as the Query Name.

Table 12: CORTI CON_ADC R TE_DEFS Table

The CORTI CON_ADC_READ_DEFS and CORTI CON_ADC WRI TE_DEFS Tables are the key Tables for ADC.
These Tables contain the most pertinent information for the ADC to perform its duties.

Column Name : DataType

Note

| D: Integer

The Primary Key for the Table

WRI TE_I D: Integer

Foreign Key back to CORTI CON_ADC WRI TE. | D column. There can be
many CORTI CON_ADC_WRI TE_DEFS associated with a
CORTI CON_ADC_WRI TE record.

SEQUENCE : Integer

The integer value that specifies the order of execution of each

CORTI CON_ADC_WRI TE_DEFS within a given CORTI CON_ADC_WRI TE_| D
when several CORTI CON_ADC WRI TE_DEFS are associated with a

CORTI CON_ADC_WRI TE record.

SQL : String

SQL Statement used as a template for this CORTI CON_ADC WRI TE_DEFS
operation.

PRI MARY_ENTI TY : String

The Entity name that will be used to look up all instances of this Entity type
from working memory in which variable substitution will be applied to the
SQL statement to create one | NSERT or UPDATE statement per Entity
instance.

ENABLE : String (t r ue or
fal se)

Suppresses or allows the CORTI CON_ADC WRI TE_DEFS to execute. If this
value is null or any value other than f al se, the default value is t r ue.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

Progress Corticon : Data Integration: Version 6.3

163

Chapter 15: Advanced ADC Topics

How to configure batch

The database schema that Batch configurations uses is illustrated in the following diagram.

Figure 46: Database Schema for Corticon Batch Reads

CORTICON_BATCH_READ
D Integer
NAME String
sQL String
PRIMARY ENTITY String
ENABLE String

Note: The schema notes in the following tables are brief. For more details about a column name, see
Configuration details on page 164

Table 13: CORTI CON_BATCH_READ Table
The CORTI CON_BATCH_READ table describes a batch query.

Column Name : DataType

Note

| D: Integer The Primary Key for the Table.
NAME : String The name of this batch read operation.
SQL : String The SQL statement that is a batch operation associated with this Decision

Service.

PRI MARY_ENTI TY : String
(required)

The Corticon Entity to which the SQL statement will map.

ENABLE : String (t r ue or
fal se)

Suppresses or allows the BATCH_READto execute. If this value is null or any
value other than f al se, the default value is t r ue.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

Configuration details

Several schema details note that they use Variable Substitution, Corticon's technique for in-memory data to
dynamically create SQL statements using a template, as discussed in How Corticon is expressed in SQL on

page 166

Columns described in Corticon query schemas are detailed as follows:

* Sequence—Several CORTI CON_ADC_READ DEFSor CORTI CON_ADC WRI TE_DEFS might be associated
with a CORTI CON_ADC_READ or CORTI CON_ADC_WRI TE record. The values are typically strictly sequenced
ascending values such as (1,4,6,7). If a value is not unique ,such as (1,4,4,7), the

164

Progress Corticon : Data Integration: Version 6.3

How to configure ADC

CORTI CON_ADC_READ DEFS or CORTI CON_ADC _WRI TE_DEFS might not fire in the same way in the next
execution.

* SQL—In SQL READ Statements, you can incorporate a complex WHERE clause using Corticon’s Variable
Substitution, so that you can specify values in the SQL that will be replaced with corresponding values
based on what is currently in the working memory of the execution.

* SQL—In SQL WRITE Statements, you can use Variable Substitution to add Primary Entity values directly
into the SQL. Since the structure of an | NSERT and UPDATE statement are different from a SELECT statement,
Variable Substitution does not aggregate all values to create one SQL statement — instead, it will use the
SQL as a template to create a SQL statement for each Primary Entity instance.

* PRI MARY_ENTI TY—The results from the SQL Statement need to be converted to map to Corticon Entities.
ADC does not automatically create a new instance of the Entity in memory. First, it will determine if that
Entity is already in memory, and—if it is not already in memory—a new Entity instance of type
(PRI MARY_ENTI TY) will be created, using
| CcDat aCbj ect Manager . creat eEnti t y(<PRI MARY_ENTI TY>. Then, the Column Values for that
Row will be added into that new instance of the Entity. Duplication of Entity instances is prevented when
the rules engine checks to see whether that Entity instance is already in memory. This is done by comparing
each in-memory Entity instance’s “Entity Identity” values with the values retrieved for that row. If the instance
already exists, then it will use that instance, and then merge the Column Values into that Entity instance.

* PARENT_ENTI TY and PARENT_ROLENAME—The Association’s Join Expression is critical to the mapping
of Associations between the PARENT_ENTI TY and the PRI MARY_ENTI TY. ADC parses the Join Expression
to determine which Attributes in the Parent Entity need to match which Attributes in the Primary Entity. For
each Primary Entity retrieved, an algorithm is used to match these values between two different Entities. If
there is a match, the Primary Entity is added to the Parent Entity’s Association as defined by the Parent
Role Name.

* Enabl e—For testing purposes, you may want to test some CORTI CON_ADC READ_ DEFS or
CORTI CON_ADC WRI TE_DEFS out of all the ones associated with the CORTI CON_ADC_READ or
CORTI CON_ADC _WRI TE. You can add all your CORTI CON_ADC_READ DEFS and
CORTI CON_ADC WRI TE_DEFS and then incrementally expand the retrieval, while testing each step.

Set additional ADC Datasource connection properties

There are additional properties you might want to set for an ADC Datasource connection.

Note: It is a good practice to test your connection before and after changing additional properties.

Connection Pooling

Corticon uses C3P0, an open source JDBC connection pooling product, for connection pooling. The following
properties let you tune connection pooling that will be used when connecting to a Database through ADC or
Batch Processing:

Table 14: C3PO properties for the Datasource Pool

Property Name Default Comment
value

comcorti con. server. dat abase. c3p0. ninpodl si ze 1 | Minimum number of Connections a pool will maintain
at any given time.

comcorti con. server. dat abase. ¢3p0. naxpod si ze 100 | Maximum number of Connections a pool will maintain
at any given time.

Progress Corticon : Data Integration: Version 6.3 165

Chapter 15: Advanced ADC Topics

Property Name Default Comment
value

comeorti con. server. dt abase. c3p0. naxi d eti ne 1800 Seconds a Connection can remain pooled but

unused before being discarded. Zero means idle
connections

never expire.

comeorti con server. cet - G0, a s 500 The size of c3p0's global PreparedStatement cache.

If both maxSt at enent s and

max St at enent sPer Connect i on are zero,
statement caching will not be enabled. If

max St at errent s is zero but

max St at emrent sPer Connect i on is a non-zero
value, statement caching will be enabled, but no
global limit will be enforced, only the per-connection
maximum. max St at enent s controls the total
number of Statements cached, for all Connections.

These properties are set for a connection in the br ns. pr operti es file of the project associated with the ADC
or batch connection. Be sure to migrate the settings to runtime servers.

How Corticon is expressed in SQL

SQL Queries provide tremendous power to the access, retrieval, and management of data records. If you have
done the ADC and Batch samples, you have used SQL queries and saw how using a different one causes
different processing.

Variable Substitution is Corticon's technique for in-memory data to dynamically create SQL statements with
the SQL value as a template in the tables CORTI CON_ADC_READ_DEFS, CORTI CON_ADC_WRI TE_DEFS, and
CORTI CON_BATCH_READ. This is expressed in statements as a value in curly braces, like this:
{Patient.patientld}.

For example, the sample batch queries are:

SELECT patientld from Pati ent
SELECT patientld from Pati ent WHERE region IN ({Patient.region})

The first SELECT query selects all patients. The second uses a parameter that will match on a specified r egi on
value in a Pat i ent record.

You might want to create a query that uses multiple parameters such as:

SELECT patientld FROM Pati ent WHERE region I N ({Patient.region}) AND gender IN
({Patient.gender})

166 Progress Corticon : Data Integration: Version 6.3

Tips and techniques in SQL data integration

that would be specified in the Web Console batch configuration like this:

Query Parameters

Name Value

Fatient.region

Fatient.gender

The READ and WRITE queries allow for multiple statements by exposing values in the CORTI CON_ADC READ
and CORTI CON_ADC_WRI TE tables that link to a corresponding CORTI CON_ADC_READ DEFS and
CORTI CON_ADC WRI TE_DEFS table for the sequence of steps for the SQL statements.

Here, the sample's Ruleflow property for the Service Call-out's chose the Corti conADC. r ead service and
the Query name IndicatedPatients. That referenced | D=2 in the CORTI CON_ADC_READ table:

D MARE ADD_TO_PAYLOAD

1 AllPatients true

2 IndicatedPatients true

3 TreatrmentDetails true

That called to CORTI CON_ADC _READ DEFS with READ | D = 2 to perform its SEQUENCE of steps 1 and 2:

1D READ ID | SEQ... | SQL PRIMARY _ENTITY PAREMT_EMTITY PAREMT_R
1 1 1 SELECT * FROM Patient Patient NULL NULL
2 1 2 SELECT * FROM Treatrment WHERE patientld IN ({Patient.patientld]) Treatrment Patient treatment
3 2 1 SELECT * FROM Patient WHERE patientld IM ({Patient. patientld}) Patient NULL NULL
4 2 2 SELECT * FROM Treatrment WHERE patientld IN ({Patient.patientId}) Treatment Patient treatment
5 3 1 SELECT * FROM TreatrmentDetails WHERE treatrmentCode IN ({Treatment.medicalCode)) Treatment MNULL NULL
NULL NULL NULL NULL NULL NULL NULL

Tips and techniques in SQL data integration

The following sections provide insights into techniques and behaviors you might find useful:
* Entity identity on reads on page 167

* Useof an IN () instead of comparison operators in WHERE clause on page 168

* Inserting or updating multiple rows into specific database table(s) on page 168

* Multiple ADC instances can be added to one or many Ruleflows on page 169

¢ ADC limits which PRIMARY_ENTITY instances are used when the SQL Statement is an UPDATE instead
of an INSERT on page 169

* Each ADC task can use a different Datasource on page 169
* Information when execution fails on page 170

* Reloading revised query definitions on page 170

Entity identity on reads

Reads from a database table requires the Entity Identity Columns returned for each row so that Corticon's
in-memory tables uniquely identify each row returned from the Database. When the column value is not returned,

Progress Corticon : Data Integration: Version 6.3 167

Chapter 15: Advanced ADC Topics

ADC throws an error informing the user that Entity Identity has not been set in the Vocabulary Entity.primary
key on every read statement.

Views, as a composite of tables with primary keys, require for each read of a row that you provide uniqueness
with a composite of the primary keys of the underlying tables that form the view, or a composite key that is
every column identity in the view.

Use of an IN () instead of comparison operators in WHERE clause

Usean | N () clause instead of an = sign in your WHERE clause. They mean the same thing; however, the
I N () clause can handle multiple values, while the = sign can only handle one value.

Consider here are three A Entities in memory. That means there are three valuesfor{ A.id }.Inthe following
SQL note that the one with the IN (') is valid while the = sign is not:

Sel ect * from Patients where patientld IN(1, 2, 3) Valid
Sel ect * from Patients where patientlid = 1, 2, 3 Invalid

You cannot use an | N clause with <, <=, >, and =>. To prevent invalid SQL through variable substitution with
<, <=, >, and =>, there can only be one instance of the Entity in working memory.

Inserting or updating multiple rows into specific database table(s)

When a Ruleflow establishes an ADC Service Call-out using the Cort i conADC. wr i t e, ADC uses the metadata
inside CORTI CON_ADC_WRI TE, and CORTI CON_ADC_W\RI TE_DEFS tables to determine which Entities in the
Vocabulary will be used to insert into which database table.

The core Table that contains the data about which Entity or Entities will be inserted or updated into the Database
is in the CORTI CON_ADC WRI TE_DEFStable. This section describes how the SEQUENCE, SQ_, PRI MARY_NAME
are used in one or multiple CORTI CON_ADC WRI TE_DEFS to insert multiple records into the intended table.

Much like the CORTI CON_ADC_READ DEFS SEQUENCE field, the CORTI CON_ADC _WRI TE_DEFS SEQUENCE
field determines in which order the CORTI CON_ADC WRI TE_DEFS will fire. For each

CORTI CON_ADC WRI TE_DEFS SQL, there is a PRI MARY_ENTI TY, which is used to create individual Insert
Statements to be used by the database.

Using database Identity Strategies to populate Primary Key values is highly recommended. If Primary Key
values are set within Rules, there are potential problems inserting or updating database records because of
constraint violations.

Variable substitution is used to substitute the PRI MARY _ENTI TY values into the SQL Statement.

Example:

SQL = UPDATE Treat ment SET approved={Treat ment. appr oved}
WHERE treatnentld={Treatnent.treatnmentld}
PRI MARY_ENTI TY = Tr eat nent

For every instance of Tr eat ment in memory a new SQL Statement will get created using those values inside
the Tr eat ment instance.

The user controls the SQL statement, and can customize an | NSERT SQL to match the Identity Strategy
appropriate for a particular Database:

* In Oracle, Database Sequences are used to set the Primary Keys. You need to create your own Database
Sequence and add that Sequence Name to the SQL statement.

* In SQL Server, you can just set your Table to use Identity strategy to populate the Primary Key.

Note: Because you have control over the SQL, you can inject Database Functions directly in the SQL that are
unrelated to Corticon, such as a sysdat e function.

168 Progress Corticon : Data Integration: Version 6.3

Tips and techniques in SQL data integration

Multiple ADC instances can be added to one or many Ruleflows

There is no restriction on how many ADC instances you can have in a Ruleflow. Its position on the Ruleflow
canvas is based on your use case. When retrieving extra data that is only needed in certain cases, you can
put an ADC instance inside a Branch that will only fire under certain conditions. Similarly, you can control
whether a Ruleflow execution writes and where it writes..

Each instance of the ADC works independently to do what it is assigned to do.

ADC limits which PRIMARY_ENTITY instances are used when the SQL Statement is
an UPDATE instead of an INSERT

ADC will inspect each PRI MARY_ENTI TY instance to determine if its Entity Identity attributes already have a
value. Depending on whether these attributes are set, the PRI MARY_ENTI TY will be classified as a UPDATE
or | NSERT candidate.

If all the Entity Identity attributes are set inside the instance, it is assumed that this instance already has a
matching database record. In this case, you only want to use this instance in an UPDATE Statement rather than
an | NSERT Statement. If this instance were used in an | NSERT Statement, a duplicate row would be created
or the new row would fail because of a Primary Key Constraint Violation, since the record already exists in the
Table.

If not all the Entity Identity attributes are set inside the instance, it is assumed that this instance does not have
a matching database record. This instance should only be used in an | NSERT Statement and notin an UPDATE
Statement.

For example:

Pat i ent

Pat i ent
patientld =
pati ent Name = "Jennifer"
gender =

CORTI CON_ADC_W\RI TE_DEF
SQ = INSERT I NTO Patient (patientNane, gender)
VALUES ({Patient.patientNanme}, {Patient.gender})

Only the Jenni f er Patient will be used with this SQL.
CORTI CON_ADC_WRI TE_DEF
SQL = UPDATE Pati ent

SET (patientName = {Patient.patientNane}, gender = {Patient.gender})
WHERE id = {Patient.patientld}

Only the John Patient will be used with this SQL.

Each ADC task can use a different Datasource

Each instance of an ADC can call any CORTI CON_ADC READ or CORTI CON_ADC WRI TE operation, and, for
each CORTI CON_ADC READ and CORTI CON_ADC VRl TE, there is a Datasource configuration.

In the following illustration, the root level of the Vocabulary shows tabs for the connections to four datasources:

Custorn Data Types | Benefits (DE2) | EMEA (0L Server) | Payroll (Qracle12c) . Query

The Query Datasource is shared by all ADC Datasources.

Progress Corticon : Data Integration: Version 6.3 169

Chapter 15: Advanced ADC Topics

Information when execution fails

Various errors can occur during the execution of the ADC. Some common issues are:
* CORTI CON_ADC _READNare or CORTI CON_ADC WRI TENane does not exist.

* Bad SQL statement, possibly due to variable substitution issues.

* Bad Join Statement definition for an association.

* Failed to connect to the Datasource.

Whatever the type of error, execution will not only stop on the service callout, but for the entire execution. If
there is an issue in the service callout, then current working memory could be incomplete or corrupted. Either
way, the safest play is to stop all execution.

An entry is made in the Corticon Log with the Exception, and a CcRul eMessage -> Vi ol ati on message
added to the Response.

Reloading revised query definitions

Corticon ADC and Batch processing rely on query definitions stored in a database. These definitions are loaded
when a decision service is deployed to Corticon Server. If these query definitions change, you must either
redeploy the decision service or notify Corticon to reload the query definitions.

* When deployed as a web service, the Corticon REST management API provides end points to force reload
of query definitions. See / deci si onSer vi ce/ r el oadQuer ySer vi ce in the Corticon 6.3 REST API
documentation.

* When deployed in-process, the Corticon API provides methods to force reload of query definitions. See
r el oadDeci si onServi ceQueryServi ce andr el oadAl | Deci si onServi cesQueryServi ce inthe
Progress Corticon 6.3 Server APl JavaDocs.

* When running in Corticon Studio Tester, you can redeploy the decision service by closing and reopening
the Tester, or choose Ruletest > Testsheet > Deploy, which will reload the decision service’s query
information by calling into the Corticon Server’s r el oadDeci si onSer vi ceQuer ySer vi ce.

170 Progress Corticon : Data Integration: Version 6.3

https://documentation.progress.com/output/Corticon/6.3/RESTDoc/index.html
https://documentation.progress.com/output/Corticon/6.3/RESTDoc/index.html
https://documentation.progress.com/output/Corticon/6.3/javadoc/Server/

16

Advanced REST Datasource Topics

This section describes advanced information on connection requirements, and mapping a REST data source,
and then filtering what will return to the Corticon rules engine.

The open style of REST data sources can present daunting and cryptic information. The authors of a well-formed
REST API provide guidance to their users that:

* Describe its authentication and, if needed, where to get credentials.
* Documentation in HTML that describe usage, access, and constraints
* A schema of the data types, columns with unique data appropriate as keys, and relations between columns

A good example of a well-formed and presented REST API, see Open Weather Map

Note: For more information about the Progress DataDirect Autonomous REST Connector for JDBC, see topics
in its online help at

hipsibocsprogesscombundetisiadiedauionomoustestaomnedordoc60iegpNVEcome bhe Pogess DaeDiedtAUonomous REST-ComnedodorJDBChim

For details, see the following topics:

* Authentication on REST Service connections
* Parameters on REST Service connections
* Import REST Datasource metadata into a Vocabulary

* Mapping REST Service metadata

Progress Corticon : Data Integration: Version 6.3 171

https://openweathermap.org/api
https://docs.progress.com/bundle/datadirect-autonomous-rest-connector-jdbc-60/page/Welcome-to-the-Progress-DataDirect-Autonomous-REST-Connector-for-JDBC.html

Chapter 16: Advanced REST Datasource Topics

Authentication on REST Service connections

When you choose to create a REST Datasource, a new REST Service tab is created that has authentication
set to none. You need to adjust the Authentication parameter if you are provided credentials for authentication
for security on a REST Service connection, for example OAuth2:

Authentication | v

Mane

Basic

HTTP Header Token
LURL Pararmeter Token
COhuth?

Descriptions and configurations for these parameters are as follows:

* Basic Authentication—Credentials are used to access the REST service as a configured user associated
with the REST Datasource, and then these credentials are used for all calls to the REST endpoint.

Figure 47: REST Connectivity sample using Basic authentication
Customn Data Types | Rate Data
MAPPING SCHEMA COMNMECTION | DATASOURCE

X Clear 3 Discover | () Import | Ty Export | X Clear B Test T Delete

Datasource Mame: | Rate Data

Description:

Rest URL: | https://atigkgh1sd.execute-api.us-east-2.amazoenaws.com/prod/ReimbursernentRate2

Authentication |

Username: | user]

dririir

Password:

Cuery Pararneter Default Value

The Username identifies a user value in the REST Datasource, and its Password. The sample Datasource
has pwd1 for user 1. The credentials are encrypted when they are exported for deployment. When you

172 Progress Corticon : Data Integration: Version 6.3

Authentication on REST Service connections

connect to a URL of a REST API that requires basic authentication, you then add the credentials to the
connection definition, as illustrated:

Figure 48: Datasource Configuration file of REST Connectivity sample using Basic authentication

F?xml version="1.0" encoding="UTF-8" =standalone="yes"?>
2 <decisionService:
<datasources>
= <rest authentication-type="BASIC" name="Rate Data">

<oconnection-urlzhttps: //atigkghlsd.exeonte—-api . ns-east-2 . amazonaws . com/p
<password>062056007120</passwords
<username>059060006059101 </ username’

- Zfreat>

1 &

[T s]

- </datasources>

10 - /decisionServicer

* Token Authentication—A static string Token value can be associated with a Corticon REST Datasource.
The user obtains an appropriate token from the REST service, and then saves itinthe dat asour ce. xmi
file. It is then used for all calls to the REST endpoint. A Token can be passed inside an HTTP Header or as
a parameter on a URL. The REST Service must declare which token authentication mechanism it will use.

* HTTP Header Token—Set the property that specifies the name of the HTTP header used for
authentication. Input as Field Name, typically defaulted to Aut hor i zat i on in the Datasource and its
Token (in this example Bear er 12345678901234567890), as shown:

Figure 49: REST Connectivity sample using Token authentication by header

Custom Data Types | REST Service

MAPPING SCHEMA COMMECTION | DATASOURCE

> Clear 73 Discover |'£| Import Export Clear E- Test E Delete

Datasource Mame: | REST Service

Description:

REST URL: | https://qknpo361cl.execute-apius-east-2.amazonaws.com/prod/ReimbursementRate/

Authentication | Oauth2 iy

Client 10 | test

Token URL | https://test.test

ik

Client Secret:

wTEEE

Refresh Taken:

Cluery Pararmeter Default Value Type
: LRL

Progress Corticon : Data Integration: Version 6.3 173

Chapter 16: Advanced REST Datasource Topics

The credentials are encrypted when they are exported for deployment, as illustrated:

Figure 50: Datasource Configuration file of REST Connectivity sample using HTTP Header Token
authentication

|<::’.-‘x1'f.l version="1.0" encoding="UTF-8" standalone="yas"?>

<decisionService:>

<datasources>
<rest authentication-type="HTTPFHEADER" field-name="Anthorization" name="R:
Zoonnection-url=https: ffatigkghl=4.exeonte—-api . n=-east-2. amazonaws . cor
<token>01204200205904500011111410%908009110306609412308609412712508012!

1 &

<frestx

</datasources:>

1]

<fdecisionServices

* URL Parameter Token—Set the property that specifies the URL parameter that will pass the security
token. Requires a Field Name, typically defaulted to Authorization in the Datasource and its Token (in
this example Bear er 12345678901234567890), as shown:

Figure 51: REST Connectivity sample using URL ParameterToken authentication
Custorn Data Types | Rate Data

MAPPIMG SCHEMA COMNMECTION | DATASOURCE

X Clear 3 Discover || (3 Import | Ty Export | X Clear B Test T Delete

Datasource Mame: | Rate Data

Descripticn:

Rest URL: | https://atigkqhlsd.execute-api.us-east-2.amazonaws.com,/prod/ReimbursementRate

Authentication | LURL Pararmeter Token "

Field Mame: | Authorization

Token: |

Cluery Parameter Default Value

174 Progress Corticon : Data Integration: Version 6.3

Authentication on REST Service connections

The credentials are encrypted when they are exported for deployment, as illustrated:

Figure 52: Datasource Configuration file of REST Connectivity sample using URL Parameter Token
authentication

|<::’.-‘x1'f.l version="1.0" encoding="UTF-8" standalone="yas"?>

<decisionService:>

<datasources>
<rest authentication-type="URLPARAMETER" field-name="Anthorization" name='
Zoonnection-url=https: ffatigkghl=4.exeonte—-api . n=-east-2. amazonaws . cor
<token>01204200205904500011111410%908009110306609412308609412712508012!

<frestx

1 &

</datasources:>

1]

<fdecisionServices

* OAuth2 Authentication—Uses authorization tokens to prove an identity without giving away your password.
You must specify the Client ID, Token URI, Client Secret, and Refresh Token for the connection.

Figure 53: REST Connectivity sample using OAuth2 authentication

Custom Data Types | REST Service

MAPPING SCHEMA COMMECTION | DATASOURCE

2 Clear 3 Discover |i'| Import Export Clear E' Test E Delete

Datasource Mame: | REST Service

Description:

REST URL: | https://qknpo361cl.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate/

Authentication | Ofuth2 iy

Client [D: | test

Token LRI | https://test.test

ik

Client 5ecret:

drdrird

Refresh Token:

Cuery Pararmeter Default Value Type
' LRL

Progress Corticon : Data Integration: Version 6.3 175

Chapter 16: Advanced REST Datasource Topics

The credentials are encrypted when they are exported for deployment. When you connect to a URL of a
REST API that requires OAuth2 authentication, you then add the credentials to the connection definition,
as illustrated:

Figure 54: Datasource Configuration file of REST Connectivity sample using OAuth2 authentication

1 <?xml ver=sion="1.0" encoding="UTF-8" =standalone="yes"?>
2 <decisionService>
<datasources>
4 = <rest authentication-tyvpe="0AUOTHZ2" name="REST Service">
3 <client-idstest</client-id>
‘client-secret>058042016061</client-secrets>
conmection-urlzhttps: //gknpoS5élol. execnte—api . .ns-east-2 . amazonaws . com/p:
Ctoken>058042016061 </ tokens
‘token-urirhttps: fftest. test</token-uris
10 - Zfrest>

11 - </datasources>

12 Lo fdecizionServices

Parameters on REST Service connections

You can add parameters to each REST Service Datasource connection. The types are:
* URL
e Path
* Post

You can specify as many of these parameters on a connection in no particular order. Each requires a name
and should have a default value.

Note: The following examples use the test URL
https://gknpo561c0.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate/.

URL type
A URL parameter can specify the procedure code in the REST URL:

https:// Test URL?pr ocedur eCode=B5120ZZ
with the results:

{"results":[{"procedureCode": "B5120ZZ", "rat es":

[{"startDate":"2017-1-1", "endDate":"2017-6-1","rate": 0. 85},
{"startDate":"2017-6-2","endDat e": "2017-12-31","rate":0.83}]}]}

The API Gateway entry point is: Rei mbur senent Rat e- APl You can manually add more URL types.
Path type
A path parameter can specify the procedure code in the REST URL:

https:// Test URL/ 0313090

176 Progress Corticon : Data Integration: Version 6.3

https://qknpo561c0.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate/

Import REST Datasource metadata into a Vocabulary

with the results:

{"results":[{"procedureCode":"0313090", "rat es":
You can nmenual |y add nore Path types.
[{"startDate":"2017-1-1", "endDate": "2017-12-31","rate": 0. 82

Note: Parameters that have default values are in the Ruleflow. Parameters that do not have default values
are taken to be static parameter options that are not intended to take values; therefore, you cannot override
their values.

Post type

A Post request does not include parameters as part of the URL, instead the parameters are passed in the
request body in the format:

{
"nanmel" : val uel,
"nanme2" : val ue2

}

The POST service called must accept parameters in this format, there is no means to choose an alternate
format. Many existing POST services require the parameters to passed in a format specific to the service such

as

{
"order": {
"nanel" : val uel,
"nane2" : val ue2
}

}

Corticon does not provide support for using an alternate format for passing POST parameters. As such, the
POST service must comply with format passed by Corticon.

Selecting POST parameter type changes how the REST connector makes its requests to the endpoint, so it
is possible that any specified URL parameters will be ignored.

Import REST Datasource metadata into a Vocabulary

Where relational databases have formal schemas, keys, and datatypes, REST datasources have many variations.
In a REST data source, JSON-formatted data might have a JSON map that describes the structure of the data,
but often mapping the columns in a REST datasources requires manual intervention to define primary keys
and relationships of nested objects and arrays. Those variations are discussed in the topic Mapping REST
Service metadata on page 179.

Note: Using the sample: To load the REST Connectivity sample, choose the menu item Help > Samples.
Select REST Connectivity, and then click Done. Follow the Import dialog to bring the sample into your
workspace. The REST Datasource is predefined in the sample to specify the data types, table and column
names, and the join.

Progress Corticon : Data Integration: Version 6.3 177

Chapter 16: Advanced REST Datasource Topics

Let's get one set of rates from our sample REST Datasource by entering its URL with one parameter in a
browser:

htt ps: // bj 36i 9ki 66. execut e- api . us- east - 2. amazonaws. cont pr od/ Rei nbur senent Rat e?pr ocedur eCode=B51202Z

That returns:

1= {

2~ "results’

3--

4 "procedureCode™: “B512877"
5 "rates": [

6 - (

7 “"startDate": "2015-1-1",
& "endDate": "2818-6-1",

a "rate™: B@.85

1a

11 -

12 "startDate": "20815-6-2",
13 "endDate": "2818-12-31",
14 "rate™: @.8
15
16
17
18]
19

The URL connected to the REST server that enables query filtering such that the connection returned only the
results that matched the parameter value.

The sample has some complexity. You can see that the REST source data has two rates for a pr ocedur eCode.
You have to consider then that there could be many rates for one code, differentiated by applicable dates. The
transformation to a relational way of thinking looks like this:

Treatment:medicalCode

Corticon Entity association

Okjects in REST Datoscurce Rate Data
Database implied

Rate

Rate

Rate

Rate

Rate

Column

{synthetic increment}*®
{PROCEDURECODE)*
startDate

endDate

rate

Eguivalent to relational dotabase as...

'.f position (PK, varchar(1), not null)

{ procedureCode (PK, varchar(1), not null)
=] startDate (date, null)

=] endDate (date, null)

] rate (float, null)

This pattern shows that the REST data was interpreted as two tables related through the pr ocedur eCode.
To ensure uniqueness for the primary key an incrementing integer value is added to key. Now it will be easier
to define the REST Datasource in a Corticon Vocabulary. For more information, see Advanced REST Datasource
Topics on page 171.

When a REST Service exposes a schema, its metadata can be imported into Corticon Studio to refine and
complete the mappings between the Vocabulary and the metadata. The REST Service connection will make
best-efforts to discover the REST schema. You can edit the schema definitions and tune the mapping of the
REST data structure to the Vocabulary.

In the Vocabulary editor with a REST Service connection established, select the Vocabulary root, and then
select the tab of the Datasource connection metadata you want to import.

178

Progress Corticon : Data Integration: Version 6.3

https://bj36i9ki66.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate?procedureCode=B5120ZZ

Mapping REST Service metadata

As REST data sources are not as strictly defined as relational databases, the mapping of REST Datasources
will likely require manual intervention to establish the primary keys and associations in the REST metadata.
For more information, see the advanced topics Mapping REST Service metadata on page 179 and How to define
associations in REST Service metadata on page 182

Mapping REST Service metadata

Introduction

A REST Datasource can present very straightforward data, such as a one-dimensional table and an obvious
primary key. Then again, it might have implicit structure of data and types that need to be clearly defined to
support SQL queries.

The mapping of the sample JSON document produced one parent table and one child table. In the parent table,
the object pr ocedur eCode is viewed as a relational column. Nested objects are also flattened into relational
columns; however, column names are formed by concatenating the name of the parent and nested objects,
which are joined by an underscore character. For example, the PROCEDURECODE _RATE column contains the
values of the rate objects that are nested in the r at es object. The primary key is determined by the first field
detected in the document, pr ocedur eCode.

The following snippet is the results String with a request URL that is filtering for just the pr ocedur eCode
B5120ZZ:

{"results":[{"procedureCode” : "B5128ZZ", "rates": [{"startDate™: " 28017 -
1-1","endDate™:"2817-6-1","rate":2.85}, {"startDate": "2017-5-
2", "endDate" :"26817-12-31" ,"rate":2.831]}]}

When JSON formatting is applied, it is easier to see the data structure. Note that the r esul t s table corresponds
to the top-level entities in the JSON and the r at es table to the individual rates for procedures. The

pr ocedur eCode is evaluated by the Autonomous REST Connector and discovered as unique, so it is set as
the key. The JSON data is mapped into this schema:
1~

": "BS120ZZ",

. “startDate”: "2817-1-1",
"endDate": "2817-6-1",

"rate”: @.85

[T < T Y T TR S §
4

12 . “startDate”: "2817-6-2",
13 “endDate”: "2017-12-31",

14 "rate”: @.83

Progress Corticon : Data Integration: Version 6.3 179

Chapter 16: Advanced REST Datasource Topics

But there are two effective date ranges and rates. There is an implicit association of 0 to n rates for each
pr ocedur eCode. The Autonomous REST Connector creates synthetic key fields that are added to the r at es
table. When JSON is viewed as nodes, the two rates are distinguished by the integer incrementor that becomes

the synthetic key field, as illustrated:

Select a node. ..

¥ rates [2]

v o {3}
starthDate @ 2
endDate
rate @ 8.85

v 1 {3}

AT

procedureCode @ B51287ZZ

817-1-1

. 2817-6-1

You are ensured a unique primary key (PK) by melding the incremental value with pr ocedur eCode forar at e

— it links a row in the r at e table to a row

in the r esul t s table.

Note: The URL that is the target for the import of REST metadata must return JSON representing unique keys
that will be mapped to your vocabulary. If it does not, the posi t i on field will be added to the generated schema

to uniquely identify instances.

When JSON is viewed from a database point of view, the ability to distinguish the two rates is done with a
synthetic integer incrementor, as illustrated:

Corticon Entity association

Dbjscts in REST Datasource Rate Data

Database implied
Rate
Rate
Rate
Rate
Rate

Treatment:medicalCode

Column

(synthetic increment)*
(PROCEDURECODE)*
startDate

endDate

rate

Equivalent to reloticnal database as..

¢ position (PK, varchar(1), not null)

{ procedureCode (PK, varchar(1), not null
=] startDate (date, null)

=] endDate (date, null)

=] rate (float, null)

180

Progress Corticon : Data Integration: Version 6.3

Mapping REST Service metadata

Export a discovered schema

The Autonomous REST Connector schema discovery mechanism generates a schema for a REST service.
You can make changes or add your preferred schema. Once you have fully defined a REST connection, it will
be saved in the Vocabulary so it does not need to be recreated on each use. If you want to manually edit a
REST schema to, for example, tweak a data type, click SCHEMA Export to export it to a text file. In that
circumstance, you must specify the schema file when configuring a REST Datasource. Here is the exported
schema from the REST sample:

1 {

2 "REST_DELTEL med

] "#path":[

- "https://bi36ifkic6.exccute—api . us—cast—2 . aMazonaws . com/

G prod/REeimbursementRate /Sresults™
1.
"procedureCode™ : "VarChar (64) , #key™,
"rates[12]":{

"startDate":"Date"™,
1C "endDate™:"Date™,
11 "rate™:"Double™

Here is the subtly different exported schema from REST in the Mixed Connectivity sample:

1 {

2 "REST_DFLTFL me

7 "#path":[

- "https: S/ bi36i%kif6 .. execute—api . us—sa3t—2 . AMaZ0ONaWS . comy

5 prod/EeimbursementRate /results™

1,

"procedureCode™: {
"ftype™:"VarChar (64) , #key",
"$default":"B51Z0ZZ",

1C "¥eq": "procedureCode™

11 },

12 "rates[1l]":{

13 "startDate™:"Date"™,

14 "endDate™: "Date™,

15 "rate™:"Doukble™

Corticon does not provide any instructions on manipulation of schema files. See topics in DataDirect's
Autonomous REST Connector online help at

hips/ocsprogessaombundetisadiedauionomoustest comnedorddoc60iegp\eome e Pogess DasDiedAuonomous REST-ComnedodorJDBChim
Once you have saved your updated schema file, click SCHEMA Import to apply it.

Progress Corticon : Data Integration: Version 6.3 181

https://docs.progress.com/bundle/datadirect-autonomous-rest-connector-jdbc-60/page/Welcome-to-the-Progress-DataDirect-Autonomous-REST-Connector-for-JDBC.html

Chapter 16: Advanced REST Datasource Topics

Define your preferred schema

The REST SCO currently depends on the Autonomous REST Connector schema discovery mechanism to
generate the schema for a REST service. The Autonomous REST Connector design accounts for this by
allowing users to supply a REST schema file. This is an alternative to the schema discovery approach. Corticon
needs to allow users to specify the schema file when configuring a REST Datasource. When specified, the
schema file would be supplied to Autonomous REST Connector and schema discovery not performed.

The schema files are text files but they can be complex. Corticon will not provide any mechanisms to simplify
the creation of schema files - this is the purview of the Autonomous REST Connector, whose roadmap includes
provisions for tooling to aid in the creation of schema files. Users are referred to Autonomous REST Connector
documentation and tooling for creation of schema files - Corticon will just provide for the import of the files.

Requirements
When configuring a REST Datasource, you have the option of supplying the schema file.

The schema is imported and stored as part of the vocabulary, similar to how it is done when schema discovery
is performed. Because of its close relationship with the vocabulary, the schema is not stored as a separate file.

How to define associations in REST Service metadata

The JSON data returned from a REST datasource can be, and often is, hierarchical. There are some special
concerns when mapping this hierarchical data in Studio.

In order to properly map associations (which are essentially joins between 2 tables), the Entity Identity must
be set for the Entity to specify which attributes are part of the primary key. Additionally, the join expression for
the association must be set to define which attributes are used to create the join.

The REST Services driver automatically creates the primary key for the tables. In most cases the primary key
is the first field in the JSON for that object, unless there is some reason that it cannot be used as a primary
key, or a different field was determined to be a better fit. When the data contains arrays of objects, the
Autonomous REST Connector creates additional fields named "POSITION", and then adds them to the primary
key. This field indicates where the object was found in the array.

If parameters are also mapped, then the parameter column is also added to the primary key, so these columns
must also have corresponding attributes in the Entity.

In summary, the primary key or Entity Identity for an Entity will consist of:

* At least one attribute that was determined to be unique across all of the elements of the array
* For arrays, a position field to specify the location in the array, if a unique field could not be identified.
* Any URL parameter columns

For associated Entities there will be additional elements in the primary key or Entity Identity :

* The ID of the root element that this element has as a parent

* The position field of the parent object (if it was determined to be in an array

* The position field of the parent's parent recursively back up to the root table (REST_DATA).
For example, if we have the following structure:

Vehicle

Id

—Devices

Id

182

Progress Corticon : Data Integration: Version 6.3

Mapping REST Service metadata

— Radios

Id

The structure that the Autonomous REST Connector would create would be this:
Vehicle

*Id

—Devices
*position
*VehiclelD

Id

— Radios
*DevicesPosition
*position
*VehiclePosition
Id

As you can see, the more nested the structure, the more complex the primary keys get for the lower levels, as
the keys from the previous levels all have to be maintained at each level.

The potentially confusing point is that the position columns are added by the Autonomous REST Connector
and will have to have corresponding attributes in the vocabulary. These attributes do not exist in the JSON
document and will need to be manually added during modeling (they may be set to transient if desired).

When there is a name conflict, or a conflict with a reserved word, Autonomous REST Connector will post-pend
a" "tothe name, or a"_<number>". This may make mapping difficult, as it may be hard to tell which is which.

Progress Corticon : Data Integration: Version 6.3 183

Chapter 16: Advanced REST Datasource Topics

184 Progress Corticon : Data Integration: Version 6.3

17

Data type mappings from database fields

Corticon relies on static definitions of database access mechanisms to map the types of database fields to
Corticon vocabulary attributes. These static mappings are defined within Corticon based on the selected
database connection.

Oracle Database Field Mappings

Corticon Type Supported Database Types

Boolean NUMBER, CHAR, VARCHAR2

DateTime DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME
ZONE

Date DATE, TIMESTAMP

Time DATE, TIMESTAMP

Decimal NUMBER, DECIMAL, FLOAT

Integer NUMBER, DECIMAL, FLOAT

String CHAR, VARCHARZ2, LONG, NVARCHAR2, CLOB

Progress Corticon : Data Integration: Version 6.3 185

Chapter 17: Data type mappings from database fields

MySQL Database Field Mappings

Corticon Type

Supported Database Types

Boolean BIT, INTEGER, TINYINT, SMALLINT, CHAR

DateTime DATETIME, TIMESTAMP

Date DATE, DATETIME, TIMESTAMP

Time TIME, DATETIME, TIMESTAMP

Decimal DECIMAL, NUMERIC, FLOAT, DOUBLE

Integer INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT, YEAR
String CHAR, VARCHAR, TINYTEXT, LONGTEXT, TEXT, MEDIUMTEXT

Microsoft SQL Server Database Field Mappings

Corticon Type

Supported Database Types

Boolean bit, tinyint, smallint, char

DateTime smalldatetime, datetime2, datetime

Date date, datetime2, datetime

Time smalldatetime, datetime2, datetime

Decimal numeric, decimal, float, real, money, smallmoney

Integer int, smallint, tinyint, bigint, bigint identity, int identity, numeric, decimal, money, smallmoney
String ntext, xml, nchar, char, varchar, text, nvarchar, nvarchar(max), uniqueidentifier

186

Progress Corticon : Data Integration: Version 6.3

PostgreSQL Database Field Mappings

Corticon Type Supported Database Types

Boolean BIT, SMALLINT, CHARACTER, CHAR, BOOLEAN

DateTime TIMESTAMP WITH TIME ZONE, TIMESTAMP

Date DATE, TIMESTAMP WITH TIME ZONE, TIMESTAMP

Time TIME, TIME WITH TIME ZONE, TIMESTAMP WITH TIME ZONE, TIMESTAMP
Decimal DOUBLE PRECISION, NUMERIC, REAL

Integer BIGINT, BIGSERIAL, INTEGER, SERIAL, SMALLINT, NUMERIC

String CHARACTER, CHAR, TEXT, VARCHAR, CHARACTER VARYING

IBM Db2 Database Field Mappings

Corticon Type Supported Database Types
Boolean CHAR, SMALLINT

DateTime TIMESTAMP

Date DATE, TIMESTAMP

Time TIME, TIMESTAMP

Decimal DECIMAL, REAL, DOUBLE

Integer BIGINT, INTEGER, SMALLINT, DECIMAL

String LONG VARCHAR, CHAR, VARCHAR, CLOB

Progress Corticon : Data Integration: Version 6.3 187

Chapter 17: Data type mappings from database fields

Microsoft Dynamics 365 Database Field Mappings

Corticon Type

Supported Database Types

Boolean BOOLEAN

DateTime DATETIME, TIMESTAMP, DATETIMEOFFSET

Date DATE, DATETIME, TIMESTAMP, DATETIMEOFFSET

Time TIME, DATETIME, TIMESTAMP, DATETIMEOFFSET
Decimal DECIMAL, DOUBLE

Integer INTEGER, BIGINT, INT, SMALLINT, TINYINT, INT32, INT64
String CHAR, VARCHAR, STRING, GUID

Progress OpenEdge Database Field Mappings

Corticon Type

Supported Database Types

Boolean BIT, CHAR, SMALLINT

DateTime TIMESTAMP

Date DATE, TIMESTAMP, DATETIME

Time TIME, TIMESTAMP

Decimal NUMERIC, DECIMAL, REAL, DOUBLE

Integer NUMERIC, BIGINT, INTEGER, SMALLINT, DECIMAL
String VARCHAR, LONG VARCHAR, CHAR

188

Progress Corticon : Data Integration: Version 6.3

	Copyright
	Table of Contents
	Why your rules might want to access external data
	Corticon alternatives for data integration
	How Corticon concepts apply to Datasources
	About the sample projects referenced in this guide
	How Datasource information is viewed in the Vocabulary
	Getting Started with EDC
	Define a table namespace in the database
	Define the database connection for EDC
	Set the entities to store in the database
	Load the schema and data in the database
	Import EDC database metadata into a Vocabulary
	Test the rules when reading from the database
	Test the rules when writing to the database

	Getting Started with ADC
	Overview of the Advanced Data Connector
	Define a table namespace in the database for ADC
	Create and map the ADC schema and queries
	Define a database connection for ADC
	Define and import queries for ADC
	Import ADC Datasource metadata into a Vocabulary
	Use an ADC connection as a Ruleflow service callout
	Test the rules when reading from the ADC database
	Test the rules when writing to the ADC database

	Getting Started with Multiple Database Connectivity
	Define multiple table namespaces
	Create and map the multiple database schemas
	Define multiple database connections
	Define and import queries for multiple databases
	Import multiple Datasource metadata into a Vocabulary
	A closer look at MDB metadata

	Use multiple database connections as Ruleflow service callouts
	Test the rules when reading from multiple databases
	Test the rules when writing to multiple databases

	Getting Started with REST
	Overview of the Autonomous REST Connector
	Define a Datasource connection for REST
	Create and map the REST schema
	Use REST data sources in a Ruleflow
	Test rules when importing from the REST Datasource
	Revise Connection and Service Call-out to retrieve data

	Mixing REST and database access
	Deploying projects that use data integration
	Export the Datasource Configuration file
	Package a project in Corticon Studio for Corticon Server

	Getting Started with Batch
	A closer look at how Corticon relates to Datasources
	Add your own database driver
	Supported databases
	Authentication on EDC and ADC connections
	SmartMatching of Vocabularies to databases
	Validation of names against SQL keywords and database restrictions
	Support for catalogs and schemas
	How to filter catalogs and schemas
	Fully-qualified table names
	Support for database views
	Associations as join expressions

	Advanced EDC Topics
	How to set EDC Vocabulary properties
	Edit Entity EDC properties
	Edit Attribute EDC properties
	Import possible values of an attribute from database tables
	Enumerated values

	Edit Association EDC properties

	Mapping and validating EDC database metadata
	Mapping EDC database tables to Vocabulary Entities
	Mapping EDC database fields (columns) to Vocabulary Attributes
	Mapping EDC database relationships to Vocabulary Associations
	Validate EDC database mappings
	Types of mapping validation and validation errors

	Set additional EDC Datasource connection properties
	How data from an EDC Datasource integrates into rule output
	When Datasource access is Read Only
	When Datasource access is Read/Update

	EDC data caching
	How to specify caching on Vocabularies and Rulesheets
	Settings for EDC caching
	How to work with database caches

	Metadata for Datastore Identity in XML and JSON Payloads
	Relational database concepts in the Enterprise Data Connector
	Identity strategies
	Advantages of using Identity Strategy rather than Sequence Strategy
	Key assignments
	Conditional entities
	Dependent tables

	How EDC handles transactions and exceptions

	Advanced ADC Topics
	Mapping ADC database metadata
	Mapping ADC database tables to Vocabulary Entities
	Mapping ADC database fields to Vocabulary Attributes
	Mapping ADC database relationships to Vocabulary Associations

	How to configure ADC
	How to configure ADC reads
	How to configure ADC writes
	How to configure batch
	Configuration details
	Set additional ADC Datasource connection properties

	How Corticon is expressed in SQL
	Tips and techniques in SQL data integration

	Advanced REST Datasource Topics
	Authentication on REST Service connections
	Parameters on REST Service connections
	Import REST Datasource metadata into a Vocabulary
	Mapping REST Service metadata
	Define your preferred schema
	How to define associations in REST Service metadata

	Data type mappings from database fields

