
Corticon
Data Integration

Copyright

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress
®

software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

#1 Load Balancer in Price/Performance, 360 Central, 360 Vision, Chef, Chef (and design), Chef Habitat, Chef
Infra, Code Can (and design), Compliance at Velocity, Corticon, Corticon.js, DataDirect (and design), DataDirect
Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, DataRPM,
Defrag This, Deliver More Than Expected, DevReach (and design), Driving Network Visibility, Flowmon, Inspec,
Ipswitch, iMacros, K (stylized), Kemp, Kemp (and design), Kendo UI, Kinvey, LoadMaster, MessageWay,
MOVEit, NativeChat, OpenEdge, Powered by Chef, Powered by Progress, Progress, Progress Software
Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, Sitefinity (and design), Sitefinity Insight,
SpeedScript, Stylized Design (Arrow/3D Box logo), Stylized Design (C Chef logo), Stylized Design of Samurai,
TeamPulse, Telerik, Telerik (and design), Test Studio, WebSpeed, WhatsConfigured, WhatsConnected,
WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Workstation,
Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect Spy, DevCraft, Fiddler,
Fiddler Classic, Fiddler Everywhere, Fiddler Jam, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline,
iMail, InstaRelinker, JustAssembly, JustDecompile, JustMock, KendoReact, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Thunder, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket, SupportLink,
Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Apache and Kafka are either registered trademarks or trademarks of the Apache Software Foundation
in the United States and/or other countries. Any other marks contained herein may be trademarks of their
respective owners.

Please refer to the NOTICE.txt or Release Notes – Third-Party Acknowledgements file applicable to a particular
Progress product/hosted service offering release for any related required third-party acknowledgements.

Last updated with new content: Corticon 6.3.1

Updated: 2022/09/25

3Progress Corticon : Data Integration: Version 6.3

Progress Corticon : Data Integration: Version 6.34

Copyright

Table of Contents

Why your rules might want to access external data...................................9

Corticon alternatives for data integration..11

How Corticon concepts apply to Datasources..15

About the sample projects referenced in this guide................................19

How Datasource information is viewed in the Vocabulary......................23

Getting Started with EDC...29
Define a table namespace in the database...30
Define the database connection for EDC..30
Set the entities to store in the database..32
Load the schema and data in the database..34
Import EDC database metadata into a Vocabulary...34
Test the rules when reading from the database..36
Test the rules when writing to the database..37

Getting Started with ADC..41
Overview of the Advanced Data Connector..42
Define a table namespace in the database for ADC...42
Create and map the ADC schema and queries..43
Define a database connection for ADC...45
Define and import queries for ADC...47
Import ADC Datasource metadata into a Vocabulary...50
Use an ADC connection as a Ruleflow service callout...51
Test the rules when reading from the ADC database...52
Test the rules when writing to the ADC database...54

Getting Started with Multiple Database Connectivity...............................55
Define multiple table namespaces ...56
Create and map the multiple database schemas..56
Define multiple database connections..59

5Progress Corticon : Data Integration: Version 6.3

Contents

Define and import queries for multiple databases...62
Import multiple Datasource metadata into a Vocabulary..65

A closer look at MDB metadata..67
Use multiple database connections as Ruleflow service callouts...69
Test the rules when reading from multiple databases...70
Test the rules when writing to multiple databases...72

Getting Started with REST...73
Overview of the Autonomous REST Connector..73
Define a Datasource connection for REST...74
Create and map the REST schema..76
Use REST data sources in a Ruleflow..79
Test rules when importing from the REST Datasource...80
Revise Connection and Service Call-out to retrieve data...81

Mixing REST and database access..85

Deploying projects that use data integration..89
Export the Datasource Configuration file..89
Package a project in Corticon Studio for Corticon Server...92

Getting Started with Batch..93

A closer look at how Corticon relates to Datasources.............................99
Add your own database driver..100
Supported databases..100
Authentication on EDC and ADC connections..101
SmartMatching of Vocabularies to databases...101
Validation of names against SQL keywords and database restrictions..102
Support for catalogs and schemas...102
How to filter catalogs and schemas..103
Fully-qualified table names...103
Support for database views..104
Associations as join expressions..104

Advanced EDC Topics...109
How to set EDC Vocabulary properties...109

Edit Entity EDC properties...110
Edit Attribute EDC properties...113
Edit Association EDC properties..123

Progress Corticon : Data Integration: Version 6.36

Contents

Mapping and validating EDC database metadata...123
Mapping EDC database tables to Vocabulary Entities...124
Mapping EDC database fields (columns) to Vocabulary Attributes..126
Mapping EDC database relationships to Vocabulary Associations..126
Validate EDC database mappings...127
Types of mapping validation and validation errors...128

Set additional EDC Datasource connection properties...129
How data from an EDC Datasource integrates into rule output..131

When Datasource access is Read Only...132
When Datasource access is Read/Update..137

EDC data caching...141
How to specify caching on Vocabularies and Rulesheets..142
Settings for EDC caching...144
How to work with database caches..145

Metadata for Datastore Identity in XML and JSON Payloads...148
Relational database concepts in the Enterprise Data Connector ..149

Identity strategies...150
Advantages of using Identity Strategy rather than Sequence Strategy...................................152
Key assignments..152
Conditional entities...154
Dependent tables...155

How EDC handles transactions and exceptions...155

Advanced ADC Topics...157
Mapping ADC database metadata..157

Mapping ADC database tables to Vocabulary Entities...158
Mapping ADC database fields to Vocabulary Attributes..159
Mapping ADC database relationships to Vocabulary Associations..159

How to configure ADC..160
How to configure ADC reads..161
How to configure ADC writes...162
How to configure batch..164
Configuration details..164

How Corticon is expressed in SQL...166
Tips and techniques in SQL data integration..167

Advanced REST Datasource Topics...171
Authentication on REST Service connections..172
Parameters on REST Service connections...176
Import REST Datasource metadata into a Vocabulary...177
Mapping REST Service metadata...179

Define your preferred schema..182
How to define associations in REST Service metadata...182

7Progress Corticon : Data Integration: Version 6.3

Contents

Data type mappings from database fields...185

Progress Corticon : Data Integration: Version 6.38

Contents

1
Why your rulesmight want to access external
data

Corticon provides the flexibility to either pass the data in on the call to the decision service or to have the
decision service retrieve data, or a mix of both. What you choose depends on your needs.

In most Corticon deployments, the data is passed in. This simplifies the architecture because you don't need
to account for Corticon connecting to external data sources. This is especially true when you have legacy
systems which cannot be easily accessed. In some cases, the data passed in can be large. For example, all
the data needed to process a loan application for a single applicant.

In some deployments, Corticon needs to retrieve supporting data. This adds additional connections to the
architecture yet it can be a considerable savings to not have to pass in all the data in the request. This is
especially true where the data is selective – when the rules are choosing some subset of data that is needed.
This can also be useful with reference data that you want to cache.

In other deployments Corticon needs to retrieve the data for efficiency. An example would be a batch application
where you need to process a billion records at the end of the month. In such cases, efficient moving of data is
essential for performance.

9Progress Corticon : Data Integration: Version 6.3

Progress Corticon : Data Integration: Version 6.310

Chapter 1: Why your rules might want to access external data

2
Corticon alternatives for data integration

Corticon provides several techniques for data integration. Which ones are right for you depends on your use
case – you can assemble the right mix to suit your needs.

Here is a video overview of the data access options:

Learn about data access from Corticon

When you want the Datasource to create the Vocabulary
You could choose to connect to a database or REST Datasource to populate your Vocabulary. You need not
be bound to the Datasource once the Vocabulary has been generated. For more about this technique, see the
section "Populate a Vocabulary from a Datasource" in the Rule Modeling Guide.

When to use the Enterprise Data Connector (EDC)
Corticon EDC accesses data is a relational database to augment data when processing a discrete Decision
Service request. It is used by rule authors who like the user friendly and intuitive way of modeling data access
and persistence in their Rulesheets to conditionally enrich transactional data, and to use reference data for
rule processing using a single backend relational database.

For example, a single request to adjudicate an insurance claim tells Corticon to retrieve all required data and
related data from a database to service the request. Corticon performs well in this scenario including the
persistence of the claim processing result back into the database.

Corticon EDC uses an object relational model (ORM) where entities mapped to a database are automatically
enriched with database data and optionally saved back to the database. This approach makes it very easy to
use database data in your rules but also introduces query and data processing overhead when reading data
from a database with related tables. Both read and write performance can suffer in some use cases with EDC.
When performing reads, the number of queries required to retrieve an entity and all associated entities can
grow exponentially with each level of associations. When performing writes, each updated object is committed
to the database as a distinct update instead of a large, single pass multi-record update.

11Progress Corticon : Data Integration: Version 6.3

https://www.youtube.com/watch?v=t5oElS_errs

Database read and update through EDC is a good choice for a single Decision Service request scenario with
limited amounts of data. Examples are individual claims processing, single client eligibility requests, and a
single transaction validation request. Many Corticon users have EDC running every day with EDC deployment
scenarios.

EDC's limitations are in its performance in large, data intensive operations where large chunks of data are
loaded into Corticon for processing and updating the database.

EDC can be thought of as the "Easy Data Connector" because it provides the simplest means of connection
to a database. This contrasts with the "Advanced Data Connector" which requires greater knowledge of SQL
but provides greater flexibility.

When to use Advanced Data Connectors (ADC)
ADC also provides for accessing data in a database but takes a different approach than EDC to address
different use cases. ADC is very efficient in dealing with large data sets. ADC has the ability to connect to
disparate databases--you can use ADC to read from and write to multiple databases in a single decision service.
With EDC you're limited to one database. Both read and write performance is much better than EDC when
processing larger data sets in a Decision Service request. ADC can read related data in a few passes from the
database, where EDC requires discrete queries to fetch data. And ADC can write back data in chunks, where
EDC writes data as discrete updates.

Both ADC and EDC are single-threaded -- a single request is executed by a single Decision Service reactor
which has access to the full collection of data included in the request payload, database exposed entities and
filter criteria in the Rulesheets (EDC) or ADC queries.

Using ADC, you get great performance when processing a large dataset through a single Decision Service
request. You can use ADC to quickly process a set of unrelated records such as individual customers or work
orders. You can also use it when you need to do operations such as aggregations and clustering. You can
build rules that operate on the full collection of data. As examples, you can quickly adjudicate all medical claims
in a month or approve specific procedures across all hospitals in a specified region, or calculate sales prices
for all items in stock. In some situations, it is imperative to have access to the full collection of data for your
rules to work properly. For example, when sales prices are calculated based on clustering rules whereby all
sales prices for products in the same cluster are based on the average purchase price of their respective
product cluster.

When to use the REST Datasource
The Corticon REST Datasource provides support for accessing REST services. It allows you to retrieve REST
data to enrich the payloads being processed by your rules.

The Corticon REST Datasource uses the Data Direct Autonomous REST Connector which provides the ability
to access REST services as if they were databases. This is beneficial to a Corticon user because the process
of mapping a vocabulary to a REST service is the same as for EDC and ADC data sources.

To configure the REST Datasource you either perform schema discovery or supply your own schema file.
When using schema discovery, you supply the URL of the REST data source and query parameters and allow
the Autonomous REST Connector to generate a schema for your REST service. To supply your own schema,
you can either export a discovered schema from Corticon Studio and make edits or create one from scratch.
See the Autonomous REST Connector documentation for details on the its schema file format.

The query parameters for a REST Datasource can either be fixed or dynamically set by data in your payload.
Dynamic setting of parameters allows you to access a REST service to retrieve information about a specific
entity in your payload. You can also configure the security settings for accessing a REST service.

As REST access is limited to read-only, it is ideal for data enrichment. You could have one or several REST
Datasources used by a decision service. You can even mix EDC or ADC with REST depending on your data
access needs.

Progress Corticon : Data Integration: Version 6.312

Chapter 2: Corticon alternatives for data integration

The wealth of REST data sources exposed through APIs means that you could be touching multiple sources
to build the best complete data set possible. In marketing scenarios that might mean taking sparse info on a
prospect from social or business contacts to enrich the data by discovering their profile and preferences to
focus campaigns and assign local reps for follow-up. In medical applications, diagnoses and treatments can
be enriched with claims approval histories or related clinical trials. For mortgage lenders, quickly scanning
multiple credit review resources for a prospect, and then matching their home value and loan to retrieve the
best rate from multiple lenders.

When to use batch processing
Batch processing is used to process large data sets either after hours, during periods of low system usage or
to meet business demands such as monthly or quarterly reporting. Corticon's batch processing can be used
with ADC to efficiently process huge amounts of data. Batch decision services can also use REST Datasources.

A requirement for batch processing is that each transaction stands on its own, not needing access to the full
collection of data to make decisions on single transactions. As only so much data can be loaded into Corticon
working memory at once, the data would need to be fed to the rules engine in chunks to then process the
chunks concurrently based on resource capacity. Note that there are no return payloads in batch processing
– the result of all the rule processing is persisted in the database.

Batch processing usually runs against the same input source to process large volumes of data so it is set to
run at scheduled such as nightly or monthly. Corticon'sWeb Console can be used to schedule batch executions
or you can use external tooling to perform scheduling and call Corticon REST API to start a batch execution.

13Progress Corticon : Data Integration: Version 6.3

Progress Corticon : Data Integration: Version 6.314

Chapter 2: Corticon alternatives for data integration

3
HowCorticon concepts apply to Datasources

Internally, Corticon accesses all data sources using SQL. A Corticon Vocabulary is fundamentally relational in
nature, and conceptually equivalent to the elements of a typical relational database:

Relational DatabaseCorticon Vocabulary

SchemaVocabulary

TableVocabulary: Entity

Table Column or FieldVocabulary: Attribute

Relationship between TablesVocabulary: Association

Table Row(s) or Record(s)Ruletest Output

How REST can conform to a relational database schema
Corticon uses the Progress® DataDirect® Autonomous Rest Connector to access REST Datasources, which
maps the returned JSON to a relational database schema and translates SQL statements to REST API requests.
When configuring a REST Datasource you can either have the Autonomous Rest Connector discover the
schema for a REST service or provide your own schema file. The schema tells the Autonomous Rest Connector
how to map JSON in memory database tables which Corticon will then access with SQL.

JSON data is hierarchical, not relational, but can be mapped to a relational model. When using schema
discovery, Autonomous Rest Connector will determine how to perform this mapping. If you need finer control
over the mapping, you can provide your own schema file.

15Progress Corticon : Data Integration: Version 6.3

The Autonomous Rest Connector handles the complexities of mapping JSON to a relational representation
but you need to understand the rules applied to perform the mapping. This is best done by example. Imagine
you have a REST service which returned the JSON.

{
"applicant": [

{
"name": "Sydney Smith",
"income": 57000,
"address": {

"street": "101 Main Street",
"city": "Raleigh",
"state": "NC"

},
"children": [

{
"name": "Robert Smith",
"dob": "2017-04-19"

},
{

"name": "Chelsea Smith",
"dob": "2014-11-07"

}
]

}
]

}

Looking at this, you can see there is one applicant, Sydney Smith, with two children and other information
about Sydney. The Autonomous REST Connector would represent this relationally as two tables, "applicant"
and "children". The applicant table would contain columns for:

• name

• income

• street

• city

• state

The "children" table would contain columns for

• name

• dob

When mapping the JSON to in memory tables, the Autonomous Rest Connector would map Sydney to the
"applicant" table and her two children to the "children" table. The Autonomous Rest Connector would also
define a primary key/foreign key relationship between the tables so that the children for an applicant can be
identified.

In this simple example:

• The applicant and their attributes were added to the applicant table

• The nested address data was "flattened" and made attributes of the applicant

• The nested array of children objects were mapped to an associated table

REST mappingRelational DatabaseCorticon Vocabulary

Schema (even if implicit)SchemaVocabulary

ObjectTableVocabulary: Entity

Progress Corticon : Data Integration: Version 6.316

Chapter 3: How Corticon concepts apply to Datasources

REST mappingRelational DatabaseCorticon Vocabulary

Number, string, or nullTable Column or FieldVocabulary: Attribute

Array of objects, strings, or numbersRelationship between TablesVocabulary: Association

Object InstancesTable Row(s) or Record(s)Ruletest Output

For an example a schema in a REST Datasource, see Mapping REST Service metadata on page 179 .

17Progress Corticon : Data Integration: Version 6.3

Progress Corticon : Data Integration: Version 6.318

Chapter 3: How Corticon concepts apply to Datasources

4
About the sample projects referenced in this
guide

The Getting Started techniques for data integration are presented in this guide using a sample of medical
patient records and treatments that have been performed on the patient. The samples provide the SQL
statements that setup the table and sample data for many supported databases. All the samples build on each
other so that you understand that what is under discussion is evolution of functionality in Corticon data integration.

The scenarios demonstrate the essential concepts of the various data integration options. The corresponding
Corticon Studio sample projects use one or more databases or REST services. Where a database is needed,
the samples include SQL scripts to define the schema and load sample data for many supported databases.
Where REST is needed, the samples use a test REST service hosted by Progress on AWS. With the exception
of the Batch Rule Process sample, the samples are independent. The Batch Rule Processing sample requires
the ADC Database Connectivity sample's database configuration to have been performed and the decision
service deployed to Corticon Server.

For database samples, this guide demonstrates usage with Microsoft SQL Server. The techniques can be
applied to other supported databases.

This guide refers to the included SQL scripts by their logical name. For example, the SQL script that sets up
the patient schema and data on SQL Server is the file sql/sqlserver/patient_sqlserver.sql. This
guide refers to that as simply patient. Once a script has been run in the database, it does need to run again
for another sample as the script is the same.

Each sample section starts with advice about advancing from the previous section. Each topic within a Getting
Started section indicates how hands-on users can just read through the steps that are pre-defined in the sample
project assets.

If you choose, you could start at Mixed Connectivity, and work backwards to the other samples. You might see
some unneeded data and tables yet all the required metadata and SQL Queries will process the samples as
expected.

There are six Corticon samples that relate to data integration:

19Progress Corticon : Data Integration: Version 6.3

1. EDC Database Connectivity - The classic database connectivity in Corticon is EDC. The richness of
database interaction is defined within Rulesheets. While this can be constraining, its simplicity is appropriate
for many applications, as illustrated:

The EDC sample can be used as the basis for the ADC sample. It is a good idea though to close the EDC
asset files to ensure that you keep the samples distinguished. SQL script: patient.

2. ADC Database Connectivity - Corticon Extensions are the foundation of the ADC functionality. The defined
functions enable read and write functionality that are implemented in the sample's Ruleflow as Service
Call-outs, where one call-out is enabling read functions while the other enables write functions, as illustrated:

The ADC sample can be used as the basis for the Multiple Database sample and is needed by the Batch
Rule Processing sample. SQL scripts: patient and adc.

3. Multiple Database Connectivity - With ADC you can access multiple databases. The data read in from
one database can even be used when querying data from another database. This sample will demonstrate
the use of ADC to read patient and treatment data from one database and then access a second database
to retrieve detailed information about a type of treatment. The rules determine if a treatment is approved
and the results are saved to the patient and treatment database, as illustrated:

4. RESTConnectivity - The REST sample demonstrates the use of Corticon's RESTConnectivity for accessing
REST services from rules. The sample calls a REST service to retrieve the reimbursement rates for a
medical procedure given a procedure code. There may be multiple rates for a procedure with different
effective date ranges.

5. Mixed Connectivity - This sample mixes ADC and REST datasources to demonstrate the flexibility of
Corticon's data access capabilities. The sample builds on the Multi Database Sample, adding to it the
retrieval of reimbursement rate data as is done in the REST connectivity sample.

Progress Corticon : Data Integration: Version 6.320

Chapter 4: About the sample projects referenced in this guide

.

6. Batch Rule Processing - The batch sample does not include any rule assets. It contains SQL scripts to
populate a test database with additional records to better explore the batch rule processing concepts. This
guide will show how to use the Web Console perform batch rule processing.

21Progress Corticon : Data Integration: Version 6.3

Progress Corticon : Data Integration: Version 6.322

Chapter 4: About the sample projects referenced in this guide

5

23Progress Corticon : Data Integration: Version 6.3

HowDatasource information is viewed in the
Vocabulary

When an EDC, ADC or REST Datasource is added to a vocabulary, the Vocabulary editor is modified to place
a Datasource pulldown menu above the Vocabulary tree, as illustrated:

Figure 1: Datasource not selected

Progress Corticon : Data Integration: Version 6.324

Chapter 5: How Datasource information is viewed in the Vocabulary

Once a Datasource is selected, the tree icons take on database 'decorations' on each persisted entity and
attribute. The list of attributes in each persisted entity is re-arranged such that the one or more attributes that
comprise the entity identity, the Primary Key, are at the top of each list. Here, the EDC Datasource is selected
and the database decorations are shown:

Figure 2: EDC Datasource selected

25Progress Corticon : Data Integration: Version 6.3

When more than one Datasource has been defined in a Vocabulary, clicking the pulldown lets you choose
which Datasource you want to view, as illustrated:

Figure 3: Selecting from multiple Datasources

Progress Corticon : Data Integration: Version 6.326

Chapter 5: How Datasource information is viewed in the Vocabulary

In the following illustration, the Patient Datasource is showing its persisted elements and keys, and the
Datasource's section of the Properties panel is decorated with an orange arrow to indicate that it is the
Datasource in the current view:

Figure 4: Patient Datasource keys and persistent elements

When you toggle the Datasource selector to the Treatment Datasource, it decorates its persisted elements
and keys, and the Datasource's section of the Properties panel is decorated with an orange arrow to indicate
that it is the Datasource in the current view:

27Progress Corticon : Data Integration: Version 6.3

Figure 5: Treatment Datasource keys and persistent elements

The next sections of this document take you through setting up and experiencing each type of data connectivity.
That is followed by advanced material for each type of Datasource.

Progress Corticon : Data Integration: Version 6.328

Chapter 5: How Datasource information is viewed in the Vocabulary

6
Getting Started with EDC

In this section, you walk through how an Enterprise Data Connector (EDC) connection is established, and then
used and tested by rules. The EDC connection enables Corticon Decision Services to connect to a single
database and perform read, write, and delete operations on it.

Some simple Vocabulary designs can take advantage of the EDC technique (if accepted by database
administrators) that lets Studio export schema information directly to a database engine and generate the
necessary table structure within an appropriately defined tablespace.

To load the EDC sample:

In Corticon Studio, choose the menu item Help > Samples. Select the Intermediate Sample EDC Database
Connectivity, and then click Done. Follow the Import dialog to bring the sample into your workspace.

The topics guide you through experiencing this section by running the sample files in Corticon Studio.

For details, see the following topics:

• Define a table namespace in the database

• Define the database connection for EDC

• Set the entities to store in the database

• Load the schema and data in the database

• Import EDC database metadata into a Vocabulary

• Test the rules when reading from the database

• Test the rules when writing to the database

29Progress Corticon : Data Integration: Version 6.3

Define a table namespace in the database
Note: Using the sample: The sample uses the namespacePatientRecords. If you completed Getting Started
with ADC on page 41 or Getting Started with Multiple Database Connectivity on page 55, you can just continue
with their namespaces.

Set up your database product in a network-accessible location, and then define a database name. Note the
database URL and port as well as the new database name. Be sure that your database will not deny connection
using credentials -- for example, using SQL Server Authentication and not Windows Authentication.
These parameters are all that is typically required to connect the Vocabulary to the database, create the schema
for the persistent entities, and then bring the database metadata back to the Vocabulary.

Note: Refer to the Progress Software web page Corticon Supported Platforms Matrix to review the currently
supported database brands and versions.

Define the database connection for EDC
Note: Using the sample: The EDC database connection is defined in the Vocabulary. Enter your username
and password, and then test the connection.

To connect a Vocabulary to a database:

1. On the Vocabulary menu, choose Add Datasource > Add EDC Datasource as shown:

Progress Corticon : Data Integration: Version 6.330

Chapter 6: Getting Started with EDC

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

2. The EDC tab is added to the root level of the Vocabulary, as illustrated:

where:

• Description: An informative description of the intended use for the database you are accessing.

• Database Server: The database product. Click the dropdown menu on the right side of the entry area
to list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each
database. These drivers provide robust, configurable, high-availability functionality to RDBMS brands.
The drivers are pre-configured and do not require performance tuning.

31Progress Corticon : Data Integration: Version 6.3

Define the database connection for EDC

• URL: The preconfigured URL for the selected database server. You must edit the default entry to replace
(1) <server>with the machine's DNS-resolvable hostname or IP address and port , and (2) <database
name> with the database name that was set up (typically case-sensitive).

• Authentication: The authentication technique required for the Datasource. Most drivers default to Basic
where the Username and Password fields are available, and offer Keberos as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

• Catalog Filter and Schema Filter: Patterns that refine the metadata that is imported during Import
Database Metadata and Create/Update Database Schema.

Note: Filters are a good idea for production databases that might have hundreds or even thousands of
schemas. As the Catalog filter value does not support wildcards, distinguishing two metadata import
filters enables the use of wildcards in the Schema filter value: Underscore (_) provides a pattern match
for a single character. Percent sign (%) provides a pattern match for multiple characters (similar to the
SQL LIKE clause). For example, you could restrict the filter to only schemas that start with DATA by
specifying: DATA%. The ability to specify patterns is especially valuable when testing performance on
RDBMS brands with applications that use multiple schemas.

• Additional properties: Extended properties are not typically needed on an EDC connection. For more
about these properties, see Set additional EDC Datasource connection properties on page 129.

3. Click the CONNECTION Test button. An alert indicates success.

Importing Datasource and Database Access configurations
You might be given a Datasource XML configuration file that defines the EDC connection as well as its security
credentials. In that case, do the following:

1. On the project's Vocabulary menu, select Datasource Configuration File > Import .

2. Browse to locate and select the .xml configuration file to apply.

3. When you click OK, the EDC Datasource definition is added to your Vocabulary. If you already have an
EDC Datasource defined, the EDC definition will not be overwritten.

If you have an older Database Access Properties file, you can import it as follows:

1. On the project's Vocabulary menu, select Datasource Configuration File > Import Database Access
Properties.

2. Browse to locate and select the .properties configuration file to apply.

3. When you click OK, the EDC Datasource definition is added to your Vocabulary. If you already have an
EDC Datasource defined, the EDC definition will not be overwritten.

Set the entities to store in the database
Note: Using the sample: The property values in this topic are preset as described in the sample.

In the EDC Datasource Properties section of the Vocabulary, each entity that will be mapped to a database
needs to be declared, and then specify its entity identity that will set the Primary Key.

1. In the Vocabulary editor, click on each entity that will be included in the database schema, to do the following:

Progress Corticon : Data Integration: Version 6.332

Chapter 6: Getting Started with EDC

Set its Datastore Persistent property to Yes, as shown:a.

The entity and all its attributes now display their icon with a database decoration.

b. Set its Entity Identity - While you might consider alternative Identity strategies on page 150, typically
Application Identity is used to assign an attribute as the primary key for the entity. Click the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

The selected attribute is now at the top of the listed attributes and marked with an asterisk (*). That's the
primary key (PK) in the database table.

You can specify a key that is a compound of two attributes by holding down the Ctrl key while clicking
the attributes you want in the key.

33Progress Corticon : Data Integration: Version 6.3

Set the entities to store in the database

Note: Setting the Entity Identity but leaving Datastore Persistent set to No has no effect.

Load the schema and data in the database
Create the schema in the database
A Corticon EDC Datasource connection enables you to push the schema into the database. For a basic use
case, this a great timesaver.

It is more often the case that a database administrator would create the schema for the persistent entities as
tables and columns in the database. For the EDC sample, you need to have executed the Corticon SQL script
patient for your database in your database management tool's editor.

Once the database has been setup for the Vocabulary, you need to import the metadata into Corticon Studio
to complete the binding. In Corticon Studio on the Vocabulary's EDC tab, click METADATA: Import. The
mapping metadata from the database is added into the Vocabulary for the Entities (tables), Attributes (columns),
and Associations (join expressions). For more about mapping and possible anomalies, see Mapping and
validating EDC database metadata on page 123.

Import EDC database metadata into a Vocabulary
When the database schema exists, its metadata can be imported into Corticon Studio to refine and complete
the mappings between the Vocabulary and the metadata.

You can control the tables that are accessed to transfer metadata to the Vocabulary. When only a small subset
of tables will supply the metadata that is needed, the time and space overhead of the process is reduced by
delimiting the tables.

In the Vocabulary editor with the EDC database connection established, select the Vocabulary root, and then
select the tab of the database connection metadata you want to import. In its panel, click METADATA Import.

In the dialog, accept Import all tables, and click Finish, or...

Progress Corticon : Data Integration: Version 6.334

Chapter 6: Getting Started with EDC

... or click Choose tables for database metadata import and click Next.

The panel lists all the tables in the connected database.

If you do not want all, click Deselect All, and then choose specific tables.

In this example, just two tables are selected. Click Finish to perform the task.

As database metadata is imported into a Vocabulary, the Vocabulary Editor’s automatic mapping feature
attempts to find the smart match for each piece of metadata. An entity will be auto-mapped to a table if the two
names are spelled the same way, regardless of case.

35Progress Corticon : Data Integration: Version 6.3

Import EDC database metadata into a Vocabulary

Test the rules when reading from the database
In the EDC sample's Rulesheet, DetermineApproval.ers, its Advanced view's Scope shows that the
Patient entity on the Rulesheet is set to Extend to Database, as shown:

This setting tells the rules to get all database records that relate to the query. As the rules do not filter or
aggregate data, the results will be more than you might expect.

Open the sample's Ruletest, ProcedureApproval.ert. It opens on the Testsheet No Input Data. Click Run
to compile and run the rules. The output shows patient and treatment data.

Right-click anywhere in the output column, and then choose Collapse All, as shown:

Now we can see that all the patient records and their treatments were retrieved.

Progress Corticon : Data Integration: Version 6.336

Chapter 6: Getting Started with EDC

So too for the One Patient and Multiple Patients Testsheets. That is not what we want in this use case.

Note: Extending to database can produce a variety of useful results. For examples see How data from an
EDC Datasource integrates into rule output on page 131

Run test without extending to database
In the Rulesheet's Scope, right-click on Patient, and then clear the option to Extend to Database. Then,
return to the Ruletest. When you run the test for the No Input Data testsheet, you get no results. When you
run the Testsheet for the One Patient and Multiple Patients Testsheets, you get exactly that one patient and
the specified three patients.

Test the rules when writing to the database
When the rules ran, they determined the approval of treatment, as shown:

That information might have been adequate in the response. If the intent was to also persist the approval, it is
not being entered into the database, as shown:

37Progress Corticon : Data Integration: Version 6.3

Test the rules when writing to the database

To persist to the database, choose the Ruletest's Testsheet Multiple Patients, and then choose the menu
command Ruletest > Testsheet > Database Access to choose Read/Update, as shown:

Notice the red bar that decorates the database corner of the Multiple Patients tab:

Progress Corticon : Data Integration: Version 6.338

Chapter 6: Getting Started with EDC

That shows that it is in Read/Update mode. Now, click Run to compile and execute the rules. The output shows
patient and treatment data for just the three specified patients. And the database shows that records were
updated with the Approved status for only those three patients, as shown:

That's the basics of Corticon's Enterprise Data Connector. Now you can get A closer look at how Corticon
relates to Datasources on page 99 and the Advanced EDC Topics on page 109, or proceed to Getting Started
with ADC on page 41.

39Progress Corticon : Data Integration: Version 6.3

Test the rules when writing to the database

Progress Corticon : Data Integration: Version 6.340

Chapter 6: Getting Started with EDC

7
Getting Started with ADC

Corticon's Advanced Data Connector (ADC) provides an alternative to Corticon’s Enterprise Data Connector
(EDC) for accessing database data. It provides greater control over the query and insert statements that are
used. This is beneficial when you need finer control for performance or need to retrieve large amounts of data,
as is the case in batch processing. With ADC you define a mapping of your vocabulary to a database, define
queries, and control when queries are performed to retrieve data.

Here is a video overview of the data access with ADC:

Access data with ADC

To load the ADC sample:

In Corticon Studio, choose the menu item Help > Samples. Select the Advanced Sample ADC Database
Connectivity, and then click Done. Follow the Import dialog to bring the sample into your workspace.

Note: ADC is different from EDC in a few ways. If you are following along after walking through Getting Started
with EDC on page 29, there are a few things to reset to make this section flow smoothly:

• In Corticon Studio, choose File > Close All.

• In the database table Treatments, either reset all the approved values to Null, or just delete and recreate
the database

See more topics on ADC usage in the section Advanced ADC Topics on page 157

For details, see the following topics:

• Overview of the Advanced Data Connector

• Define a table namespace in the database for ADC

41Progress Corticon : Data Integration: Version 6.3

https://www.youtube.com/watch?v=kS5s20qYcec

• Create and map the ADC schema and queries

• Define a database connection for ADC

• Define and import queries for ADC

• Import ADC Datasource metadata into a Vocabulary

• Use an ADC connection as a Ruleflow service callout

• Test the rules when reading from the ADC database

• Test the rules when writing to the ADC database

Overview of the Advanced Data Connector
ADC functions as a service callout that accesses data as a step in a Ruleflow. They are based on Corticon
Extensions -- ones that you might create yourself, as described in the Corticon Extensions Guide -- that are
packaged opaquely for ADC Datasource read/write functions through SQL queries stored in the database.

To use ADC:

1. Map your vocabulary to a database - In the Corticon vocabulary editor, map the entities, attributes, and
associations that tell ADC how to construct entities and associations for data retrieved from the database
and how to save data when storing to the database.

2. Define parameterized SQL statements for the queries - You have full control over these queries. They
can be parameterized so that substitutions can be performed at runtime. To make these statements easy
to manage, they are also stored in a database--the same database or a database separate from the data
to be queried.

3. Add the ADC callout to a Ruleflow - In the Corticon Ruleflow editor, when you add a Service Call-out to
a Ruleflow, you configure it to identify the queries to be performed by selecting one of the SQL statements
you have defined. To make this easier, you can give the SQL statements logical names.

When all steps are completed you are ready to deploy your Ruleflow or test it in the Corticon tester. When ADC
runs, it performs substitutions into the statement to access data. For queries, ADC constructs entities, sets
attributes, and defines associations using the Vocabulary mapping. For inserts, ADC uses the mapping data
for storing to the database.

You can use multiple instance of ADC in a Ruleflow. A typical use case would be to have an instance at the
start of a Ruleflow to retrieve data and one later in the Ruleflow to save data.

Define a table namespace in the database for ADC
Note: The sample uses the namespace PatientRecords. If you completed Getting Started with EDC on page
29 or Getting Started with Multiple Database Connectivity on page 55, you can just continue with their
namespaces.

Set up your database product in a network-accessible location, and then define a database name. Note the
database URL and port as well as the new database name. Be sure that your database will not deny connection
using credentials -- for example, using SQL Server Authentication and not Windows Authentication.
These parameters are all that is typically required to connect the Vocabulary to the database, create the schema
for the persistent entities, and then bring the database metadata back to the Vocabulary.

Progress Corticon : Data Integration: Version 6.342

Chapter 7: Getting Started with ADC

Note: Refer to the Progress Software web page Corticon Supported Platforms Matrix to review the currently
supported database brands and versions.

Create and map the ADC schema and queries
Note: Using the sample: For the ADC sample, you need to have executed the Corticon SQL scripts patient
and adc for your database in your database management tool's editor. The sample's metadata, primary keys,
and join expressions are already mapped to the database.

Create the schema in the database
Typically, the database administrator creates the tables in the namespace, and then the columns with their
data types, the declared primary key, and any joins between tables.

Create the entities and their identity, then their attributes, and associations
1. Define the database tables that will participate in rules as Corticon entities. For the sample, the first table

is Patient:

2. Add the required columns for that table as Corticon attributes with corresponding data types.

3. Specify the Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

43Progress Corticon : Data Integration: Version 6.3

Create and map the ADC schema and queries

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

4. Add additional tables, such as the sample's Treatment table:

5. Specify its Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

Progress Corticon : Data Integration: Version 6.344

Chapter 7: Getting Started with ADC

6. In Corticon Studio on the Vocabulary's Datasource tab, click METADATA: Import. The mapping metadata
from the database is added into the Vocabulary for the Entities (tables), Attributes (columns), and Associations
(join expressions). If the imported tables and columns do not align with entities and their attributes, those
values will require manual mapping.

For more about mapping, see Mapping ADC database metadata on page 157.

Define a database connection for ADC
Note: Using the sample: The ADC database connection is defined in the Vocabulary. Enter your username
and password, and then test the connection.

45Progress Corticon : Data Integration: Version 6.3

Define a database connection for ADC

To connect a Vocabulary to a defined database where you will use SQL queries, define the connection as an
ADC Datasource. In the project's Vocabulary editor, select the Vocabulary command Add Datasource > Add
ADC Datasource, as shown:

An ADC tab is added to the root level of the Vocabulary. The ADC sample renamed this Datasource to Patient
Data which is now the name of its tab, as illustrated:

Progress Corticon : Data Integration: Version 6.346

Chapter 7: Getting Started with ADC

where:

• Datasource Name: The connection name that displays on the Vocabulary tab. This is also its name that
will bind this ADC connection to an instance of the service call-out in a Ruleflow. While you can change this
name, it is a good idea to do so before you specify it in Ruleflow Service Call-out's Service Name. When
you add additional ADC Datasource tabs, the default names will increment n in ADC_n.

• Description: Provide an informative description of the use of the Datasource you are adding.

• Database Server: The database product. Click the dropdown menu on the right side of the entry area to
list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each database.
These drivers provide robust, configurable, high-availability functionality to RDBMS brands. The drivers are
pre-configured and do not require performance tuning.

• URL: The preconfigured URL for the selected database server. You must edit the default entry to replace
(1) <server> with the machine's DNS-resolvable hostname or IP address and port, and (2) <database
name> with the database name that was set up (typically case-sensitive).

• Authentication: The authentication technique required for the Datasource. Most drivers default to Basic
where the Username and Password fields are available, and offer Keberos as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

• Catalog Filter and Schema Filter: Patterns that refine themetadata that is imported during Import Database
Metadata.

Note: Filters are a good idea for production databases that might have hundreds or even thousands of
schemas. As the Catalog filter value does not support wildcards, distinguishing two metadata import filters
enables the use of wildcards in the Schema filter value: Underscore (_) provides a pattern match for a single
character. Percent sign (%) provides a pattern match for multiple characters (similar to the SQL LIKE clause).
For example, you could restrict the filter to only schemas that start with DATA by specifying: DATA%. The
ability to specify patterns is especially valuable when testing performance on RDBMS brands with applications
that use multiple schemas.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding.

Define and import queries for ADC
Queries are essential to how ADC functions. With just a few queries, a lot of the SQL tasks are minimized as
the rules processing handles complex conditions and actions.

47Progress Corticon : Data Integration: Version 6.3

Define and import queries for ADC

Running the sample's adc script created five tables that will be referenced by the query service. ADC_READ
and ADC_WRITE access their DEF table to do the steps requested by your Ruleflow Service Call-outs.

Note: The BATCH_READ table inserts the queries you will use in Getting Started with Batch on page 93. For
more about the sample's Corticon's queries, see How Corticon is expressed in SQL on page 166.

Define the Query Datasource connection
To connect a Vocabulary to a defined database where you will read the SQL queries, define the connection
as a Query Datasource. In the project's Vocabulary editor, select the Vocabulary command Add Datasource
> Add Query Datasource, as shown:

The Query tab is added to the root level of the Vocabulary as a fixed-name tab, as illustrated:

Progress Corticon : Data Integration: Version 6.348

Chapter 7: Getting Started with ADC

where:

• Description: An informative description of the Query Datasource.

• Database Server: The database product. Click the dropdown menu on the right side of the entry area to
list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each database.
These drivers provide robust, configurable, high-availability functionality to RDBMS brands. The drivers are
pre-configured and do not require performance tuning.

• Database URL: The preconfigured URL for the selected database server. You must edit the default entry
to replace (1) <server> with the machine's DNS-resolvable hostname or IP address and port , and (2)
<database name> with the database name that was set up (typically case-sensitive).

• Authentication: The authentication technique required for the Datasource. Most drivers default to Basic
where the Username and Password fields are available, and offer Keberos as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

• Username: The user credentials that enable connection to the database. The credentials are encrypted
when the database access file is exported for deployment.

• Password: The specified user's password.

• Catalog Filter and Schema Filter: Patterns that refine the metadata that will be imported.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding.

49Progress Corticon : Data Integration: Version 6.3

Define and import queries for ADC

Import the queries
To access the queries for use in Decision Services, click the QUERIES Import button:

The current query names in the Query Datasource are accessed and brought into the local persistent cache.
Whenever query names are revised, you need to re-import the queries. If the query defs referenced by a query
name change, the latest defs will be accessed by the query name. .

Import ADC Datasource metadata into a Vocabulary
When the database schema exists, its metadata can be imported into Corticon Studio to refine and complete
the mappings between the Vocabulary and the metadata.

You can control the tables that are accessed to transfer metadata to the Vocabulary. When only a small subset
of tables will supply the metadata that is needed, the time and space overhead of the process is reduced by
delimiting the tables.

In the Vocabulary editor with the ADC database connection established, select the Vocabulary root, and then
select the tab of the database connection metadata you want to import. In its panel, click METADATA Import.

In the dialog, accept Import all tables or click Choose tables for database metadata import, and then click
Next.

The panel lists all the tables in the connected database.

If you do not want all, click Deselect All, and then choose specific tables.

Progress Corticon : Data Integration: Version 6.350

Chapter 7: Getting Started with ADC

In this example, just two tables are selected. The query tables listed do not have metadata so they can be
deselected.

Click Finish to perform the task.

As database metadata is imported into a Vocabulary, the Vocabulary Editor’s automatic mapping feature
attempts to find the smart match for each piece of metadata. An entity will be auto-mapped to a table if the two
names are spelled the same way, regardless of case.

Use an ADC connection as a Ruleflow service callout
Note: Using the sample: The Ruleflow objects and their runtime properties are already defined in the sample.

To use an ADC connection in a service callout:

1. In a Ruleflow where you want to use an ADC connection, create a Service Call-out object on the Ruleflow
canvas. In this example, the Ruleflow is defined with the project's Rulesheet plus a Service Call-out to read
and another one to write back to the database table after rule processing, as shown:

The ADC sample points out that you can have one ADC connection that has several read and write actions.

2. Click on the Get Patient Data object, and then, on the object's Properties tab.

3. On its Service Call-out tab, click the Service Name pulldown to select the service you want for this use,
as shown here where the sample uses CorticonADC.read for this service, as illustrated:

4. On its Runtime Properties tab. Use the Property pulldown to:

51Progress Corticon : Data Integration: Version 6.3

Use an ADC connection as a Ruleflow service callout

a. Select Datasource Name, and then, for its value, use the dropdown menu to select the Datasource that
corresponds to the name of the appropriate ADC definition. For the ADC sample, choose Patient Data.

b. Select Query Name, and then, for its value, use the dropdown menu to select the appropriate query.
For the ADC sample, choose AllPatients. The listed values are initially imported and are updated by
the QUERIES: Import function on the Query tab.

Test the rules when reading from the ADC database
Open the sample's Ruletest, ProcedureApproval.ert. It opens on the Testsheet No Input Data. Click Run
to compile and run the rules. The output shows patient and treatment data.

Right-click anywhere in the output column, and then choose Collapse All, as shown:

Now we can see that all the patient records and their treatments were retrieved.

Progress Corticon : Data Integration: Version 6.352

Chapter 7: Getting Started with ADC

So too for the One Patient and Multiple Patients Testsheets. That is not what we want in this use case.

Looking at the Service Call-out's Query Name, we see that it is AllPatients:

We got what we asked for!

Time for some SQL
That query was really two queries combined:

SELECT * FROM Patient
SELECT * FROM Treatment WHERE patientId IN ({Patient.patientId})

Together, the two queries tell ADC to get all the patients and all the treatments for those patients. There are
two queries. One query gets the set of Patients, and the other gets the set of Treatments for each patient. All
the needed data is retrieved with these two queries and the associations are automatically established in
Corticon working memory.

Run test with a different query
Change the Service Call-out'sQuery Name to IndicatedPatients. Then, return to the Ruletest. When you
run the test for theNo Input Data testsheet, you get no results. When you run the Testsheet for theOne Patient
and Multiple Patients Testsheets, you get exactly that one patient and the specified three patients.

The first part of this SQL statement is:

SELECT * FROM Patient WHERE patientId IN ({Patient.patientId})

The curly braces indicate tokens in the query that will be replaced by the data passed to Corticon -- in this
case, selecting the patients to process.

In other words, {Patient.patientId} indicates that one or more attributes defined in the vocabulary can
be used in the parameterization of your query. These value for each query parameter can be provided in the
request message or set by rules to conditionally fetch data from the database.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

53Progress Corticon : Data Integration: Version 6.3

Test the rules when reading from the ADC database

Test the rules when writing to the ADC database
In the database, the approval status is being evaluated but it is not being entered into the database, as shown:

On the Ruleflow canvas, click on the Save Approvals Service Call-out on the canvas. Its Query Name is
UpdateTreatment whose query SQL is:

UPDATE Treatment SET approved={Treatment.approved} WHERE
treatmentId={Treatment.treatmentId}

When you run the Testsheet, the approval values are written to the database for patient treatments, as shown:

Where to now?
The flow of this document leads to next Getting Started with Multiple Database Connectivity on page 55, and
then Deploying projects that use data integration on page 89, an important preparation for Getting Started with
Batch on page 93. Beyond that, the material focuses less on the samples by using various configurations to
present advanced topics.

Progress Corticon : Data Integration: Version 6.354

Chapter 7: Getting Started with ADC

8
Getting Started with Multiple Database
Connectivity

Corticon's database connectivity reaches another level when it enables a rules project to access more than
one Datasource. You could mix one EDC Datasource with several ADC Datasources, performing
Rulesheet-based action and filters while the ADC implementation uses multiple Service Call-outs on a Ruleflow.
Together, these enable the Decision Service to be running queries on one database, processing that data, and
then possibly branching to write to either of two other databases.

To load the Multiple Database Connectivity sample:

In Corticon Studio, choose the menu item Help > Samples. Select the Advanced Sample Multiple Database
Connectivity, and then click Done. Follow the Import dialog to bring the sample into your workspace.

The Multiple Database sample expands on the ADC sample's medical treatment approval scenario. Now the
patients and the treatments they have received are in one database, while each treatment's description and
clinical trial status is in another database. The rules connect to both databases to determine whether a treatment
is approved.

Note: If you are just starting to follow the samples hands-on, all the resources for the Corticon Studio and for
SQL Server are included. If you are following along after walking through Getting Started with ADC on page
41, there are a few things to adjust to make this section flow smoothly:

• In Corticon Studio, choose File > Close All.

• Execute the Corticon SQL script cms for your database in your database management tool's editor.

For details, see the following topics:

• Define multiple table namespaces

55Progress Corticon : Data Integration: Version 6.3

• Create and map the multiple database schemas

• Define multiple database connections

• Define and import queries for multiple databases

• Import multiple Datasource metadata into a Vocabulary

• Use multiple database connections as Ruleflow service callouts

• Test the rules when reading from multiple databases

• Test the rules when writing to multiple databases

Define multiple table namespaces
Note: Using the sample: This sample uses two namespaces. If you completed Getting Started with EDC on
page 29 or Getting Started with ADC on page 41, you can just continue with its database, PatientRecords,
as-is. You need to add another namespace,CMSDetail. If you choose to put one of these databases on another
brand, you will need to use the brand's queries and data loaders supplied in Corticon Studio.

Set up your database product in a network-accessible location, and then define a database name. Note the
database URL and port as well as the new database name. Be sure that your database will not deny connection
using credentials -- for example, using SQL Server Authentication and not Windows Authentication.
These parameters are all that is typically required to connect the Vocabulary to the database, create the schema
for the persistent entities, and then bring the database metadata back to the Vocabulary.

If you want to use database installations on different machines, the database connections will handle the
connection information.

Note: Refer to the Progress Software web page Corticon Supported Platforms Matrix to review the currently
supported database brands and versions.

Create and map the multiple database schemas
Note: Using the sample: For the Multiple Database sample, you need to have executed the Corticon SQL
scripts patient, adc and cms for your database in your database management tool's editor. The metadata,
primary keys, and join expressions are already mapped to the database.

Create the schema in the databases
Typically, the database administrator creates the tables in the namespaces, and then the columns with their
data types, the declared primary key, and any joins between tables.

Create the entities and their identity, then their attributes, and associations
1. Define the database tables that will participate in rules as Corticon entities. For the sample, the first table

is Patient:

Progress Corticon : Data Integration: Version 6.356

Chapter 8: Getting Started with Multiple Database Connectivity

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

2. Add the required columns for that table as Corticon attributes with corresponding data types.

3. Specify the Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

4. Add additional tables, such as the sample's Treatment table:

5. Specify its Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choose from the listed attributes, as shown:

57Progress Corticon : Data Integration: Version 6.3

Create and map the multiple database schemas

6. The Treatment entity also links to another database through the attribute medicalCode

7. Each medicalCode needs to link to the Primary Key (PK) TreatmentCode in the table TreatmentDetails
in the CMSDetail database

8. In Corticon Studio on the Vocabulary's Datasource tab, click METADATA: Import. The mapping metadata
from the database is added into the Vocabulary for the Entities (tables), Attributes (columns), and Associations

Progress Corticon : Data Integration: Version 6.358

Chapter 8: Getting Started with Multiple Database Connectivity

(join expressions). If the imported tables and columns do not align with entities and their attributes, those
values will require manual mapping.

9. One such case is noted here. SmartMatching won't infer the table name through a link based on an attribute
so you need to pull down the Table Name options to choose CMSDetail.dbo.TreatmentDetails table,
as illustrated:

If other imported tables and columns do not align with entities and their attributes, those values will require
manual mapping. For more about mapping, see Mapping ADC database metadata on page 157.

Define multiple database connections
Note: Two ADC database connections are defined in the Vocabulary. Just enter their credentials, and then
test each connection.

59Progress Corticon : Data Integration: Version 6.3

Define multiple database connections

To connect a Vocabulary to a defined database where you will use SQL queries, define the connection as an
ADC Datasource. In the project's Vocabulary editor, select the Vocabulary command Add Datasource > Add
ADC Datasource, as shown:

An ADC tab is added to the root level of the Vocabulary. The ADC sample renamed the first Datasource to
Patient Data which is now the name on its tab, as illustrated:

Progress Corticon : Data Integration: Version 6.360

Chapter 8: Getting Started with Multiple Database Connectivity

where:

• Datasource Name: The connection name that displays on the Vocabulary tab. This is also its name that
will bind this ADC connection to an instance of the service call-out in a Ruleflow. While you can change this
name, it is a good idea to do so before you specify it in Ruleflow Service Call-out's Service Name. When
you add additional ADC Datasource tabs, the default names will increment n in ADC_n.

• Description: An informative description of the use of the Datasource you are adding.

• Database Server: The database product. Click the dropdown menu on the right side of the entry area to
list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each database.
These drivers provide robust, configurable, high-availability functionality to RDBMS brands. The drivers are
pre-configured and do not require performance tuning.

• Database URL: The preconfigured URL for the selected database server. You must edit the default entry
to replace (1) <server> with the machine's DNS-resolvable hostname or IP address and port , and (2)
<database name> with the database name that was set up (typically case-sensitive).

• Authentication: The authentication technique required for the Datasource. Most drivers default to Basic
where the Username and Password fields are available, and offer Keberos as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

• Catalog Filter and Schema Filter: Patterns that refine themetadata that is imported during Import Database
Metadata

Note: Filters are a good idea for production databases that might have hundreds or even thousands of
schemas. As the Catalog filter value does not support wildcards, distinguishing two metadata import filters
enables the use of wildcards in the Schema filter value: Underscore (_) provides a pattern match for a single
character. Percent sign (%) provides a pattern match for multiple characters (similar to the SQL LIKE clause.)
For example, you could restrict the filter to only schemas that start with DATA by specifying: DATA%. The
ability to specify patterns is especially valuable when testing performance on RDBMS brands with applications
that use multiple schemas.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding.

Another database connection
When anotherADC tab is added to the root level of the Vocabulary, you define a separate database connection.
In the sample, the second Datasource was renamed to Treatment Data which is now the name on its tab, as
illustrated:

61Progress Corticon : Data Integration: Version 6.3

Define multiple database connections

Confirm that you have a valid connection before proceeding to define a Query Datasource.

Define and import queries for multiple databases
Queries are essential to how ADC functions. With just a few queries, a lot of the SQL tasks are minimized as
the rules processing handles complex conditions and actions.

Running the sample's adc script created five tables that will be referenced by the query service. ADC_READ
and ADC_WRITE access their DEF table to do the steps requested by your Ruleflow Service Call-outs.

Note: The BATCH_READ table inserts the queries you will use in Getting Started with Batch on page 93. For
more about the sample's Corticon's queries, see How Corticon is expressed in SQL on page 166.

Progress Corticon : Data Integration: Version 6.362

Chapter 8: Getting Started with Multiple Database Connectivity

Define the Query Datasource connection
No matter how many ADC connections you make for the Vocabulary in your project, you need to define one
and only one Query Datasource that will be used by all services and batch processes in the project's Decision
Services.

To connect a Vocabulary to a defined database where you will read the SQL queries, define the connection
as a Query Datasource. In the project's Vocabulary editor, select the Vocabulary command Add Datasource
> Add Query Datasource, as shown:

The Query tab is added to the root level of the Vocabulary as a fixed-name tab, as illustrated:

63Progress Corticon : Data Integration: Version 6.3

Define and import queries for multiple databases

where:

• Description: An informative description of the Query Datasource.

• Database Server: The database product. Click the dropdown menu on the right side of the entry area to
list the available database brands. Corticon embeds Progress DataDirect JDBC Drivers for each database.
These drivers provide robust, configurable, high-availability functionality to RDBMS brands. The drivers are
pre-configured and do not require performance tuning.

• Database URL: The preconfigured URL for the selected database server. You must edit the default entry
to replace (1) <server> with the machine's DNS-resolvable hostname or IP address and port , and (2)
<database name> with the database name that was set up (typically case-sensitive).

• Authentication: The authentication technique required for the Datasource. Most drivers default to Basic
where the Username and Password fields are available, and offer Keberos as the alternative. Some
drivers have other options. See Authentication on EDC and ADC connections on page 101 for more
information.

• Catalog Filter and Schema Filter: Patterns that refine the metadata that will be imported.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding.

Progress Corticon : Data Integration: Version 6.364

Chapter 8: Getting Started with Multiple Database Connectivity

Import the queries
To access the queries for use in Service Callouts in Ruleflows, click the QUERIES Import button:

The current query names in the Query Datasource are accessed and brought into the local persistent cache.
Whenever query names are revised, you need to re-import the queries. If the query defs referenced by a query
name change, the latest defs will be accessed by the query name.

Import multiple Datasource metadata into a
Vocabulary

When the database schema exists, its metadata can be imported into Corticon Studio.

You can control the tables that are accessed to transfer metadata to the Vocabulary. When only a small subset
of tables will supply the metadata that is needed, the time and space overhead of the process is reduced by
delimiting the number of tables.

To import the metadata from the databases into the Vocabulary:

1. Open the project's Vocabulary into its editor.

2. Select the Vocabulary root

3. Select, in turn, each database connection tab:

a. Click Test Connection to confirm that there is a good connection..

b. Click METADATA Import

c. In the dialog, accept Import all tables or click Choose tables for database metadata import, and then
click Next. The panel lists all the tables in the connected database.

d. If you do not want all, click Deselect All, and then choose specific tables. For the sample's Patient Data
Datasource, just two tables are selected. The query tables listed do not have metadata so they can be
deselected.

65Progress Corticon : Data Integration: Version 6.3

Import multiple Datasource metadata into a Vocabulary

e. Click Finish to perform the task.

4. As database metadata is imported into a Vocabulary, the Vocabulary Editor’s automatic mapping feature
attempts to find the smart match for each piece of metadata. An entity will be auto-mapped to a table if the
two names are spelled the same way, regardless of case.

Importing another Datasource's metadata
When the Vocabulary is supporting multiple database connections, each source is mapped separately to its
respective tables. For the sample's Treatment Data Datasource, just one table is selected.

Progress Corticon : Data Integration: Version 6.366

Chapter 8: Getting Started with Multiple Database Connectivity

A closer look at MDB metadata
When the two Datasources defined in the Vocabulary text bring in their metadata, the Treatment Entity is
shown to have bindings to both Datasources through the Attribute medicalCode.

Figure 6: Multiple Datasources bound to the Treatment Entity

The linkage enables each execution to take the medicalCode value in the request to access the corresponding
treatmentCode and the data in its row in the other Datasource.

Figure 7: Multiple Datasources bound to the medicalCode Attribute

You can consolidate the data from tables and columns residing in different schemas into one intelligent
vocabulary entity that can apply rules across the consolidated data. The rules modeler does not need to be
concerned about how the data is sourced -- rules can be written to one, simplified semantical representation
of the underlying database model.

67Progress Corticon : Data Integration: Version 6.3

Import multiple Datasource metadata into a Vocabulary

The description value is in grey indicating that SmartMatch found an unambiguous match of precisely the
same name in the CMSDetails Datasource.

Figure 8: Lookup of description value from the related Datasource

When tests are run, both Datasources are connected to seamlessly provide the output of their combined data.
Figure 9: Ruletest that gets output from multiple Datasources

Progress Corticon : Data Integration: Version 6.368

Chapter 8: Getting Started with Multiple Database Connectivity

Use multiple database connections as Ruleflow
service callouts

Note: The Ruleflow objects and their runtime properties are already defined in the sample.

To use multiple ADC connections in service callouts:

1. In a Ruleflow where you want to use multiple ADC connections, create Service Call-out objects on the
Ruleflow canvas. In this example, the Ruleflow is defined with the project's Rulesheet plus a Service Call-out
to read and another one to write back to the database table after rule processing, as shown:

This sample points out that you can have two ADC connections that have read and write actions.

2. Click on the Get Patient Data object, and then, on the object's Properties tab.

3. On its Service Call-out tab, click the Service Name pulldown to select the service you want for this use,
as shown here where the sample uses CorticonADC.read for this service, as illustrated:

4. On its Runtime Properties tab. Use the Property pulldown to:

69Progress Corticon : Data Integration: Version 6.3

Use multiple database connections as Ruleflow service callouts

a. Select Datasource Name, and then, for its value, use the dropdown menu to select the Datasource that
corresponds to the name of the datasource to which you want to apply a query. For the ADC sample,
choose Patient Data.

b. Select Query Name, and then, for its value, use the dropdown menu to select the appropriate query.
For the ADC sample, choose AllPatients. The listed values are initially imported from the Query
Datasource, and are updated by the QUERIES: Import function on the Query tab.

Defining a Service Call-out to another database
Another Service Call-out object on the canvas can access another database:

1. Click on the Get CMS Details object, and then, on the object's Properties tab.

2. On its Service Call-out tab, click the Service Name pulldown to select the service you want for this use,
as shown here where the sample again uses CorticonADC.read .

3. On its Runtime Properties tab. Use the Property pulldown:

a. Select Datasource Name, and then, for its value, use the dropdown menu to select the Datasource that
corresponds to the name of the appropriate ADC definition. For the ADC sample, enter Treatment Data.

b. Select Query Name, and then, for its value, use the dropdown menu to select the appropriate query.
For the ADC sample, choose TreatmentDetails. The listed values are initially imported and are updated
by the QUERIES: Import function on the Query tab.

Test the rules when reading from multiple databases
Open the sample's Ruletest, ProcedureApproval.ert. It opens on the Testsheet No Input Data. Click Run
to compile and run the rules. The output shows patient and treatment data.

Progress Corticon : Data Integration: Version 6.370

Chapter 8: Getting Started with Multiple Database Connectivity

The highlighted treatment attributes differentiate this sample from the ADC sample. Here, information read
from the first database provided the lookup value for the read in the second database. And the added Rulesheet
simply states that treatments for clinical trials are not approved.

Run test with a different query
Change the Service Call-out'sQuery Name to IndicatedPatients. Then, return to the Ruletest. When you
run the test for theNo Input Data testsheet, you get no results. When you run the Testsheet for theOne Patient
and Multiple Patients Testsheets, you get exactly that one patient and the specified three patients.

The first part of this SQL statement is:

SELECT * FROM Patient WHERE patientId IN ({Patient.patientId})

The curly braces indicate tokens in the query that will be replaced by the data passed to Corticon -- in this
case, selecting the patients to process.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

71Progress Corticon : Data Integration: Version 6.3

Test the rules when reading from multiple databases

Test the rules when writing to multiple databases
In the database, the approval status is being evaluated but it is not being entered into the database, as shown:

On the Ruleflow canvas, click on the Save Approvals Service Call-out on the canvas. Its Query Name is
UpdateTreatment whose query SQL is:

UPDATE Treatment SET approved={Treatment.approved} WHERE
treatmentId={Treatment.treatmentId}

When you run the Testsheet, the approval values are written to the database for patient treatments, as shown:

Where to now?
The flow of this document leads to Deploying projects that use data integration on page 89, an important
preparation for Getting Started with Batch on page 93. Beyond that, the material focuses less on the samples
by using various configurations to present advanced topics.

Progress Corticon : Data Integration: Version 6.372

Chapter 8: Getting Started with Multiple Database Connectivity

9
Getting Started with REST

Corticon's REST connectivity allows you to access data via REST services such that rule payloads can be
enriched with REST data similar to database data. Corticon uses the Progress Data Direct Autonomous REST
Connector to provide support for REST callouts. This allows you to access a REST service similar to the way
you access a database. When integrated with Corticon, the Datasource can use mechanisms for smart data
integration and Vocabulary mapping. Rules use these Service Callouts to retrieve data as steps in a Ruleflow,
even allowing you to substitute payload attributes into REST URLs before execution.

For details, see the following topics:

• Overview of the Autonomous REST Connector

• Define a Datasource connection for REST

• Create and map the REST schema

• Use REST data sources in a Ruleflow

• Test rules when importing from the REST Datasource

• Revise Connection and Service Call-out to retrieve data

Overview of the Autonomous REST Connector
The Progress DataDirect Autonomous REST Connector for JDBC is a driver that supports SQL read-only
access to JSON-based REST API data sources. To support SQL access to REST services, the driver creates
a relational map of the returned JSON data and translates SQL statements to REST API requests. The driver
can either infer a map at the beginning of a session or can leverage a configuration REST file that allows you
to modify and persist a map.

73Progress Corticon : Data Integration: Version 6.3

The use of the Autonomous REST Connector allows Corticon to present REST services as if they are relational
databases. You map a Corticon vocabulary to a REST service as if you are mapping to a database. The only
difference is in the configuration of the data source. Internally, the Autonomous REST Connector stores data
in an in-memory database which Corticon accesses with SQL queries - the same as it does for database data
sources.

This sample introduces the Autonomous RESTConnector to retrieve reimbursement rates for medical procedure
codes from a REST service. A procedure may have more than one rate where each rate has its range of
effective dates.

To use REST services:

1. Add a REST data source to your vocabulary - Specify a REST URL, and then provide authentication
credentials, and specify any parameters.

2. Map your vocabulary to a RESTDatasource - In the Corticon vocabulary editor, map the entities, attributes,
and associations that transform data retrieved from the REST Datasource.

3. Add the REST Service callout to a Ruleflow - In the Corticon Ruleflow editor, when you add a Service
Call-out to a Ruleflow, you configure it to use the REST Datasource and identify the queries to be performed
by selecting whether to do specific or bulk reads.

When all steps are completed you are ready to deploy your Ruleflow or test it in the Corticon tester. You can
use multiple REST Services in a Ruleflow.

The following topics walk through the REST Connectivity sample. You are encouraged to follow along in Corticon
Studio. After this sample has completed, advance to the Mixed Connectivity sample where relational database
and REST Datasources work together seamlessly.

Define a Datasource connection for REST
The REST Connectivity sample already has a REST data source defined in its vocabulary. To use your own
REST data source you would first add it to your vocabulary. To add a REST data source, select the Vocabulary
command Add Datasource > Add REST Datasource, as shown:

Progress Corticon : Data Integration: Version 6.374

Chapter 9: Getting Started with REST

A REST Service tab is added to the root level of the Vocabulary. The REST sample renamed this Datasource
to Rate Data which is now the name of its tab, as illustrated:

where:

• Datasource Name: The connection name that displays on the Vocabulary tab. This is also its name that
will bind this REST Datasource connection to an instance of the service call-out in a Ruleflow. While you
can change this name, it is a good idea to do so before you specify it in Ruleflow Service Call-out's Service
Name.

• Description: Provide an informative description of the use of the Datasource you are adding.

75Progress Corticon : Data Integration: Version 6.3

Define a Datasource connection for REST

• REST URL: The URL for the REST service. The protocols http and https are supported. If the URL
includes a query, the parameters and their values are moved to the Query Parameters table.

• Authentication: There are five options for security on a REST Service connection:

The default setting is None. When a REST service requires no authentication, it is appropriate for accessing
an unsecured REST service. For example, government census data in the public domain. For information
on the other options for security and authorization on REST Services, see Authentication on REST Service
connections on page 172.

• Query Parameters and their respective Default Values. The query parameters on a REST URL when it
was pasted in were transformed into Query Parameter/Default Value pairs. You can edit, add, and delete
from the table as needed for your use case.

When configuring usage of a REST data source in a Ruleflow you can identify entity attributes to substitute
for query parameter values at runtime. This allows you to pass dynamic data values from the payload being
processed, such as a "customer id", to your REST service. If you don't specify an entity attribute for a query
parameter in the Ruleflow, the static value specified on the Datasource will be used at runtime. Any Post
parameters are sent as name/value pairs in JSON format in the request body.

Click the CONNECTION Test button. Confirm that you have a valid connection before proceeding to discover
or import the schema, and then to refine the mapping.

Create and map the REST schema
To use a REST data source, Corticon needs to know how to map the JSON from the REST service to relational
tables. The easiest way to do this is to discover the schema. The Autonomous REST Connector used by
Corticon has the ability to query a REST service and infer a relational schema from the JSON returned.

1. In Corticon Studio on the Vocabulary's Datasource tab, click SCHEMA: Discover. Corticon will query the
REST service using the REST URL and query parameters defined on the data source. The JSON returned
will be used to generate a schema for mapping JSON from the REST service to a relational representation.
The metadata for this schema is added to the Vocabulary for the Entities (tables), Attributes (columns), and
Associations (join expressions). If the imported tables and columns do not align with entities and their
attributes, those values will require manual mapping.

The schema for how to map the JSON from a REST service to a relational model is stored in the vocabulary.
You can export this schema to a text file using Export then import it back to your vocabulary using Import
after any modifications.

Note: When using discovery to generate the schema, the JSON returned needs to be representative of
the data which would be returned at runtime. Any data elements not represented, will not be in the generated
schema and therefore not available for mapping to your vocabulary.

2. The sample has two entities ReimbursementRates and Rate, as illustrated:

Progress Corticon : Data Integration: Version 6.376

Chapter 9: Getting Started with REST

Each of these entities has already been mapped to the REST Datasource. Clicking on either entity will show
the Table Name of the table the entity to which it is mapped.

3. Specify the Primary Key (PK) in the table as the Entity Identity by clicking the Entity Identity Property Value
to open its menu, and then choose from the listed attributes. Here there is only one attribute,
procedureCode:

4. The sample'sRate entity is a JSON collection. The added attributes are added to uniquely identity the data's
position inside the collection. Because there is no enforced uniqueness in the REST Datasource, two
transient attributes are added to handle possible duplicates:

77Progress Corticon : Data Integration: Version 6.3

Create and map the REST schema

5. You specify its Primary Key (PK) in the database table as the Entity Identity by clicking the Entity Identity
Property Value to open its menu, and then choosing both position and procedureCode from the listed
attributes. The position attribute was created by the Autonomous REST Connector as a synthetic value
that will ensure uniqueness of the primary key.

6. REST Data could have multiple rates that are an array of objects that Corticon will manage as a one-to-many
association with the ReimbursementRates procedureCode

which is easier to see in the Join Expression dialog:

For more about REST data mapping, see Mapping REST Service metadata on page 179.

Progress Corticon : Data Integration: Version 6.378

Chapter 9: Getting Started with REST

Use REST data sources in a Ruleflow
To use a REST data source, you need to add a call-out to it in your Ruleflow. The REST Connectivity sample
already has it added. If using your own REST services, you would add call-outs where needed in your Ruleflow
to access them. If you have multiple REST data sources, you can access those you need from your Ruleflow.

A Ruleflow could use several REST connectivity service callouts to enrich data before and after other processing
steps. The sample uses one REST connectivity callout.

To use REST service callouts:

1. In a Ruleflow where you want to use a REST Service connection, add a Service Call-out to the Ruleflow
canvas. In this example, the Ruleflow has a single call-out Get Rates to retrieve rate data from the REST
service and a Rulesheet which produces rule messages from the rate data, as shown:

2. Click on the Get Rates object, and then, on the object's Properties tab.

3. On its Service Call-out tab, click the Service Name pulldown to select the read-only service you want for
this use, CorticonREST.importData . The import will create new entity instances for the data returned.
The alternative, retrieve, would update existing entity instances. The alternative,
CorticonREST.retrieveData, will be used later in this sample run.

4. Click the Runtime Properties tab:

79Progress Corticon : Data Integration: Version 6.3

Use REST data sources in a Ruleflow

a. In the Property column, click on Datasource Name. Choose the Datasource that corresponds to the
name of the appropriate REST Service definition. For the REST Service sample, choose Rate Data.

b. Select Primary Entity, and then, for its value, use the dropdown menu to select the appropriate
Vocabulary Entity. For the REST Service sample, choose ReimbursementRates.

Test rules when importing from the REST Datasource
Open the sample's Ruletest ReimbursementRate.ert. This Ruletest has 3 Testsheets. The REST call-out
in the Ruleflow is defined to do an import from the REST service. An import will create new entity instances
for the data returned from the REST service. Select the No Input Data and run click Run Test to run it.

Progress Corticon : Data Integration: Version 6.380

Chapter 9: Getting Started with REST

The Output for the Testsheet will contain a list reimbursement rates returned from the REST service. Where
an import operation was performed, new entities were created for each reimbursement rate. To compare this
to the JSON returned from the REST service, copy the REST URL from the Rate data source and paste it into
your browser. The One Procedure and Multiple Procedures Testsheets have procedureCodes defined in
the Input of the Testsheet. These Testsheets will be used in later sections to show how to perform a retrieve
operation to get rates for specific procedure codes. If you run either of these Testsheets while the Get Rates
call-out in the Ruleflow is configured to perform an import, you'll see the Output contains both the input data
and new entities for all the rate data from the REST service.

Note: It is important to remember that an import will create new entity instances.

Revise Connection and Service Call-out to retrieve
data

To update existing entities in the payload being processed by your rules, you need to change the REST call-out
to perform a retrieve operation. When performing a retrieve operation your REST data source must have one
or more query parameters to identify the instance of data required. For example, if your rules were processing
mortgage applicants you might pass the social security number of an applicant to a REST service to get credit
information about the applicant being processed. The REST service used by the REST Connectivity sample
accepts the query parameter procedureCode to get rate information about a specific procedure. In this
section you will convert this sample to perform a retrieve operation.

81Progress Corticon : Data Integration: Version 6.3

Revise Connection and Service Call-out to retrieve data

1. In the Vocabulary editor's root, click the Rate Data tab.

2. Click SCHEMA Clear.

Note: When changing the URL or adding query parameters you must first clear the existing schema.

3. Enter the query parameter procedureCode, and then enter the value B5120ZZ, a known procedureCode
value. This returns JSON representative of the JSON which could be returned at runtime.

4. Click SCHEMA Discover, as shown:

5. Open the Rulefllow editor, and then click the Get Rates object to access its Properties tab.

6. Click its Service Call-out tab, and then choose the Service Name CorticonREST.retrieveData:

7. Click its Runtime Properties tab, and then add the Property procedureCode and the Value
ReimbursementRate.procedureCode:

Progress Corticon : Data Integration: Version 6.382

Chapter 9: Getting Started with REST

8. Open the Ruletest and run all tests.

The Multiple Procedures tab shows the specified procedureCodes and the related rates:

The procedureCode specified in Input where substituted as query parameter values and used to make calls
to the REST service. For comparison, select the No Input Data Testsheet and click Run Test. No data shows
inOutput. This is because the Get Rate Data call-out is configured to do a retrieve, not an import, operation.
Where no procedure codes where provided, there were no existing entities to update.

83Progress Corticon : Data Integration: Version 6.3

Revise Connection and Service Call-out to retrieve data

Progress Corticon : Data Integration: Version 6.384

Chapter 9: Getting Started with REST

10
Mixing REST and database access

Often rules need to access data in both databases and REST services. Corticon lets you access both types
of Datasources within a single Decision Service. This section expands on Getting Started with Multiple Database
Connectivity on page 55 sample by adding the retrieval of reimbursement rates as described in the Getting
Started with REST on page 73 sample.

The Multiple Database Connectivity sample Ruleflow contains two steps to retrieve data from a database,
(1) Get Patient Data, and (2) Get CMS Details. Step (3) Save Approvals then saves approval decisions to
a database.

The REST Connectivity sample Ruleflow contains step (4) Get Rates to retrieve reimbursement rates for a
procedure code.

85Progress Corticon : Data Integration: Version 6.3

The Mixed Connectivity sample combines these to create a Ruleflow that accesses both databases and a
REST service.

The steps in Mixed Connectivity are largely the same as in the other sample Ruleflows with the one note being
the Get Rates REST call-out has been configured to perform a retrieve operation – such that it updates existing
entities.

Data flow in the sample
In the Ruleflow the interaction of call-outs is as follows:

• Get Patient Data retrieves information about a patient and the treatments they received from a database.
Each treatment has a corresponding medicalCode identifying the treatment.

• GET CMS Details retrieves detailed information about a type of treatment from a second database by
looking up the treatment using its medicalCode.

• Get Rates retrieves reimbursement rates for a type of treatment by querying a REST service, passing the
medicalCode as a query parameter to get rates for a specific type of treatment. Note, the REST service
takes the query parameter named procedureCode, the value of medicalCode is passed as the value for
procedureCode.

• Save Approvals saves the decisions on which procedures are approved for each patient back to the patient
database.

Explore the sample
1. Add the Mixed Connectivity sample to your workspace.

2. Open the vocabulary.

Note: Patient Data, Treatment Data and Rate Data Datasources are the same as those used in the other
samples.

3. Open the Ruleflow and examine each callout to see the call-out performed and the Datasource used.
Corticon allows a Datasource to be used multiple times in a Ruleflow. Each of the Datasources is used one
or more times.

Progress Corticon : Data Integration: Version 6.386

Chapter 10: Mixing REST and database access

4. Click on Get Rates on the Ruleflow canvas. This is retrieve operation that will require Runtime Properties
that include, in this example, procedureCode. While you could type in the name, a pulldown lists the
attributes in the primary entity:

5. Save the Ruleflow.

Run the sample
1. Open the Ruletest for the sample.

2. Open the One Patient Testsheet.

3. Click Run Test.

87Progress Corticon : Data Integration: Version 6.3

The Output shows the data retrieved from each Datasource and the results of the rule processing. Given
just the patient ID, Corticon was able to retrieve data from multiple databases and REST data sources, and
assemble it according to the vocabulary mappings to allow it to be processed by the rules.

Progress Corticon : Data Integration: Version 6.388

Chapter 10: Mixing REST and database access

11
Deploying projects that use data integration

The data integration samples you have worked with to this point in this guide have demonstrated and tested
database connectivity entirely from the development environment. To move out of development and into
production, you generate Decision Service files and corresponding Datasource Configuration files that will be
positioned for servers to deploy them.

For details, see the following topics:

• Export the Datasource Configuration file

• Package a project in Corticon Studio for Corticon Server

Export the Datasource Configuration file
When packaging a project on Corticon Studio for deployment as a Decision Service on a Corticon Server, a
Datasource Configuration file provides the database configurations and credentials that were used in the project.

Note: When you are running and testing in Corticon Studio, the Datasource configuration and mapping
information is saved in the project's Vocabulary file. It does not need a Datasource Configuration file.

To generate a Datasource Configuration file:

1. With the project's Vocabulary open in its editor, select Vocabulary > Datasource Configuration File >
Export, as shown:

89Progress Corticon : Data Integration: Version 6.3

2. All the defined connections to external data sources are packaged into a single file XML, typically named,
datasources.xml. The file content might look like this:

When authentication-type="Kerberos", the username andpassword parameters are not included.

You can specify a preferred name and location for the file, although colocating it with its Decision Service file,
or within its related project folder is a good idea.

Note: Because data integration carries the potential for data loss or corruption due to unintended updates, it
is a good idea to use a test instance of a database whenever testing database-enabled Rulesheets and Ruleflows
from Studio. Then, if unintended changes or deletions are made during rule execution, only test database
instances have been changed, not production databases. Even when using test instances, you may want to
restrict the ability to read and update connected databases to those users who understand the possible impact.
For other rule modelers without a solid understanding of databases, youmay want to provide themwith read-only
access.

There are several techniques for deployment, as described in the section "How to package and deploy Decision
Services" in the Deployment section. This section will focus on one, "Use Studio to compile and deploy Decision
Services" in the Deployment section.

Managing user access on Corticon Server
Typically, enterprises constrain developers to appropriate database products. As data integration carries the
potential for data loss or corruption due to unintended updates, developers are typically limited a test instance
of a database when testing from Studio. If unintended changes or deletions are made during rule execution,
then only test database instances have been changed. When deploying to Corticon Server, it is a good practice
to have servers reserved for developer integration testing to the test databases through the user-acceptance
test phase.

Progress Corticon : Data Integration: Version 6.390

Chapter 11: Deploying projects that use data integration

Managing database connections on Corticon Server
The handoff to production administrators will typically recast the Datasource configurations to the pre-production
server locations and credentials followed by validation tests. Production might require another adjustment of
the database configuration.

However, notice that the username and password values are very different from the credentials that were
entered. These values were encrypted when the database access file was created and will be decrypted when
they are implemented in a decision service. You can use the following utility to encrypt the required credentials.

Encrypting database credentials defined in the Datasource Configuration File

To use Corticon's proprietary encryption algorithm to encrypt credentials:

1. Obtain the credentials you want for each of the Datasources. Use those values to replace myServerUser
and myServerUserPassword in the following procedure.

2. In a Corticon Server installation, open a Command Window at [CORTICON_HOME]\Server\bin\.

3. Type corticonManagement -en -i myServerUser. An encrypted String for the username is output.
Then type corticonManagement -en -i myServerUserPassword. An encrypted String is output.
The procedure looks like this:

4. Copy the encrypted String to the appropriate Datasource in the Datasource configuration file and enter it
as the value for the username. Then similarly copy the encrypted password String as the value for the user's
password.

5. Colocate the revised Datasource configuration file with the appropriate instance of the Decision Service on
the Corticon Server.

Note: When using CDD deployment, the database access properties file is identified within the CDD file. When
using the Web Console or APIs for deployment you specify the file at the time of deployment.

Using the Datasource XSD file
Every Corticon Studio and Corticon Server installs an XSD file that specifies how to formally describe the
elements in Datasource configuration XML files. You can use this file to verify the content in your documents.
The file datasourceConfig.xsd is located at [CORTICON_HOME]/Studio/lib.

91Progress Corticon : Data Integration: Version 6.3

Export the Datasource Configuration file

Package a project in Corticon Studio for Corticon
Server

There are several techniques for deployment, as described in the section "How to package and deploy Decision
Services" in the Deployment section. This section will focus on one, "Use Studio to compile and deploy Decision
Services" in the Deployment section.

To make the project into a Decision Service and stage it to a server:

1. In Corticon Studio's Project Explorer, right-click onADCDatabase Connectivity, and then choose Package
and Deploy Decision Services. In its dialog, choose Package and save for later deployment, and then
save it as ProcedureApproval_v1.1.eds where the server will be able to access it.

2. In the ADC project's Vocabulary, choose the menu command Vocabulary > Datasource Configuration
File > Export, and then save it as ADC_Sample_Config.xml, typically colocated with the Decision Service
file you just created.

(See Export the Datasource Configuration file on page 89)

Progress Corticon : Data Integration: Version 6.392

Chapter 11: Deploying projects that use data integration

12
Getting Started with Batch

Batch processing is a server-based function that provides additional power to external data source functionality.
Elevating an external data source solution to a batch job means that Corticon Server can take several
patientIds from the database's Patient table at once and pass them in as a set to the Decision Service
for processing – a very efficient way to perform processing – where the Decision Service retrieves additional
data for each request from the Datasource for rule conditions and to enrich the record in a relational database
with results. You get greater control over queries and insert statements that are used. This is beneficial when
you need finer control for performance or need to retrieve large amounts of data.

How batch processing works - Fetching the transaction identifying data from the underlying data source that
will be injected into the rules engine – seed data retrieval – takes place outside the Decision Service. As such,
Decision Service requests that are usually individual transactions are instead fetched in chunks for the rules
engine, and then dispersed across multiple processing threads to concurrently process the incoming requests.
Batch processing produces no return payload per request – however, the result of each rule processing is
persisted in a relational Datasource.

The Datasource for a batch processing is typically to a relational database through an ADC or EDC connection.
You can use a REST service to read data that enhances the data; however, REST latency could compromise
your batch processing's performance requirements. Try it! Use the Mixed Connectivity sample in a batch
scenario. For each batch item, all data to drive the sample comes from a database, while the Ruleflow calls a
REST service to get the rate data.

93Progress Corticon : Data Integration: Version 6.3

Note:

For this sample, you must have:

1. Completed the steps in Getting Started with ADC on page 41 that:

a. Run the scripts patient and adc that set up the database with the schema and data.

b. Imported the metadata into the Vocabulary.

c. Set the Ruleflow's Get Patient Data query to IndicatedPatients.

2. Packaged and saved the Decision Service file and its Datasource Configuration file where the server will
be able to access them.

3. Installed Corticon Server with the server and Web Console options, and then started the server.

To load the batch sample:

In Corticon Studio, choose the menu item Help > Samples. Select the Advanced Sample Batch Rule
Processing, and then clickDone. Follow the Import dialog to bring the sample into your workspace. The batch
sample is just two SQL queries that will be used later in this topic, yet that step completes setup.

Note: For details on defining and running batch processes, see the section "Batch Configurations" in the Web
Console Guide.

Batch configuration depends on the Server where the Web Console connects to have access to::

• A Decision Service that has Ruleflow Service Callouts that reference the databases and queries

• The Decision Service project's Datasource Configuration

• BATCH_READ queries loaded in the query service database

To run the batch sample:

1. In your browser, connect to the Web Console, typically http://localhost:8850/corticon, using the
default credentials Admin/Admin.

2. In the Web Console, choose Decision Services, and then click Add Decision Service for just a single
Decision Service. In the dialog box:

a. Name your service. For example, myADC_Sample 1.0.

b. Choose the Decision Service file you created.

c. Choose its server location.

Progress Corticon : Data Integration: Version 6.394

Chapter 12: Getting Started with Batch

The settings will look similar to this:

d. On the Database tab, choose your Datasource Configuration File.

e. Click Save and Deploy.

3. Choose Batch Configurations, and then click New Batch Configuration. In the dialog box:

a. Name the batch configuration. For example, myADC_Batch.

b. Choose your deployed Decision Service.

c. Choose its Datasource. This is a specific database name within the Datasource configuration file.

(See Export the Datasource Configuration file on page 89)

d. Choose the AllPatients query.

95Progress Corticon : Data Integration: Version 6.3

The settings will look similar to this:

e. Save the batch configuration.

4. The Batch Configuration page lists the new configuration:

Run the batch job by clicking on its Batch Configuration name, and then clicking Execute:

Progress Corticon : Data Integration: Version 6.396

Chapter 12: Getting Started with Batch

5. On the Batch Configuration page detail page you can see the Processed Count each time you run it.

6. Test that the database is getting updates by looking at the Treatment table's Approved column.

Note: Clearing sample writes - To reset the approval values written to the database Treatment table to
NULL, run the Batch sample's clear_approved script in your DB management tool.

Parameters in queries
Batch configurations can access queries that are defined to request parameter values. The BATCH_READ query
PatientsByRegion runs the query:

SELECT patientId FROM Patient WHERE region IN ({Patient.region})

To run a parameterized batch job:

1. Create batch configuration named MyADC_Batch_Regional. Select the Decision Service you deployed,
its Datasource, and the query PatientsByRegion. That adds another field to accept the values of your
Query Parameters. Enter the value NE. The settings will look similar to this:

2. Save and then run this batch job. When you inspect the Treatment table you see that only patients from the
NE region have been processed.

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

97Progress Corticon : Data Integration: Version 6.3

Creating additional sample records in the database
As the sample set of patient/treatment records is very small, the efficiency of rapid batch processing can be
difficult to observe. A SQL utility is provided that will generate PATIENT_COUNT additional records for your
tests. It is a good idea to also adjust the FIRST_PATIENT_ID and FIRST_TREATMENT_ID so that they are
not overwriting each time you execute the utility

To create large data sets and run large batch tests:

1. Open the script in the Batch sample's generate_patients script in your DB management tool.

2. Change the values for:

SET @PATIENT_COUNT=1000
SET @FIRST_PATIENT_ID=1000
SET @FIRST_TREATMENT_ID=1000

These set the number of patients you want generated, and the starting ids for patients and treatments.

3. Run the batch job with this newly generated data, and then look at the Decision Service page to see the
counters and charts.

Progress Corticon : Data Integration: Version 6.398

Chapter 12: Getting Started with Batch

13
A closer look at how Corticon relates to
Datasources

All Corticon's data integration techniques enable sophisticated interaction with database architectures.

For details, see the following topics:

• Add your own database driver

• Supported databases

• Authentication on EDC and ADC connections

• SmartMatching of Vocabularies to databases

• Validation of names against SQL keywords and database restrictions

• Support for catalogs and schemas

• How to filter catalogs and schemas

• Fully-qualified table names

• Support for database views

• Associations as join expressions

99Progress Corticon : Data Integration: Version 6.3

Add your own database driver
Corticon includes a wide range of database drivers from the Progress DataDirect library. Yet there some drivers
that you might want to use that are not predefined. You can define your own for use as a Datasource or as a
source for Vocabulary generation. If you can obtain the driver for an unlisted database driver, you can configure
its database definition information, and then deploy the two files so that Studio can use them and so that every
Decision Service can use them.

Contact Progress Corticon support or your Progress Corticon representative for more information.

Supported databases
Corticon's ADC and EDC provide access to many different databases. This allows you to enrich the data being
processed by your rules as well as persist the results of rule processing to your database. For the list of
supported databases and versions, see the Corticon Resource Center.

Common Guidelines on Database Usage

Some Corticon features are not supported in certain supported databases. Data manipulations and database
startup functions that might be required to ensure error-free interaction between Corticon EDC and a database
are noted.

The mapping of database columns to a Corticon Vocabulary through SQL might experience problems when
database columns have hyphens, spaces or other special characters (even though some databases and SQL
parsers allow them). The generally accepted valid values are all alphanumeric characters and the underscore
character. It is a plus to use all-lowercase names to avoid platform case inconsistencies. For more information
on Corticon's accepted names, see the topic "Vocabulary node naming restrictions" in the Quick Reference
Guide.

The feature of importing database metadata will infer associations when the information (foreign keys) is
available in the data source's metadata.

Note: For the current list of supported databases and versions, access the web location Corticon Supported
Platforms Matrix.

Guidelines on Progress OpenEdge Usage

Because OpenEdge and Corticon are companion products in the Progress portfolio, additional features are
provided in both products to simplify their interaction. Corticon typically makes a Progress OpenEdge connection
with port 5566 and OpenEdge credentials. Database Access actions let you create a Business Resource
Vocabulary Definition (BRVD) file to create the database schema. You can import a .brvd file created in
OpenEdge (see Progress OpenEdge documentation for details.) The function of importing into Corticon is
described in "Import an OpenEdge Business Rules Vocabulary Definition file" in the Quick Reference Guide.

Progress Corticon : Data Integration: Version 6.3100

Chapter 13: A closer look at how Corticon relates to Datasources

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html
https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

Note: Startup of OE server - It is recommended that you start the OpenEdge database server with the
following parameters within the Proenv window, shown here with values used in a test environment:

proserve db_name -n 65 -Mn 20 -Mpb 4 -Ma 20 -Mi 3 -S port_number

where:

• db_name is the database name

• port_number is the port number

• Other OpenEdge parameters as described in OpenEdge Database Server parameters.

Authentication on EDC and ADC connections
When you choose to create an EDC or ADC Datasource, its tab in the Vocabulary lets you specify the
authentication you will require. The Database Server you select for the Datasource lists its available
authentication options on the Authentication dropdown.

Most database servers allow two Authentication options:

• Basic: When available, the Basic option is pre-selected, and the Username and Password fields are
displayed, enabled, and required.

• Kerberos: Many database drivers offer Kerberos support. If your target Database Server is in a Kerberos
realm, you need to ensure that you have proper target session keys. See "How to enable Kerberos
Authentication in Studio and Server" in the Web Services Guide for more information. When you select that
option, the username and password fields are not available.

The Microsoft Dynamics 365 driver has three Authentication options:

• None:When a Dynamics Datasource requires no authentication, it is appropriate for accessing public data,
such as weather information. None is the default setting.

• OAuth2: Uses authorization tokens to prove an identity without giving away your password. When you
choose the OAuth2 option, you need to specify the Client ID, Token URI, Client Secret, and Refresh Token
for the connection.

• NTLM: Uses challenge/response authentication that allows a client to prove its identity without sending a
password to the server. The Username, Password, and Domain fields are required entries.

SmartMatching of Vocabularies to databases
Corticon's Vocabulary binds to database metadata, and then stores the database connection and database
metadata (tables, columns, primary keys, and foreign keys) that Corticon loads into its working memory as
CDOs for use in rule execution. Corticon attempts to infer the 'SmartMatch' for database table names, column
names and related information such as the association join expressions. When a value is inferred this way,
that value is not stored in the model; rather, the system dynamically infers the derived value whenever the
Vocabulary Properties table is refreshed.

You can override the inferred value by choosing an explicit value from a drop-down list, or by entering a value
manually. The explicitly-specified value is displayed in black font if it exists, otherwise it displays in orange.
Corticon displays inferred properties in light gray font to distinguish them from explicitly-specified values.

101Progress Corticon : Data Integration: Version 6.3

Authentication on EDC and ADC connections

https://docs.progress.com/bundle/openedge-startup-and-parameter-reference-122/page/OpenEdge-Database-Server-parameters-DBS.html?labelkey=product_openedge_122

You should favor inferred values whenever possible, because these values are automatically updated as
database metadata evolves.

Table 1: Corticon inference rules for SmartMatching

Inference rules for mapping metadata to the VocabularyDatabase
element

Vocabulary
property

Derived from table metadata. The first table located in databasemetadata
that matches the entity name (ignoring case) is chosen. This matching
process ignores catalog, schema and domains. The inferred value is
displayed as a fully-qualified name including catalog and schema, if
applicable.

TableEntity

Derived from first column in database metadata that matches the attribute
name (ignoring case). For this purpose, the Table Name (whether
explicitly-specified or inferred) is used.

ColumnAttribute

Complex derivation algorithm involving table data, column data, primary
key and foreign key definitions. The algorithm attempts to find the best
matching join expression that defines the relationships between database
columns, typically along the lines of foreign keys.

Join
Expression

Association

Validation of names against SQL keywords and
database restrictions

Commercial databases, such as Microsoft SQL Server and Oracle, use specific words for defining, manipulating,
and accessing databases. These reserved keywords are part of the grammar used to parse and understand
statements. Do not use database reserved words for Corticon Entity, Attribute, and Association names when
creating the schema in Corticon. Your database support pages list reserved words—for example, Microsoft's
Reserved Keywords—that you should review as you prepare your Vocabulary for enterprise data connection.

Corticon makes a best-effort to validate the names against the SQL keywords against the database restrictions
for column and table naming (such as length of a table name), and then validates generated column names
(such as Foreign Key (FK) columns) against SQL keywords and table/column name restrictions.

Note: It is good practice to ensure that database columns not have hyphens, spaces or other special characters
(even though some databases and SQL parsers allow them). The generally accepted valid values are all
alphanumeric characters and the underscore character. It is a plus to use all-lowercase names to avoid platform
case inconsistencies. For more information on Corticon's accepted names, see the topic "Vocabulary node
naming restrictions" in the Quick Reference Guide.

Support for catalogs and schemas
Catalogs and schemas refer to the organization of data within relational databases. Data is contained in tables,
tables are grouped into schemas, and then schemas are grouped into catalogs. The concepts of schemas and
catalogs are defined in the SQL 92 standard yet are not implemented in all RDBMS brands, and, even then,
not consistent in their meaning.

Progress Corticon : Data Integration: Version 6.3102

Chapter 13: A closer look at how Corticon relates to Datasources

http://msdn.microsoft.com/en-us/library/ms189822.aspx
http://msdn.microsoft.com/en-us/library/ms189822.aspx

For example, in SQL Server, tables are grouped by owner and catalogs are called databases. In that case, a
list of database names is filtered by a Catalog filter, and a list of table owners is filtered by a Schema filter. The
owner of all tables is typically the database administrator, so if you do not know the actual owner name, select
'dbo' (under SQL Server or Sybase), or the actual name of the database administrator.

Note: The term schema, as used in Corticon's Import Database Metadata feature, does not refer to the
'schema objects' that the mapping tool manipulates.

How to filter catalogs and schemas
Once a database connection to a running database instance is established, the Database Metadata can be
imported into the Vocabulary by clicking the METADATA Import button on the database tab. Then, the
class:table property of each Entity is populated with a list of the fully qualified names (catalog.schema.table
or schema.table) of all tables in the database.

Typically, it is a good idea to filter the metadata to specific database catalogs and/or schema.

Note: Whether or not these settings actually do filter the list depends, in part, on the type of database used
and/or the JDBC driver used. For example, Oracle JDBC drivers do not honor these filters. However, the Import
Database Metadata feature does apply a second layer of filtering beyond the JDBC driver to minimize the
amount of metadata imported.

Note: Wildcards - Some DatabaseMetaData methods take arguments that are String patterns. Within a pattern
String, "%" means match any substring of 0 or more characters, and "_" means match any one character. Only
metadata entries matching the search pattern are returned. If a search pattern argument is set to null, that
argument's criterion are dropped from the search.

The ability to map entities to fully qualified table names makes it possible to map a single Vocabulary to more
than one catalog/schema provided they are all accessible through the same JDBC connection.

When tables are generated to the database, they will use the default Catalog/Schema unless you specify
otherwise.

Note: Schema map - You might need to specify the location for the temp files for a driver when the default
temp location is not be the preferred one. The schemamap option is set in the Database server entry of
Datasource connection. For example, when a Microsoft Dynamics 365 database will run its Decision Services
as .NET on an IIS server, you need to provide the Database server entry with the explicit path (delimited by
forward slashes) to a location where the IIS process has write access. For example:

jdbc:progress:dynamics365:serviceurl=server;schemamap=C:/inetpub/wwwroot/axis/logs;transactionMode=ignore

Fully-qualified table names
Whenever table names appear in properties, Corticon uses fully-qualified names; thus, a table name may
consist of up to three nodes separated by periods. The JDBC specification allows for up to three levels of
qualification for a table name -- Catalog, Schema, and Table.

103Progress Corticon : Data Integration: Version 6.3

How to filter catalogs and schemas

For databases that support all three levels of qualification, table names take the form:

<catalog>.<schema>.<table>

Microsoft SQL Server uses all three levels of qualification. For example, PatientRecords.dbo.Patient

Others, such as Oracle, do not use Catalog Name, using only schema and table. For example,
corticon.Patient. Corticon can infer which levels of qualification are applicable by checking for null values
in database metadata.

Support for database views
Many RDBMS brands support views, a virtual table that is essentially a stored query. Your database administrator
might have set up views to:

• Combine (JOIN) columns from multiple tables into a single virtual table that can be queried

• Partition a large table into multiple virtual tables

• Aggregate and perform calculations on raw data

• Simplify data enrichment

It is common practice to constrain staff users to accessing only views in their database connection credentials.

Corticon's Enterprise Data Connector supports mapping a Vocabulary to an RDBMS view.

Using Associations
When Corticon Entities are mapped to View tables that were created without any WHERE clause in the Select
statement (in other words, Corticon filters are NOT applied), Associations (in a View table) are not required as
the Entities mapped to the View tables with no Join Expressions in the Vocabulary returns the expected results
that include the Association.

Note: When Entities are mapped to View tables that were created with a WHERE clause in the Select statement
(in other words, Corticon filters are applied), results are incorrect: Associations are required even when there
is a View table for the Join Expressions. Attempts to map the View tables to the Entities in the Vocabulary will
generate validation warnings for lost Join Expressions. A Join Expression currently cannot be mapped to its
related View tables.

Associations as join expressions
Each association in a Corticon Vocabulary will have a join expression that is used to establish the relationships
between matching columns in the database. The syntax is similar to the SQL WHERE clause and are illustrated
here by examples.

One to Many Association with Single Primary Keys
The samples in this guide have a bidirectional one-to-many relationship between tables:

Progress Corticon : Data Integration: Version 6.3104

Chapter 13: A closer look at how Corticon relates to Datasources

PatientRecords.dbo.Patient has the integer primary key patientId, and
PatientRecords.dbo.Treatment has treatmentId as its primary key.
PatientRecords.dbo.Treatment.patientId is a foreign key that “points” to primary key
PatientRecords.dbo.Patient.patientId. In such case the join expressions would be as follows:

Join ExpressionVocabulary
Association

PatientRecords.dbo.Patient.patientId =
PatientRecords.dbo.Treatment.patientId

Patient.treatment

PatientRecords.dbo.Treatment.patientId =
PatientRecords.dbo.PatientId.patientId

Treatment.patient

Note that in a bidirectional association, the two join expressions are mirror images of one another. Unlike ANSI
SQL, the order of operands in the join expression is significant.

In Corticon Studio, the sample association mapping in the data integration samples is:

A closer look at the expression shows the correct inferred join expression for the Patient:

Clicking opens the Join Expression dialog for the connection, as shown:

If you want to revise the expression, each field entry area opens a dropdown menu for that field where you can
choose a value that is in the scope of the connection, or clear the value. You can also just click in the box and
enter a value.

105Progress Corticon : Data Integration: Version 6.3

Associations as join expressions

One to Many Association with Multiple Primary Keys
Consider the sample as having a multi-column primary key. All key columns must be specified in the join
expression; in such case, the join expression becomes a set.

This is a one-to-many, bidirectional association between PatientRecords.dbo.Patient and
PatientRecords.dbo.Treatment, where both have multi-column primary keys (patientId,
patientName, treatmentId, PatientCode), and PatientRecords.dbo.Treatment also has
multi-column foreign key (Treatment.patientId, Treatment.patientName). The join expressions
would be as follows:

Join ExpressionVocabulary
Association

{ PatientRecords.dbo.Patient.patientId =
PatientRecords.dbo.Treatment.patientId,
PatientRecords.dbo.Patient.patientName =
PatientRecords.dbo.Treatment.patientName }

Patient.treatment

{ PatientRecords.dbo.Treatment.patientId =
PatientRecords.dbo.Patient.patientId,
PatientRecords.dbo.Treatment.patientName =
PatientRecords.dbo.Patient.patientName }

Treatment.patient

Note the braces surrounding the comma-separated relational expressions, denoting that in this case, the join
expressions are sets. To extend the Patient association to enter the multiple keys, add another line in the
Join Expression dialog box, as shown:

In this case, the join expression was extended as shown:

When you click OK, the expression is constructed as shown, a bit hard to read yet exactly as described:

Progress Corticon : Data Integration: Version 6.3106

Chapter 13: A closer look at how Corticon relates to Datasources

Let's create the same construct using simple tokens:

The resulting join expression is:

The braces surround the comma-separated relational expressions: The join expressions are sets.

Best effort at inferring Join Expressions
Because join expressions are cumbersome to enter, it is crucial that Corticon have the best possible logic for
automatically inferring them from metadata. For one-to-many associations, the join expression can frequently
be inferred from primary and foreign key metadata, assuming that the entities can be successfully mapped to
particular tables, and the foreign key relationships between those tables are properly declared. Exceptions to
this rule include:

• Unary one-to-one associations (that is, self-joins), where it is impossible to infer which side of the association
corresponds to the primary or foreign key

• Unary many-to-many associations, where it is impossible to infer which of the join table foreign keys should
be used for each side of the association

• Tables that have multiple foreign key relationships between them with different meanings for each.

Corticon recognizes when it is not possible to unambiguously infer the proper join expression, and allow the
user to choose from a set (drop-down list) of choices.

Corticon infers the join expressions in all cardinalities.

107Progress Corticon : Data Integration: Version 6.3

Associations as join expressions

Progress Corticon : Data Integration: Version 6.3108

Chapter 13: A closer look at how Corticon relates to Datasources

14
Advanced EDC Topics

This section describes advanced setup and operational functions of Corticon's Enterprise Data Connector.

For details, see the following topics:

• How to set EDC Vocabulary properties

• Mapping and validating EDC database metadata

• Set additional EDC Datasource connection properties

• How data from an EDC Datasource integrates into rule output

• EDC data caching

• Metadata for Datastore Identity in XML and JSON Payloads

• Relational database concepts in the Enterprise Data Connector

• How EDC handles transactions and exceptions

How to set EDC Vocabulary properties
Note: Database, Datasource, Datastore - These terms are used throughout this document. Database is an
external installation of a relational database management system that provides structured tables and accepts
connections. Datasource is Corticon's term for a database that has a connection defined and tested through
a Vocabulary. Datastore is generic term for an external repository; however, in Corticon's EDC settings, the
term refers to a table in a Datasource that is mapped to an Entity in Corticon.

109Progress Corticon : Data Integration: Version 6.3

Edit Entity EDC properties
When an EDC Datasource has been added to the Vocabulary, its Entity properties for database interaction are
displayed. Notice that several properties are conditionally modifiable based on other properties.

Note: The basic and document mapping Entity properties are discussed in "Add and edit entity nodes and
their properties" in the Quick Reference Guide.

Table 2: Enterprise Data Connector (EDC) Entity Properties

Values and DefaultsApplicabilityDescriptionProperty

Choosemultiple attributes
on the pulldown list by
opening the list then
holding Ctrl while
clicking the selections.

-Specifies which attributes
(if any) act as its Entity's
primary key.

Entity Identity

Yes, No, defaults to No.Required.Indicates whether this
entity will be database
bound.

Datastore Persistent

Value selected. When not
specified, the system
infers the best matching
table from database
metadata.

Optional, only active when
the entity is Datastore
Persistent

Name of database table,
chosen from a drop-down
list of all database table
names, fully-qualified with
catalog and schema if
applicable.

Table Name

Progress Corticon : Data Integration: Version 6.3110

Chapter 14: Advanced EDC Topics

Values and DefaultsApplicabilityDescriptionProperty

Values are:

• No Cache or blank
(default) - Disable
caching.

• Read Only - Caches
data that is never
updated

• Read/Write - Caches
data that is sometimes
updated while
maintaining the
semantics of "read
committed" isolation
level. If the database is
set to "repeatable
read," this concurrency
strategy almost
maintains the
semantics. Repeatable
read isolation is
compromised in the
case of concurrent
writes.

• Nonstrict Read/Write
- Caches data that is
sometimes updated
without ever locking the
cache. If concurrent
access to an item is
possible, this
concurrency strategy
makes no guarantee
that the item returned
from the cache is the
latest version available
in the database.

Optional, only active when
the entity is Datastore
Persistent.

Caching technique,
chosen from a drop-down
list. Indicates whether
instances of this entity are
subject to caching.

Datastore Caching

Native, Table,
Identity Sequence,
UUID (These are
described in the following
table.)

Enabled when Entity
Identity is not specified
and DataStore Persistent
is set to Yes

Strategy to generate
unique identity for this
entity.

Identity Strategy

System attempts to create
a match as
entityName_ID.

Enabled when Entity
Identity is unspecified.

Name of the identity
column, chosen from a
drop-down list consisting
of all column names
associated with the table.

Identity Column Name

111Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

Values and DefaultsApplicabilityDescriptionProperty

System attempts to create
a match as
entityName_SEQUENCE.

Applicable when Entity
Identity is unspecified and
Identity Strategy is
Sequence.

The fully-qualified name of
the sequence to be used.

Identity Sequence

When not specified, the
value defaults to
SEQUENCE_TABLE.

Applicable when Entity
Identity is unspecified and
Identity Strategy is Table.

The fully-qualified name of
the identity table to be
used, chosen from a
drop-down list of all table
names and sequence
names.

Identity Table Name

When not specified, the
Name column name of the
Identity Table defaults to
SEQUENCE_NAME with
data type (String).

Applicable when Entity
Identity is unspecified and
Identity Strategy is Table.

The name of the column
in the identity table that is
used as the key (the name
of the entity). Choose from
a drop-down list of all
columns in the table
selected in the Table
Name field.

Identity Table Name
Column Name

When not specified, the
Value column of the
Identity Table defaults to
NEXT_VAL with data type
(Big Integer).

Applicable when Entity
Identity is unspecified and
Identity Strategy is Table.

The name of the column
that holds the identity
value. Chosen from a
drop-down list of all
columns in the table
selected in the Table
Name field.

Identity Table Value
Column Name

Version Number,
Timestamp

Optional. Tells Hibernate
how to handle table
locking. See the
Hibernate Developer's
Guide for more
information.

Strategy to control
optimistic concurrency.

Version Strategy

The specified column
name is created when you
update the database
schema.

Applicable and required
when Version Strategy is
specified.

Name of the column that
contains the version
number or the timestamp.

Version Column Name

Note: Identity and strategy concepts are general relational database concepts. Refer to your RDBMS brand's
documentation for more information, especially the identity strategies that are specific to certain brands. Also
see "Identity strategies" and "Advantages of using Identity Strategy rather than Sequence Strategy" in the
Data Integration Guide .

Table 3: Description of the Identity Strategy values

DescriptionStrategy

Allows database to choose best possible identity strategy.Native

Progress Corticon : Data Integration: Version 6.3112

Chapter 14: Advanced EDC Topics

https://docs.jboss.org/hibernate/orm/4.0/devguide/en-US/html/ch05.html
https://docs.jboss.org/hibernate/orm/4.0/devguide/en-US/html/ch05.html
https://docs.jboss.org/hibernate/orm/4.0/devguide/en-US/html/ch05.html

DescriptionStrategy

Uses a database table, whose name is specified in Identity Table Name. This table will
have two columns: a name column and a value column. (Previously referenced as
"increment".)

Table

Uses the native identity capability in DB2, SQL Server (the column is defined as an
"identity" column in the database schema).

Identity

Uses sequence capability in DB2, PostgreSQL and Oracle.Sequence

Generates 128-bit UUID string of 32 hex digits. (Previously referenced as "uuid-hex".)UUID

Note: Databases mentioned in the Identity Strategy table do not imply that they are currently supported RDBMS
brands. For the current list of supported RDBMS brands, access the web location Corticon Supported Platforms
Matrix.

Note: PostgreSQL limitation in EDC—Hibernate has a limitation when you attempt to perform write operations
to a PostgreSQL view where a sequence is used for a column in the view. Hibernate is not updating its in-memory
object, and always returns the same initial number, so the Database Sequence number is not incremented.
Alternative approaches include modifying the view schema to not use a sequence on a column, developing a
customer callout to perform the operation, or utilizing ADC.

Edit Attribute EDC properties
When an EDC Datasource has been added to the Vocabulary, its Attribute properties for database interaction
are displayed.

Note: The basic and document mapping Attribute properties are discussed in "Add and edit attribute nodes
and their properties" in the Quick Reference Guide.

Table 4: Enterprise Data Connector (EDC) Attribute Properties

ApplicabilityValuesDescriptionProperty

Optional, if not specified,
system will infer best
match from database
metadata.

Name of the database
column, chosen from a
drop-down list consisting
of all column names
associated with the Entity
Table Name (see Entity
Properties).

Column Name

113Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html
https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

ApplicabilityValuesDescriptionProperty

Optional. Only enabled if
attribute is an element of
the Entity Identity set. Only
value strategies that make
sense with respect to the
attribute data type will be
presented in the
drop-down list.

Native, Table,
Identity, Sequence,
UUID

Strategy to use to
generate unique value for
this column.

Value Strategy

Only enabled if attribute is
an element of the Entity
Identity set and Identity
Strategy is Sequence.
Required if enabled.

The fully-qualified name of
the sequence to be used.

Value Sequence

Only enabled if attribute is
an element of the Entity
Identity set and Identity
Strategy is Table.
Optional. If not specified,
the value will default to
SEQUENCE_TABLE.

The fully-qualified name of
the identity table to be
used, chosen from a
drop-down list of all table
names and sequence
names.

Value Table Name

Only enabled if attribute is
an element of the Entity
Identity set and Identity
Strategy is Table. If not
specified the value will
default to
SEQUENCE_NAME
(String).

The name of the column
in the identity table that is
used as the key (this
column will contain the
name of the entity).
Chosen from a drop-down
list of all columns in the
table selected in the Table
Name field.

Value Table Name
Column Name

Only enabled if attribute is
an element of the Entity
Identity set and Identity
Strategy is Table. If not
specified the value will
default to NEXT_VAL
(Big Integer).

The name of the column
which holds the identity
value. Chosen from a
drop-down list of all
columns in the table
selected in the Table
Name field.

Value Table Value Column
Name

Table 5: Description of the Value Strategy values

DescriptionStrategy

Allows database to choose best possible value strategy.Native

Uses a database table, whose name is specified in Identity Table Name. This table will
have two columns: a name column and a value column. (Previously referenced as
"increment".)

Table

Progress Corticon : Data Integration: Version 6.3114

Chapter 14: Advanced EDC Topics

DescriptionStrategy

Uses the native identity capability in DB2, SQL Server (the column is defined as an
"identity" column in the database schema).

Identity

Uses sequence capability in DB2, PostgreSQL and Oracle.Sequence

Generates 128-bit UUID string of 32 hex digits. (Previously referenced as "uuid-hex".)UUID

Note: Databases mentioned in the Value Strategy table do not imply that they are currently supported RDBMS
brands. For the current list of supported RDBMS brands, access the web location Corticon Supported Platforms
Matrix.

Note: PostgreSQL limitation in EDC—Hibernate has a limitation when you attempt to perform write operations
to a PostgreSQL view where a sequence is used for a column in the view. Hibernate is not updating its in-memory
object, and always returns the same initial number, so the Database Sequence number is not incremented.
Alternative approaches include modifying the view schema to not use a sequence on a column, developing a
customer callout to perform the operation, or utilizing ADC.

When a database Datasource (ADC) has been added to the Vocabulary, its Attribute properties for database
interaction are displayed. These properties and their usage are discussed in the Data Integration Guide.

Table 6: Database Datasource Attribute Properties

ApplicabilityValuesDescriptionProperty

Required.Name of the database
column, chosen from a
drop-down list consisting
of all column names
associated with the Entity
Table Name (see Entity
Properties).

Column Name

Import possible values of an attribute from database tables
A database connection can also provide designers and testers of Rulesheets and Ruletests with lists of
enumerations, also known as possible values. While these lists can be created and maintained by hand on the
Custom Data Types tab of a Vocabulary, you can retrieve lists from the connected database.

Consider the general behavior of enumerations, especially when retrieving labels and values from a database:

• There can be only one instance of any label and any value in the list, whether created manually or imported.
An exception will make the Vocabulary invalid. The database retrieval will work as expected but you will
have to groom the results to make the lists valid. You can get optimal results when your database source
prevents duplicates in the table columns you are using for your values or label-value pairs.

• If you chose a label in a Rulesheet and that label is no longer available after an update, an error will occur.
Any Rulesheet expressions that refer to the defunct label will be flagged as invalid. You must update the
Rulesheet expressions to correct the problem.

• If you chose a label in a Rulesheet and that label takes on a different value after an update, the current
value is what is evaluated.

115Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html
https://docs.progress.com/bundle/corticon-supported-platforms/page/Corticon-6.3-Supported-Platforms-Matrix.html

• The value assigned - whether directly or as the label's value - at the time of deployment does not change
thereafter on the server.

It is good practice to ensure that the data types of the retrieved values in the database are consistent with the
Custom Data Type, and then extend the corresponding base data value in the attribute.

Procedures
The steps to implement custom data types retrieved from a database are, in summary, as follows:

• A - Create or locate the database table and columns you want to retrieve.

• B - Verify the database connectivity, and then import its metadata.

• C - Define the Custom Data Type lookup information.

• D - Import the enumeration elements.

• E - Check the lists for duplicates.

• F - Set the Data Type of appropriate attributes to the Custom Data Type.

• G - Verify that the list functions correctly.

A - Create or locate the database table and columns you want to retrieve.

Note: This step uses the procedures detailed in the EDC Tutorials' steps for populating the database.

Note: See the tutorials Modeling Progress Corticon Rules to Access a Database using EDC and Connecting
a Progress Corticon Decision Service to a Database using EDC. If you use the database you created in the
tutorials, you need to refer to the database as Transportation – not Cargo -- to stay in synch with this
example. You could instead simply create a Cargo database in SQL Server, and then import the sample data
in the Studio's Tutorial/Tutorial-Done folder, Cargo_data.sql.

You need to add two tables to the SQL Server database to demonstrate both value-only and label+value
enumerations:

1. Start the SQL Server Management Studio, and then expand the tree for Databases : Cargo : Tables.
Right-click on Tables and choose New Table. Enter Model as the only column name, as shown:

Progress Corticon : Data Integration: Version 6.3116

Chapter 14: Advanced EDC Topics

https://progress-dev.zoominsoftware.io/bundle/corticon-edc-modeling-tutorial/page/Tutorial-Modeling-Progress-Corticon-Rules-to-Access-a-Database-using-EDC.html
https://progress-dev.zoominsoftware.io/bundle/corticon-connect-to-db-using-edc/page/Tutorial-Connecting-a-Progress-Corticon-Decision-Service-to-a-Database-using-EDC.html
https://progress-dev.zoominsoftware.io/bundle/corticon-connect-to-db-using-edc/page/Tutorial-Connecting-a-Progress-Corticon-Decision-Service-to-a-Database-using-EDC.html

2. Choose the menu command File > Save Table_1, enter the name Planes, and then click OK.

3. Create another table, now with two columns named planeCarrier and planeID, saving it as Carrier.

4. Click New Query, copy/paste the following text, and then click Execute.

INSERT INTO Cargo.dbo.Planes (Model) VALUES ('DC-10');
INSERT INTO Cargo.dbo.Planes (Model) VALUES ('MD-11');
INSERT INTO Cargo.dbo.Planes (Model) VALUES ('747');
INSERT INTO Cargo.dbo.Planes (Model) VALUES ('777');
INSERT INTO Cargo.dbo.Carrier (planeCarrier,planeID) VALUES ('UPS','N1001');
INSERT INTO Cargo.dbo.Carrier (planeCarrier,planeID) VALUES ('FedEx','N1002');
INSERT INTO Cargo.dbo.Carrier (planeCarrier,planeID) VALUES ('DHL','N1003');
INSERT INTO Cargo.dbo.Carrier (planeCarrier,planeID) VALUES ('GreatWall','N1004');
INSERT INTO Cargo.dbo.Carrier (planeCarrier,planeID) VALUES ('Heavylift','N1005');

5. In the tree, right-click on dbo.Planes, and then choose Edit Top 200 Rows.

117Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

The Planes data is as we intended. It is ready for our use in the Corticon Studio.

6. Similarly, right-click on dbo.Carrier, and then choose Edit Top 200 Rows.

The Carrier data is as we intended. It is ready for our use in the Corticon Studio.

B - Verify the database connectivity, and then import its metadata.
We want to bring the information about the table definitions into the Studio:

1. In Corticon Studio, confirm that you have the same good connection you achieved in Getting Started with
EDC on page 29

2. With Cargo.ecore open its editor, select the Vocabulary root, and the click METADATA Import, as
illustrated:

Progress Corticon : Data Integration: Version 6.3118

Chapter 14: Advanced EDC Topics

C - Define the Custom Data Type lookup information.
We now can specify how we want to use the data and then bind it to the appropriate database table and
columns:

1. Click on Cargo to get to its top level, and then select the Custom Data Types tab.

2. Click on the next empty row, enter model as the Data Type Name, select String as the Data Type, and
Yes as the Enumeration.

3. Click on the Lookup column in the row to expose its dropdown, and then choose Cargo.dbo.Planes that
we imported in the database metadata.

4. We are using a values-only lookup, click on the row's Values Column to select its one database column,
Model:

5. For the other table, click on the next empty row, enter carrier as the Data Type Name, select String
as the Data Type, and Yes as the Enumeration.

6. Click on the Lookup Table Name in the row to expose its dropdown, and then choose Cargo.dbo.Carrier
that we imported in the database metadata.

7. We are using a label-values lookup, so click on the row's Labels Column to select planeCarrier, and then
in the Values Column to select planeID:

119Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

Everything we have entered is red! That's because Studio has no data for either of these enumeration sets.

D - Import the enumeration elements.
Once you have defined the database table and columns you want, you can retrieve the data:

1. Choose the menu command Database Access > Import Enumeration Elements, as shown:

2. The retrieved values are displayed in the associated Labels and Values window to the right, as shown for
the model:

E - Check the lists for duplicates.
Unless you enforced uniqueness in the source database. To demonstrate what happens, we'll add an existing
value to the model enumerations.

1. In the Values retrieved column, enter a new value that is already there, such as 777, as shown:

The duplicates are both highlighted in red, and the Cargo.ecore file is marked as being in an error state.

2. Remove the line (or change it to something unique) and the Vocabulary is again valid.

F - Set the Data Type of appropriate attributes to the Custom Data Type.
With our enumeration lists imported from the database and verified as free of duplicate labels or values, we
can link them to the attributes that will use them:

1. Aircraft.aircraftType:

Progress Corticon : Data Integration: Version 6.3120

Chapter 14: Advanced EDC Topics

2. Aircraft.tailNumber:

G - Verify that the list functions correctly.
To verify that the lists perform as expected, use them in a Rulesheet or Ruletest :

1. In a Rulesheet Actions area, enter two new lines, one with the attribute syntax Aircraft.aircraftType
and the other with Aircraft.tailNumber, as shown:

2. Click on the aircraftType where it intersects with column 1, as shown:

The pulldown displays our imported values, as well as blank and null.

3. Click on the tailNumber where it intersects with column 1, as shown:

121Progress Corticon : Data Integration: Version 6.3

How to set EDC Vocabulary properties

The pulldown displays our imported label, as well as blank. The label is a place holder for its value.

For more information about enumerations and retrieving values from databases, see:

•
• "Enumerations retrieved from a database" in the Rule Modeling Guide

Enumerated values
You can define lists of values that are the set of allowable values associated with a Vocabulary attribute. In
the Basic Tutorial, you saw how we could delimit the options for a containerType by defining labels and
their respective values:

Then, when you are in the Rulesheet, the defined values -- as well as null and blank -- were offered.

Importing enumerated values from a database

When you use the Enterprise Data Connector and establish connection to a database, additional functionality
is added to the DataTypes tab:

You can specify a column within a table of the connected database to retrieve and import the name and values
(or just the values) to populate the selections to the specified attribute.

Progress Corticon : Data Integration: Version 6.3122

Chapter 14: Advanced EDC Topics

Note: For more information about enumerations and retrieving values from databases, see:

• Import possible values of an attribute from database tables on page 115

• Mapping EDC database tables to Vocabulary Entities on page 124

• "Enumerations defined in the Vocabulary" in the Rule Modeling Guide

• "Enumerations retrieved from a database" in the Rule Modeling Guide

Edit Association EDC properties
When an EDCDatasource has been added to the Vocabulary, its Association properties for database interaction
are displayed.

Note: The basic and document mapping Association properties are discussed in "Add and edit association
nodes and their properties" in the Quick Reference Guide.

Table 7: Enterprise Data Connector (EDC) Attribute Properties

ApplicabilityDescriptionProperty

Required for all database-mapped
associations. Inferred in most
instances from database metadata
(exceptions: unary associations and
certainmany-to-many associations).

Expression that defines the
relationships between foreign key
columns in the database

Join Expression

Mapping and validating EDC database metadata
Mapping data between a Corticon Vocabulary and relational database is not always perfect. When there are
issues, you need to review the mappings to resolve incomplete or conflicting mapping data.

123Progress Corticon : Data Integration: Version 6.3

Mapping and validating EDC database metadata

Mapping EDC database tables to Vocabulary Entities
Not all Vocabulary entities must be mapped to corresponding database tables - only those entities whose
attribute values need to be persisted in the external database should be mapped. Those entities not mapped
should have their Datastore Persistent property set to No. Mapped entities must have their Datastore
Persistent property set to Yes, as shown circled in orange in the following figure:

Figure 10: Automatic Mapping of Vocabulary Entity

It is also possible for an external database to contain tables or fields not mapped to Vocabulary entities and
attributes - these terms are simply excluded from the Vocabulary.

Assume that database metadata containing a table named Patient was imported. Because the table’s name
spelling matches the name of entity Patient, the Table Name field was mapped automatically. Automatic
mappings are shown in light gray, as shown above. Also, note that the primary key of table Patient is a
column named patientId. The Vocabulary Editor detects the primary key and determines that the property
Entity Identity should be mapped to attribute patientId.

Progress Corticon : Data Integration: Version 6.3124

Chapter 14: Advanced EDC Topics

If the automatic mapping feature fails to detect a match for any reason (different spellings, for example), then
you must make the mapping manually. In the Table Name field, use the drop-down list to select the appropriate
database table to map, as shown:
Figure 11: Manual Mapping of Vocabulary Entity

125Progress Corticon : Data Integration: Version 6.3

Mapping and validating EDC database metadata

Mapping EDC database fields (columns) to Vocabulary Attributes
Automatic mapping of attributes works the same as entities. If an automatic match is not made by the system,
then select the appropriate field name from the drop-down in field:column property, as shown:
Figure 12: Manual Mapping of Vocabulary Attribute

Note: Handling data in a CHAR database column

The database column type CHAR has a constant length. When a Corticon string attribute is mapped to such a
column, the string retrieved from the database always has the length that is specified in the database definition.
When a string shorter than the specified length is assigned to the attribute, the database adds spaces at the
end of the string before storing it in the database. When the attribute is retrieved from the database, the value
returns with the padded spaces at the end of the string.

If this is not the intended behavior, change the database type for the column from CHAR to variable-length
character data type. If the database schema cannot be changed, either use a trimSpace operator to strip the
trailing spaces from the returned attribute value or redefine the query string to allow for its full length including
added spaces.

Mapping EDC database relationships to Vocabulary Associations
Automatic mapping of associations works substantially the same as entities. However, rather than entry text
boxes and pulldowns for mappings, a more visual approach is provided. If an automatic match is made by the
system, it is displayed in grey as shown:

Progress Corticon : Data Integration: Version 6.3126

Chapter 14: Advanced EDC Topics

If you want to revise the join expression, click on the Join Expression Property Name, as shown:

The Join Expression dialog box opens with a deconstruction of the join expression, as shown:

Use the pulldown lists in each column to refine the join expression. You can add lines to define complex join
expressions where appropriate. As all revised join expressions are not validated, they are always displayed in
black.

For more information and examples of complex joins, see Associations as join expressions on page 104

Validate EDC database mappings
Once the Vocabulary has been mapped (either automatically or manually) to the imported database metadata,
the mappings must be verified by clicking the MAPPING Validate button on the Datasource panel, as shown:

If all the mappings are valid, then a confirmation window opens:

127Progress Corticon : Data Integration: Version 6.3

Mapping and validating EDC database metadata

If anything in the mappings does not validate, then a list of problems is generated:

These problems must be corrected before the Decision Service can be deployed.

Note: For a more detailed discussion of validation, see Types of mapping validation and validation errors on
page 128

Writing rules that access data through the EDC connection
With the EDC connection established, mapped, and validated, you can proceed to the Rule Modeling Guide
section "How to write rules to access external data" to create and test rules that use the EDC connection.

Types of mapping validation and validation errors
When EDC is enabled, the Vocabulary elements - Entity, Attribute, and Association - each have additional
properties that can be entered by the user or inferred from database metadata. Corticon EDC validates these
Vocabulary-to-Database mappings and displays error conditions in a window. There are three aspects to the
database validation function:

Dynamic Validation
Corticon Studio validates against imported database metadata as property values change in a Vocabulary. For
example, for a database-persistent entity, if you specify a table name that does not exist in the database
metadata, the system posts a validation message in the Problems View. Dynamic validation uses internal
Corticon algorithms to attempt validation without accessing Hibernate which would connect to the Datasource
to do full validation. Studio creates other error and warning validation messages depending on the severity of
the issue detected, such as:

• Data type mismatch between an attribute and a column that cannot be coerced.

• Property values are explicitly contradicted by database metadata.

• You select a property value, then re-import metadata, only to find that the selected value no longer exists
in the database schema.

Warnings are also created for "soft" errors, such as:

• If you designate a Vocabulary entity as datastore persistent, the system is unable to infer which database
table best matches the entity name, dynamic validation issues a warning message.

• If the system is unable to unambiguously determine the join expression for a given association, the association
is flagged as a warning until you select one of the allowable values.

Progress Corticon : Data Integration: Version 6.3128

Chapter 14: Advanced EDC Topics

Note: Dynamic validation is always performed against the imported copy of database metadata. You must
ensure that metadata is imported into the Vocabulary whenever the database schema is modified.

On-Demand Validation
In addition to dynamic validation, Corticon Studio provides the Datasource action Validate Mappings, as
illustrated in Validate EDC database mappings on page 127, so that you can validate the Vocabulary, as a
whole, against the database schema. Unlike dynamic validation, on-demand validation is performed against
the actual schema so it is considered the definitive test of Vocabulary mappings.

Internally, the system performs on-demand validation by building annotated Corticon Data Objects (CDOs)
from Vocabulary metadata, then asking Hibernate to evaluate the readiness of those CDOs with respect to the
database schema. If Hibernate "blesses" the CDOs, the system displays a message box indicating that the
Vocabulary mappings are valid, and that the Vocabulary is considered fit-for-use in a Decision Service. If
Hibernate detects any errors, the system presents the errors to the user in a scrolling dialog window. The
on-demand validation action simply presents raw information returned from Hibernate with no additional
transformations or interpretation.

Validation at Deployment
Corticon Server leverages on-demand validation functionality whenever a decision service is deployed. If
Corticon Server detects a problem, it throws an exception and prevents deployment.

Set additional EDCDatasource connection properties
There are additional properties you might want to set for an EDC Datasource connection.

Note: It is a good practice to test your connection before and after changing additional properties.

Connection Pooling

Corticon uses C3P0, an open source JDBC connection pooling product, for connection pooling to Hibernate.
The following properties might help tune connection pooling.

The following properties let you tune connection pooling:

Table 8: Settable C3P0 properties and their default value

CommentDefault
value

Property Name

Minimum number of Connections a pool will maintain at any
given time.

1hibernate.c3p0.min_size

Maximum number of Connections a pool will maintain at any
given time.

100hibernate.c3p0.max_size

129Progress Corticon : Data Integration: Version 6.3

Set additional EDC Datasource connection properties

CommentDefault
value

Property Name

Number of seconds a Connection will remain pooled but
unused before being discarded. Zero sets idle connections
to never expire.

1800hibernate.c3p0.timeout

Size of C3P0's PreparedStatement cache.

Enter zero (0) to turn statement caching off. Then--depending
on the alternative connection pooling mechanism
requirements--you might need to declare required JAR and
configuration files on the classpath.

50hibernate.c3p0.max_statements

You can bypass the use of C3P0 for connection pooling by setting the Property name
hibernate.use.c3p0.connection_pool to the value false.

Note:

For more information about C3P0 and its use with Hibernate, see their JDBC3 Connection and Statement
Pooling page at http://www.mchange.com/projects/c3p0/index.html#appendix_d.

Corticon has no recommendations for adjusting the properties in the Hibernate product. Refer to their web
location for details. Then consult with Progress Corticon Support to note the behaviors you are attempting to
adjust before making changes.

Database Time Zone

When your application stores date/time values in the database, you might need to set the following property:

com.corticon.edc.dateTimezone. This property pertains to only the DateTime data type, and lets you
declare how DateTime values are expressed in the database:

PurposeValue

Declares that date/time values will be expressed in the Java Virtual
Machine (JVM) time zone. Use this setting if your date/time values are
expressed in “local” time.

JDK_DEFAULT_TIMEZONE

Declares that date/time values will be expressed in GMT. This setting is
typical for internet applications that are used across time zones.

UTC

Declares that date/time values will be expressed in America/Los Angeles
time.

America/Los_Angeles

Declares that date/time values will be expressed in Europe/Paris time.Europe/Paris

Declares that date/time values will be expressed in time zone GMT plus
one hour.

GMT+01:00

Set your override values in the Property table of the Vocabulary editor's EDC tab, as illustrated:

Progress Corticon : Data Integration: Version 6.3130

Chapter 14: Advanced EDC Topics

How data from an EDCDatasource integrates into rule
output

An EDC connector enables interaction with its connected database, its Datasource, to read and write data from
rule executions. Without database connectivity, Decision Service execution takes data in the request payload,
modifies it through rules, and then returns the data in the response. When EDC is used, the Datasource can
enrich the data in the request, and can store the result in the database. The following sections show separately
the effects in read-only and read-update scenarios. Included in these examples are variations that use the
Extend to Database feature to further enrich results.

To enable adequate complexity, the scenarios use data provided and the familiar Cargo.ecore Vocabulary:.

131Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

The sample Rulesheet is defined as shown:
Figure 13: Sample Rulesheet for EDC database examples

The Datasource data in this section was established in a Microsoft SQL Server installation as described in the
topic "Quick Steps for setting up the Cargo sample" in the Rule Modeling Guide.

Note: If you are just getting started, see the EDC tutorial, Modeling Progress Corticon Rules to Access a
Database using EDC.While not precisely the setup used for the examples in this chapter, you will get a detailed
walkthrough where the Datasource is Microsoft SQL Server.

When Datasource access is Read Only
In Read Only mode, data may be retrieved from the database in order to provide the inputs necessary to
execute the rules. But the results of the rules won’t be written back to the database – hence, read-only.

Open the project's Ruletest, and then set the menu option Ruletest > Testsheet > Database Access > Read
Only.

The variations that will be explored in Read Only mode are:

• Payload contains a record new to the database, and the entity is not extended to database on page 133

• Payload contains a record new to the database, and the entity is extended to database on page 134

• Payload contains existing database record on page 135

• Payload contains existing database record, but with changes on page 136

Finally, the section Effect of rule execution on the database on page 137 shows that the read-only functions did
not change the database but perhaps they should have.

Progress Corticon : Data Integration: Version 6.3132

Chapter 14: Advanced EDC Topics

https://progress-dev.zoominsoftware.io/bundle/corticon-edc-modeling-tutorial/page/Tutorial-Modeling-Progress-Corticon-Rules-to-Access-a-Database-using-EDC.html
https://progress-dev.zoominsoftware.io/bundle/corticon-edc-modeling-tutorial/page/Tutorial-Modeling-Progress-Corticon-Rules-to-Access-a-Database-using-EDC.html

Payload contains a record new to the database, and the entity is not extended to
database
Let’s look at a Studio Test with an Input Ruletest (simulating a request payload) containing a record not present
in the database. The initial database table dbo.Aircraft is as shown:

Figure 14: Initial state of database table Aircraft

And the Studio Input Ruletest is as shown in the following figure.
Figure 15: Input Ruletest Testsheet with new record, in Read Only mode

We know from our Vocabulary that tailNumber is the primary key for the Aircraft entity. We also know
by examining the Aircraft table that this particular set of input data is not present in our database, which
only contains aircraft records with tailNumber values N1001 through N1004. So when we execute this Test,
the Studio performs a query using the tailNumber as unique identifier. No such record is present in the table
so all the data required by the rule must be present in the Input Ruletest. Fortunately, in this case, the required
aircraftType data is present, and the rule fires, as shown:

Figure 16: Results Ruletest with new record

133Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

Again, since EDC is Read Only for this test, no database updates are made and the end start of the AIRCRAFT
table, as shown, is the same as the original state:
Figure 17: Final state of database table Aircraft

Payload contains a record new to the database, and the entity is extended to database
This scenario assumes the rule shown in Sample Rulesheet for Synchronization Examples makes use of an
alias extended to the database. By placing the Aircraft Entity in the Scope of Rulesheet, we can right-click
on Aircraft and then choose Extend to Database as shown:

See the Rule Modeling Guide chapter "Writing Rules to Access External Data" for more information about this
setting. In that guide, you might want to learn about "Optimizing Aggregations that Extend to Database" which
pushes these collection operations onto the database.

Progress Corticon : Data Integration: Version 6.3134

Chapter 14: Advanced EDC Topics

When our sample rule uses an alias extended to the database instead of the root-level entity shown in Sample
Rulesheet for Synchronization Examples, different behavior is observed. When an Input Ruletest or request
payload contains data not present in the database, as in test case N1005 above, and the database access
mode is Read-Only, the rules engine dynamically merges the input or payload with records in the database
table.

Figure 18: Results Ruletest showing merged records

Payload contains existing database record
Now, let’s change our input data so that it contains a record in the database. As we can see in the following
figure, the value of tailNumber in the Input Ruletest has been changed to N1003. Also, the value of
aircraftType has been deleted. By deleting the value of aircraftType from the Input Ruletest, rule
execution is depending on successful data retrieval because the Input Ruletest no longer contains enough
data for the rule to execute. Data retrieval is this rule’s “last chance” – if no data is retrieved, then the rule
simply won’t fire.

135Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

Fortunately, a record with this value exists in the database table, so when the Test is executed, a query to the
database successfully retrieves the necessary data.
Figure 19: Ruletest input with existing record

The Results Ruletest, as shown below, confirms that data retrieval was performed.
Figure 20: Ruletest output with existing record

And, finding that the aircraft with tailNumber=N1003 was in fact a 747, the rule fired. But as before, no
updates have been made to the database because this Test still uses Read-Only mode. The final database
state is as shown:
Figure 21: Final state of database table Aircraft

Payload contains existing database record, but with changes
What happens when, for a given record, the request payload and database record don’t match? For example,
look carefully at the Input Ruletest below. In the database, the record corresponding to tailNumber N1003 has
an aircraftType value of 747. But the aircraftType attribute in the Input Ruletest has a value of DC-10.
How is this mismatch handled?

Progress Corticon : Data Integration: Version 6.3136

Chapter 14: Advanced EDC Topics

Studio still performs a query to the database because it has the necessary key information in the provided
tailNumber. When the query returns with an aircraftType of 747, the Synchronization algorithm decides
that the data in the Input Ruletest has priority over the retrieved data – for the purposes of working memory
(which is what the rules use during processing), the data in the Input Ruletest is treated as “more recent” than
the data from the table. The state of aircraftType in working memory remains DC-10, and therefore the
condition of the rule is not satisfied and the rule does not fire. Even though the database record defines the
aircraft with tailNumber of N1003 as a 747, this is not good enough to fire the rule. The other piece of
retrieved data, maxCargoWeight, is accepted into working memory and is inserted into attribute
maxCargoWeight in the results Ruletest upon completion of rule execution, as shown on the right side of the
following figure:
Figure 22: Ruletest with existing record but different aircraft

Let’s modify the scenario slightly. Look at the next Input Ruletest, as shown on the left side off the following
image. It contains an aircraftType attribute value of 747, but the AIRCRAFTTYPE value in the AIRCRAFT
table of the database (for this value of TAILNUMBER) is MD-11. How is data synchronized in this case?

Figure 23: Ruletest with existing record and same aircraft

Once again, when a data mismatch is encountered, the data in the Input Ruletest (simulating the request
payload) is given higher priority than the data retrieved from the database. Furthermore, the data in the Input
Ruletest satisfies the rule, so it fires and causes maxCargoWeight to receive a value of 250000, as shown
on the right side of the figure above.

Effect of rule execution on the database
In several of the examples above, the state of data post-rule execution differs from that in the database. In
Results Ruletest with Existing Record and Results Ruletest with Existing Record, rule execution produced a
maxCargoWeight of 250000, yet the database values remained 200000. The application architect and
integrator must be aware of this and ensure that additional data synchronization is performed by another
application layer, if necessary. When Corticon Studio and Server are configured for Read Only data access,
data contained in the response payload may not match the data in the mapped database.

When Datasource access is Read/Update
In Read/Update mode, Decision Services can update the database so that data changes made by rules are
persisted. That avoids the problem of post-rule execution data mismatch experienced in Read Only, but must
be used carefully (especially when testing from Studio!) since rules will be writing to the database.

137Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

Open the project's Ruletest, and then set the menu option Ruletest > Testsheet > Database Access >
Read/Update.

The variations that will be explored in Read/Update mode are:

• Payload contains a new record not in the database on page 138

• Payload contains existing database record on page 139

• Payload contains existing database record, but with changes on page 139

Payload contains a new record not in the database
Once again, the Studio Ruletest Input is shown in the following figure.

As before, no such record is present in the table so all the data required by the rule must be present in the
Input section. Fortunately, in this case, the required aircraftType data is present, and the rule fires, as
shown:
Figure 24: Ruletest with new record

Since the EDC mode is Read/Update, a database update is made and the end state of the Aircraft table,
shown below, is different from its original state.
Figure 25: Final state of database table Aircraft

We can see that the database and the Ruletest Results (simulating the response payload) contain identical
data for the record processed by the rule – no post-execution synchronization problems exist.

Progress Corticon : Data Integration: Version 6.3138

Chapter 14: Advanced EDC Topics

Payload contains existing database record
Now, let’s revisit the Input Ruletest shown in Input Ruletest with Existing Record. Setting this Test to
Read/Update mode, it appears as shown:
Figure 26: Ruletest with existing record

The Output section of the Ruletest confirms that data retrieval was performed. And, finding the retrieved aircraft
was (and still is) a 747, the rule fired.

Unlike the Read-Only example, the database has been updated with the new maxCargoWeight data. The
final database state is as shown:
Figure 27: Final state of database table Aircraft

Payload contains existing database record, but with changes
To better illustrate how the following examples affect the database when run in Read/Update mode, we will
return the database’s Aircraft table to its original state, as shown:

Figure 28: Original state of database table Aircraft

139Progress Corticon : Data Integration: Version 6.3

How data from an EDC Datasource integrates into rule output

When the following Ruletest is executed, we know from our experience with Read Onlymode that the rule will
not fire. However, notice in Final State of Database Table Aircraft that the database record has been updated
with the aircraftType value (DC-10) present in working memory when rule execution ended. And since the
value of aircraftType in working memory came from the Input Ruletest (having priority over the original
database field), that’s what’s written back to the database when execution is complete. The final state of the
data in the database matches that in the Results Ruletest upon completion of rule execution, as shown in the
Results Ruletest:
Figure 29: Ruletest with existing record

Figure 30: Final state of database table Aircraft

Progress Corticon : Data Integration: Version 6.3140

Chapter 14: Advanced EDC Topics

As before, let’s modify the scenario slightly. The Ruletest Input shown in the next figure now contains an aircraft
record that has an aircraftType value of 747, but the aircraftType value in the database’s Aircraft
table (for this tailNumber) is MD-11. Let’s see what happens to the database upon Test execution:

Figure 31: Ruletest with existing record

Figure 32: Final state of database table Aircraft

Once again, when a data mismatch is encountered, the data in the Input Ruletest (simulating the request
payload) is given higher priority than the data retrieved from the database. Furthermore, the data in the Input
Ruletest satisfies the rule, so it fires and causes maxCargoWeight to receive a value of 250000, as shown
above. Unlike before, however, the new maxCargoWeight value is updated in the database.

EDC data caching
Corticon EDC supports caching of database data to accelerate decision service execution by minimizing the
retrieval of data that has already been retrieved. Caching can provide significant performance benefits when
common data such as an actuarial table or a static list of suppliers will be needed many times by a decision
service.

Corticon EDC automatically caches data within the scope of a single decision service execution. That is level
1 caching. If you want the benefits of caching to occur across decision service executions, you need to enable
level 2 caching. The difference between level 1 and 2 is how long the cached data lives in memory before
having to be queried again from the database when needed. With level 1, it only lives for a single execution.
With level 2, it lives across executions. Level 2 caching is optional but can provide significant benefit when
common data will be needed by many separate executions of your decision service.

How to use level 2 caching
There are two ways caching can be used in Corticon rules:

1. Entity cache is appropriate when common database-enabled entities are used in the input messages sent
to a Decision Service.

141Progress Corticon : Data Integration: Version 6.3

EDC data caching

Case for using entity caching: Consider a Decision Service that expedites Shipping Requests. The
Decision Service might receive a Shipment Request for an Order entity that has a one-to-many association

•

with Customer entities. When the Decision Service receives an Order entity, it would query the database
to get the associated Customer entities (for example, the Decision Service needs the customer’s address
to estimate delivery lead time). When using an entity cache, the Customers could be queried once, and
that data used in expediting other Order entities.

2. Query cache optimizes lookup (query) of database data, such as when a cached entity is extended to the
database in a Rulesheet. A Query Cache is read-only: it should not be expected to receive updates from
the rules. If an update is attempted on an entity contained in a query cache, an exception occurs. A Query
Cache is optimistic; that means that updates from outside of the Decision Service will not modify or invalidate
the cache contents.

• Case for using query caching: A Decision Service that prices online orders using a query cache could
query state sales tax rates (or VAT rates) once, and then use that data when calculating the price of all
orders it receives.

• Case for using query caching: Consider a Decision Service that prices insurance policies. With a query
cache, it could query an actuarial table once, and then use the results in pricing multiple insurance
policies.

First, you specify the caching settings in the Vocabulary and Rulesheets, and then enable caching in tests and
deployed Decision Services.

How to specify caching on Vocabularies and Rulesheets

Setting caching on datastore persistent Entities in the Vocabulary
Database caching is a feature of an EDC Datasource connection, enabling both Entity caching and Query
caching.

To set Entity caching in a Vocabulary:

1. Identify the Vocabulary entities that you want cached.

2. Edit the Vocabulary.

3. Confirm (or set) each entity's Datastore Persistent property to Yes

4. Choose the preferred Datastore Caching value:

• No Cache or blank (default) - Disable caching.

• Read Only - Caches data that is never updated. This strategy works well for unchanging reference
data that might need to occasionally be flushed and repopulated. For example, countries of the world.

• Read/Write - Caches data that is sometimes updated while maintaining the semantics of "read
committed" isolation level. If the database is set to "repeatable read," this concurrency strategy almost
maintains the semantics. Repeatable read isolation is compromised in the case of concurrent writes.
See https://sqlperformance.com/2014/04/t-sql-queries/the-repeatable-read-isolation-level for a discussion
of this functionality.

• Nonstrict Read/Write - Caches data that is sometimes updated without ever locking the cache. If
concurrent access to an item is possible, this concurrency strategy makes no guarantee that the item
returned from the cache is the latest version available in the database. This works well for data that
changes and must be committed, but it does not guarantee exclusivity or consistency (and so avoids
the associated performance costs). This strategy allows more than one transaction to simultaneously
write to the same entity and is intended for applications able to tolerate caches that may at times be out
of sync with the database.

Progress Corticon : Data Integration: Version 6.3142

Chapter 14: Advanced EDC Topics

https://sqlperformance.com/2014/04/t-sql-queries/the-repeatable-read-isolation-level

Set query caching on Entities in a Rulesheet
In a Rulesheet, caching can be set on an Entity and on a database filter. You can use either or both.

Note: Query caching is independent of entity caching's Datastore Caching setting.

To use query caching on an entity in a Rulesheet:

1. In a Rulesheet, chooseAdvanced view to show theScope tab. Datastore-persistent entities have a database
decoration.

2. Right-click on a datastore-persistent entity, and then choose Extend to Database.

3. Right-click again on the same datastore-persistent entity, and then choose Cache Query, as shown:

143Progress Corticon : Data Integration: Version 6.3

EDC data caching

Set query caching on database filters in a Rulesheet
To use query caching on a database filter in a Rulesheet:

1. In a Rulesheet, chooseAdvanced view to show theScope tab. Datastore-persistent entities have a database
decoration.

2. On the Filters tab, right-click on a filter that references an entity extended to database, and then choose
Database Filter. The filter is decorated with a database symbol.

3. Right-click on that filter again, and then choose to Cache Query, as shown:

Settings for EDC caching
The cache settings described in How to specify caching on Vocabularies and Rulesheets on page 142 can be
combined to achieve your caching goals.

Progress Corticon : Data Integration: Version 6.3144

Chapter 14: Advanced EDC Topics

Legend:

• Vocabulary - Set caching on datastore persistent Entities in the Vocabulary

• Scope - Set query caching on Entities in a Rulesheet

• Filter - Set query caching on database filters in a Rulesheet

DescriptionSettings

Operates only on the entities in the Decision Service request payload. Corticon
will retrieve all missing attribute data from the database (or from its entity cache
if data already exists) for the requested entity instance(s). If these entities instances
are associated with other entities, then these associated entities will also be placed
in the entity cache.

[X] Vocabulary
[] Scope
[] Filter

The incoming entity in the request payload will add to the entity cache, whereas
the query cache will be populated with all records from the mapped database table
(if no query filter is defined). NOTE: Typically not set on an entity. Instead, set
either entity or query cache on the entity depending on the application scenario.

[X] Vocabulary
[X] Scope
[] Filter

The incoming entity in the request payload will add to the entity cache, where the
query cache will be populated with the filtered records from the mapped database
table (defined by the filter criteria). NOTE: Typically not set on an entity. Instead,
set either entity or query cache on the entity depending on the application scenario.

[X] Vocabulary
[X] Scope
[X] Filter

How to work with database caches
Corticon's EDC provides functionality for enhanced database caching at runtime. Its cache is temporary data
that duplicates data located in a database so that it can be repeatedly accessed with minimal costs in terms
of time and resources. If an application must be certain not to get stale data, then it should not use caching.
Caching is best used for reference data such as tax or actuarial tables.

What gets cached is based on settings in a project's Vocabulary and Rulesheets. Ruletests and deployed
Decision Services let you choose to enable the requested caching. The first cache usage takes some overhead
to establish the cache so that subsequent test runs get the benefit of very fast performance. When Studio or
Server restarts, its in-memory cache(s) and on-disk cache files are cleared.

145Progress Corticon : Data Integration: Version 6.3

EDC data caching

Testing caching on a Studio Ruletest to Run in Studio
Once you have Rulesheets and a Vocabulary that are prepared for database caching, choosing to enable
cache on the Studio will perform the caching functions in the Studio's space. To enable caching on the Ruletest,
choose the Ruletest menu command Testsheet > EDC Database Access > Enable Cache, as shown:

When you run the Ruletest in Studio, you can observe its performance against your Input. There are no local
files that are user modifiable.

Executing a Studio Ruletest against a deployed Decision Service
You can run your Ruletests against the Decision Service deployed on Corticon Server where you can tune the
cache configuration of each Decision Service instance. The optimal way to manage a cache-enabled Decision
Service is as follows:

1. In Studio, package the Decision Service and its Datasource Configuration file in a location that is accessible
from the Web Console user's machine. When you deploy a Decision Service to a Server together with its
Datasource Configuration file, all the Vocabulary and Rulesheet cache choices that you specified are
packaged in the Decision Service.

2. In a web browser, connect to the Web Console that manages the server where you will deploy the Decision
Service–perhaps a production-quality machine reserved for testing.

3. In the Web Console, add a Decision Service. Locate the EDS file, and then on the Database tab, locate
the Datasource Configuration file.

4. Choose the EDC database settings that were on the Ruletest, as shown:

5. Click Save and Deploy.

Progress Corticon : Data Integration: Version 6.3146

Chapter 14: Advanced EDC Topics

Note: Once deployed, you can run Ruletests in Studio by changing the Test Subject to Run against Server,
and then choosing your deployed Decision Service. However, the EDC Database Access settings on the
Ruletest are ignored. Instead, use the corresponding options on the deployed Decision Service through the
Web Console.

If you want to tune the cache configuration, see Modifying a cache configuration on page 148.

Important: Turning caching on or off - If you want to enable or disable caching on a deployed Decision
Service, the mechanisms of caching require that you undeploy and delete the Decision Service, and then add
and deploy the Decision Service again with the cache enablement setting you want.

Cache files and configuration on Corticon Server
On Corticon Servers:

• Each Decision Service maintains its own cache, and cached data is never shared between Decision Services.
Undeploying a Decision Service immediately clears its cache in memory and on disk.

• Each Decision Service records its configuration in its properties file,
[CORTICON_WORK_DIR]/etc/ehcache_<DSName>_v<M.m>.xml where <DSName>_v<M.m> is the
named and versioned Decision Service. For example,
[CORTICON_WORK_DIR]\etc\ehcache_Cargo_v0.16.xml.

Properties in a cache configuration
The first run of the Decision Service on a Corticon Server creates its cache configuration file. The default
properties and values for the deployed Decision Service ehcache_Cargo_v0.16.eds are in its configuration
file ehcache_Cargo_v0.16.xml:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>

<diskStore path="[CORTICON_WORK_DIR]\Server\etc\Cargo_v0.16.xml" />
<defaultCache

overflowToDisk="true"
timeToLiveSeconds="120"
timeToIdleSeconds="120"
eternal="false"
maxElementsInMemory="1000" />

</ehcache>

where:

• diskStore path is the location where overflows to disk are written.

• overflowToDisk sets whether elements can overflow to disk when the in-memory cache has reached
the maxElementsInMemory limit.

• timeToLiveSeconds is the maximum number of seconds an element can exist in the cache regardless
of use. The element expires at this limit and will no longer be returned from the cache. If the value is 0, no
TTL eviction takes place (infinite lifetime).

• timeToIdleSeconds is the maximum number of seconds an element can exist in the cache without being
accessed. The element expires at this limit and will no longer be returned from the cache. If the value is 0,
no TTL eviction takes place (infinite lifetime).

• eternal sets whether elements are eternal. When eternal is true, timeouts are ignored and elements
are never expired.

• maxElementsInMemory is the maximum number of objects that will be created in memory. When set to
0, there is no limit.

147Progress Corticon : Data Integration: Version 6.3

EDC data caching

Modifying a cache configuration
If you want to modify any of the cache configuration properties for a Decision Service deployed on Corticon
Server, you need to follow these steps for each Decision Service instance, as illustrated for
ehcache_Cargo_v0.16.xml:

1. Run the deployed Decision service with its cache enabled to create its default configuration file in etc.

2. Edit the file to specify your preferred property values and then save it.

3. Add the folder and the explicit filename, in this case etc\ehcache_Cargo_v0.16.xml, to the server
classpath.

4. Edit the Decision Service's deployed Datasource Configuration file to add the location of the configuration
file relative to the classpath as a property, as illustrated:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decisionService>

<datasources>
<edc useForQueryService="false" description="" name="EDC">

<connection-url>jdbc:progress:sqlserver://localhost:1433;
databaseName=PatientRecords</connection-url>

<database-driver>com.corticon.database.id.MsSql</database-driver>
<password>062046016058035029061039110</password>
<username>061046</username>
<properties>

<property name="net.sf.ehcache.configurationResourceName"
value="..\..\..\..\..\etc\ehcache_Cargo_v0.16.xml"/>

</properties>

</edc>
</datasources>

</decisionService>

where value is the appropriate relative location.

5. Restart the Server to apply the changes.

Note: For more information about the settings and behaviors of Corticon's advanced EDC caching, see the
Ehcache 2.4.3 documentation.

Metadata for Datastore Identity in XML and JSON
Payloads

When Element attributes have extra information at the Entity Element level, data such as the datastore identity
requires special handling as metadata because it is not an attribute in the Vocabulary. It is invalid to declare
the datastore identity as an Element, as shown:

<?xml version="1.0" encoding="UTF-8"?>
<CorticonRequest decisionServiceName="MyDS">

<WorkDocuments>
<TestEntity1 id="TestEntity1_id_1">

<databaseid>1</databaseid> this is incorrect
<testBoolean xsi:nil="true" />
<testDate xsi:nil="true" />
<testDateTime xsi:nil="true" />
<testDecimal xsi:nil="true" />
<testInteger xsi:nil="true" />
<testString xsi:nil="true" />
<testTime xsi:nil="true" />

Progress Corticon : Data Integration: Version 6.3148

Chapter 14: Advanced EDC Topics

http://www.ehcache.org/documentation/EhcacheUserGuide-2.4.pdf

</TestEntity1>
</WorkDocuments>

</CorticonRequest>

Adding Datastore Identity to an XML Payload
For an XML payload, databaseid is placed inside the Element, as shown:

<?xml version="1.0" encoding="UTF-8"?>
<CorticonRequest decisionServiceName="MyDS">

<WorkDocuments>
<TestEntity1 databaseid="1" id="TestEntity1_id_1">

<testBoolean xsi:nil="true" />
<testDate xsi:nil="true" />
<testDateTime xsi:nil="true" />
<testDecimal xsi:nil="true" />
<testInteger xsi:nil="true" />
<testString xsi:nil="true" />
<testTime xsi:nil="true" />

</TestEntity1>
</WorkDocuments>

</CorticonRequest>

Adding Datastore Identity to a JSON Payload
In JSON formatting, the #datastore_id is placed in the __metadata section of the Entity, as shown:

{"name":"MyDS",
"Objects": [{

"testDate": null,
"testDecimal": null,
"testDateTime": null,
"testString": null,
"testBoolean": null,
"testInteger": null,
"testTime": null,
"__metadata": {

"#id": "TestEntity1_id_1",
"#type": "TestEntity1",
"#datastore_id": "1"

}
}]

}

For more information about datastore identity, see the topic Identity strategies on page 150.

Relational database concepts in the Enterprise Data
Connector

Corticon's Enterprise Data Connector integrates its Decision Services with implementations of the relational
database model.

Note: Identity and strategy concepts are general relational database concepts. Refer to your RDBMS brand's
documentation for more information, especially the identity strategies that are specific to certain brands.

149Progress Corticon : Data Integration: Version 6.3

Relational database concepts in the Enterprise Data Connector

Identity strategies
Because EDC allows Studio and Server to dynamically query an external database during Rulesheet/Decision
Service execution, the Vocabulary must contain the necessary key and identity information to allow Studio and
Server to access the specific data required. There are two identity types which may be selected for each
Vocabulary entity: application and datastore.

Application Identity

With application identity, the field(s) of a given table’s primary key are present as attributes of the Vocabulary
entity. As a result, application identity normally means that the table’s primary key field(s) have some business
meaning themselves; otherwise they wouldn’t be part of the Vocabulary. The Cargo sample (described in the
Basic Rule Modeling and Using EDC tutorials) illustrates entities using application identities. In the case of
entity Aircraft, the unique identifier (primary key) is tailNumber. In the database metadata, tailNumber
is the designated primary key field. The presence in the Vocabulary of a matching attribute named tailNumber
informs the auto-mapper that this particular entity must be application identity.

Datastore Identity

A Vocabulary entity uses datastore identity when it does not have an attribute that matches the database table’s
primary key field(s) . The table’s primary key is effectively a surrogate keywhich really has no business meaning.
If the designated primary key fields in the imported database metadata are not present as attributes in the
Vocabulary entity, then the Vocabulary Editor will assume datastore identity and insert the table’s primary key
field(s) in the datastore-identity:column property.

We have modified our Aircraft table slightly to change the primary key. Previously, we assumed that
tailNumber was the unique identifier for each Aircraft record – in other words, every aircraft must have
a tail number and no two can have the same one. Let’s assume now that this is no longer the case – perhaps
tailNumber is optional (perhaps aircraft based in some countries don’t require one?) or we somehow acquired
two aircraft with the same tailNumber. So instead of tailNumber, we adopt a surrogate key for this table
named Aircraft_ID that will always be non-null and unique. And since this field has no real business meaning
(and we never expect to write rules with it), it isn’t included in the Vocabulary.

Note: We can get to this state by clearing the database metadata, and then -- in the database - clearing (or
deleting/recreating) the database. When we create the database schema again, the entity identities are all
defaulted to datastore identities.

Progress Corticon : Data Integration: Version 6.3150

Chapter 14: Advanced EDC Topics

When the auto-mapper updated the schema, the Entity Identity was set to a NULL, and set the primary key
field(s) in Identity Column Name as ID, as shown:

Figure 33: Automatic Mapping of Datastore Identity Column

If the auto-mapper does not detect the correct primary key in the metadata, we may need to manually select
the field from the drop-down list, as shown:
Figure 34: Manual Mapping of Datastore Identity Column

By choosing datastore identity we are delegating the process of identity generation to Hibernate. That does
not mean that we cannot control how it does this. The Vocabulary Editor offers the following ways to generate
the identities:

• Native - Lets Hibernate choose the appropriate method for the underlying database. This usually means a
Sequence in the RDBMS. Depending on the RDBMS you use, a sequence may require the addition of a
sequence object or generator in the database.

• Table - Uses a table in the datastore with one row per table, storing the latest max id.

• Identity - Uses identity (Requires identity support in the underlying database.)

151Progress Corticon : Data Integration: Version 6.3

Relational database concepts in the Enterprise Data Connector

• Sequence - Uses sequence (Requires sequence support in the underlying database.)

• UUID - A UUID-style hexadecimal identity.

All of these strategies are database-neutral except for sequence. It is generally recommended that identity
strategy be adopted for Vocabularies that are used to generate the database. When mapping to an existing
database either identity or sequence strategies are typically used, depending on the database design.

Note:

These generators can be used for both datastore and application identities. The datastore identity is always
using a strategy; if not explicitly set by the user, a default strategy is used. The application identity does not
have a default strategy.

All strategies are using the integer data type with the exception of UUID which is using a string data type. If
the type of the application identity attribute type does not fit the selected value strategy (for application identity),
you get an alert.

For examples of proper syntax for datastore identities in query payloads, see the topic Metadata for Datastore
Identity in XML and JSON Payloads on page 148

For a detailed discussion of this subject, refer to The Hibernate community documentation, section 5.1.2.2:
Identifier generator.

Advantages of using Identity Strategy rather thanSequenceStrategy
EDC offers options for assigning primary keys. For SQL Server databases, you might want an Identity strategy.
For an Oracle database, you might choose a Sequence strategy. Consider the following points when deciding
whether to use identity strategy or sequence strategy:

• When using theCreate/Update Database Schema function in the Vocabulary, the sequences are generated
automatically and tied to the table id fields on the database side. On the other hand, when using sequence
strategy, the sequences are not generated during theCreate/Update Database Schema process. If Corticon,
at runtime, attempts to access a sequence and finds it missing, it will try to create it on the fly. But such a
dynamic creation of sequences is tricky and does not always work properly.

• Using identity strategy should result in better performance when inserting a large number of records into
the database. This is simply because the database I/O is cut in half since there is no need to retrieve the
next unique id from the database prior to adding a new record.

• Using sequence strategy tends to not be compatible with read-only database access which may result in
runtime exceptions.

• Using identity strategy makes a Vocabulary more portable across databases since not all databases support
sequences.

Hibernate supports Sequence strategy for all databases; in a case where the database does not support it --
such as SQL Server -- Hibernate emulates it. However, in a case where the database does not support Identity
strategy -- such as Oracle -- there is no emulation. This makes Sequence more portable.

Key assignments
Key designations occur automatically once an entity identity has been defined in the Vocabulary Editor.

Progress Corticon : Data Integration: Version 6.3152

Chapter 14: Advanced EDC Topics

https://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch05.html#mapping-declaration-id
https://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch05.html#mapping-declaration-id

Primary Key
If the chosen (or auto-mapped) entity identity appears in the Vocabulary as an attribute (see Application
identity), then that attribute receives an asterisk character to the right of its node in the Vocabulary's TreeView.
Attributes with asterisks are part of the entity’s primary key as shown in Automatic Mapping of Vocabulary
Entity.

If the chosen (or auto-mapped) entity identity does not appear in the Vocabulary as an attribute see Datastore
identity), then no attribute receives an asterisk character. None of the attributes in the Vocabulary are part of
the entity’s primary key, as shown in Automatic Mapping of Datastore Identity Column. This causes complications
when testing and invoking Decision Services with connected databases. If no primary key is visible in the
Vocabulary, then how do we indicate in an unambiguous way the specific records(s) to be used by the Decision
Service?

In the Studio Test, an entity using Datastore identity has its key set in the entity’s Properties window. The
following figure shows that the Ruletest was chosen. Right-clicking on first Cargo entity and choosing Properties
on the menu opened the Properties tab where the Datastore ID side tab was selected. The value 23 was
entered for the test:
Figure 35: Setting the Identity for Entities Using Datastore Identity

153Progress Corticon : Data Integration: Version 6.3

Relational database concepts in the Enterprise Data Connector

When we export the Ruletest to XML (Ruletest > Testsheet > Data > Output > Export Response XML)
illustrates how this Database ID appears in the XMLmessage. In the following figure, we see how theDatabase
ID value is included in the XML as an attribute (an XML attribute, not a Vocabulary attribute). Your XML toolset
and client may need to insert this data into a CorticonRequest message.

Figure 36: Datastore Identity inside the XML Request

Foreign Key
Foreign key relationships between database tables are represented in the Vocabulary via association mappings.
As we see in Mapping EDC database relationships to Vocabulary Associations on page 126, the association
mappings are entered (or auto-mapped) in the Join Expression field.

Composite Key
Multiple keys may be selected (if not auto-mapped) by choosing the Select All option, or by holding theControl
key while clicking on all the items you want on the Entity Identity drop-down. If multiple selections are made,
then all Vocabulary attributes will have asterisk characters to indicate that they are part of the primary key.

Conditional entities
Although all database properties will unconditionally be displayed, their applicability and enablement is often
dependent upon the values of other properties.

Universally, EDC properties are applicable only for entities whose Datastore Persistent flags are set to Yes.
For entities that are not datastore-persistent, all EDC properties for that entity, including EDC properties
belonging to the entity’s attributes and associations, will be disabled.

For datastore-persistent entities, fields that are applicable will be enabled and editable, while fields that are
not applicable will be disabled and will have a light-gray background. The applicability of fields will change
dynamically based on the values of other fields.

Generally, fields which are not applicable in a given context will be disabled; however, any values that were
previously entered into those fields will be preserved notwithstanding their lack of applicability, even if the field
itself is disabled. Specific rules governing applicability are detailed in Entity Properties, Attribute Properties and
Association Properties below.

Progress Corticon : Data Integration: Version 6.3154

Chapter 14: Advanced EDC Topics

Dependent tables
Sometimes the existence of a record in one table is dependent upon the existence of another record in a related
table. For example, a Person table may be related to a Car table (one-to-many). A car may exist in the Car
table independent of any entry in the Person table. In other words, a car record does not require a related
person – a physical object exists on its own. Likewise, a person record could exist without an associated car
(the person might not own a car). These two tables are independent, even though a relationship/association
exists between them.

Some tables are not independent. Take Customer and Policy tables – if each policy record must have a
person to whom the policy is “attached,” we say the Policy table is dependent upon the Customer table. A
person may or may not have a policy, but each policy must have a person.

Dependency normally comes into play when records are being removed from a table. In the first example,
removing a person record has no effect on the associated car record. Although the person may no longer
function as the car’s owner, the car itself continues to exist. A car doesn’t automatically vanish just because a
person dies. On the other hand, removing a person should remove all associated policies. A person who
switches insurance companies (and is deleted from its database) can expect his previous company to cancel
and delete his old policies, too.

A Dependent table normally contains as part of its primary key the foreign key of the independent table. Since
a Corticon Vocabulary represents a foreign key relationship as a Join Expression in the association mapping
(see Mapping EDC database relationships to Vocabulary Associations on page 126), a dependent entity will
have a composite key with the association name participating in the key.

As we can see in the following figure, the composite key contains both id, which is the application identity for
the Policy entity and policy_owner, which is the association between Customer and Policy entities.
This indicates that Policy is a dependent table, and that removing a Customer record will also remove all
associated policy records.
Figure 37: Primary Key of a Dependent Table Includes the Role Name

How EDC handles transactions and exceptions
Here are a few points to note about Corticon's Enterprise Data Connector:

• Each Decision Service call is one database transaction. Transactions are not per operation, per Rulesheet,
or per Ruleflow. Corticon does not currently provide for configuration of transaction management.

155Progress Corticon : Data Integration: Version 6.3

How EDC handles transactions and exceptions

• The default transaction isolation level in Corticon EDC is the same as the default transaction isolation level
of the database to which it is connected.

• When an exception occurs, the database transaction is rolled back, and the database reverts to the same
state as before the Decision Service was called.

Progress Corticon : Data Integration: Version 6.3156

Chapter 14: Advanced EDC Topics

15
Advanced ADC Topics

This section describes advanced information on schemas, requirements, and SQL scripts for using ADC data
sources.

For details, see the following topics:

• Mapping ADC database metadata

• How to configure ADC

• How Corticon is expressed in SQL

• Tips and techniques in SQL data integration

Mapping ADC database metadata
For rules in a Decision Service to read or write to a database, Vocabulary elements used in the rules must map
to elements in the database. After you have imported the database metadata from an ADC Datasource, map
each Vocabulary entity, attribute, and association to the appropriate table, column, and join expression.

Mapping data between a Corticon Vocabulary and an ADC relational database is not always perfect. When
there are issues, you need to review the mappings to resolve incomplete or conflicting mapping data.

Smart matching will infer precisely matched table name and entities, and then seek column names that match
attributes in each matched table. Join expressions are inferred from matched tables and columns.

Note: Primary Key - Each database table's primary key is not inferred as the Vocabulary's Entity Identity in
each Entity. These values must be set manually.

157Progress Corticon : Data Integration: Version 6.3

Note: When you are using an EDC datasource, its entity identity and decorations on the vocabulary icons are
not relevant to the ADC datasource. ADC adds no decorations to the icons.

Mapping ADC database tables to Vocabulary Entities
Not all Vocabulary entities must be mapped to corresponding database tables—only those entities whose
attribute values need to interact with the external database should be mapped.

In this example, database metadata containing a table named Patient was imported. Because the table’s
name spelling matches the name of the entity Patient, the Table Name field was mapped automatically, and
displayed in light gray, as shown:
Figure 38: Smart match mapping of Vocabulary Entity

If the automatic mapping feature fails to detect a match for any reason (different spellings, for example), then
you must make the mapping manually. In the Table Name field, use the drop-down list to select the appropriate
database table to map. The selection is displayed in black, as shown:
Figure 39: Manual Mapping of Valid Vocabulary Entity

If the table name in the source was changed, that table is not in the Datasource's metadata. Choose Import
Metadata to pick up the revised table name. But in the entity the property value displays in orange, as shown:
Figure 40: Manual Mapping of Invalid Vocabulary Entity

Click on the Table Name Property Value, and then use the drop-down list to select the appropriate database
table to map.

Progress Corticon : Data Integration: Version 6.3158

Chapter 15: Advanced ADC Topics

Mapping ADC database fields to Vocabulary Attributes
Mapping of attributes is similar to the way it works for entities. A smart match displays in grey, as shown:
Figure 41: Smart match mapping of Vocabulary Attribute

If an automatic match is not made by the system, then select the appropriate field name from the drop-down
in field:column property, as shown:
Figure 42: Manual Mapping of Vocabulary Attribute

A preferred, valid name displays in black. If you enter a non-existent column name or select a name assigned
to another column, the value displays in orange.

Mapping ADC database relationships to Vocabulary Associations
Automatic mapping of associations works substantially the same as entities. However, rather than entry text
boxes and pulldowns for mappings, a more visual approach is provided. If an automatic match is made by the
system, it is displayed in grey as shown:

If you want to revise the join expression, click on the Join Expression Property Name, as shown:

159Progress Corticon : Data Integration: Version 6.3

Mapping ADC database metadata

The Join Expression dialog box opens with a deconstruction of the join expression, as shown:

Use the pulldown lists in each column to refine the join expression. You can add lines to define complex join
expressions where appropriate. As all revised join expressions are not validated, they are always displayed in
black.

Note: The join expression is used by ADC to form associations in memory. The join expression is parsed by
ADC -- it is not sent to the database server as part of a query.

For more information and examples of complex joins, see Associations as join expressions on page 104

How to configure ADC
The queries used in the data integration samples are stored in several tables in the database declared as the
one to use for the query service:

Figure 43: Query Tables in SQL Server

Note: As ADC is set to find specific names, the table and column names must not be modified.

Progress Corticon : Data Integration: Version 6.3160

Chapter 15: Advanced ADC Topics

How to configure ADC reads
The database schema that ADC reads use is illustrated in the following diagram.

A core operation that ADC performs is retrieving data using the CORTICON_ADC_READ table. Each
CORTICON_ADC_READ row instance can use a different Datasource.

Figure 44: Database Schema for Corticon ADC Read Service Callouts

Note: The schema notes in the following tables are brief. For more details about a column name, see
Configuration details on page 164

Table 9: CORTICON_ADC_READ Table

NoteColumn Name : DataType

The Primary Key for the Table which then gets propagated down to each
CORTICON_ADC_READ_DEFS record.

ID : Integer

A logical name that you want to associate with this CORTICON_ADC_READ.
This is the name that will be specified inside of each Service Call-out's
Runtime Properties tab for the appropriate Query Name.

NAME : String

Controls whether all data retrieved from the read will be added to the
response payload. If this value is null or any value other than true, the
default value is false.

ADDTOPAYLOAD : String (true
or false)

Table 10: CORTICON_ADC_READ_DEFS Table
The CORTICON_ADC_READ_DEFS and CORTICON_ADC_WRITE_DEFS Tables are the key Tables for ADC.
They contain the most pertinent information that ADC needs to perform its duties.

NoteColumn Name : DataType

The Primary Key for the Table.ID : Integer

Foreign Key back to CORTICON_ADC_READ.ID column. There can bemany
CORTICON_ADC_READ_DEFS associated with a CORTICON_ADC_READ
record.

READ_ID : Integer (required)

161Progress Corticon : Data Integration: Version 6.3

How to configure ADC

NoteColumn Name : DataType

The integer value that specifies the order of execution of each
CORTICON_ADC_READ_DEFS within a given CORTICON_ADC_READ_ID.

SEQUENCE : Integer (required)

An SQL Statement, a template to be used for the current
CORTICON_ADC_READ_DEFS operation.

SQL : String (required)

The Corticon Entity to which the SQL statement will map.PRIMARY_ENTITY : String
(required)

The values needed to create an Association between the Parent Entity
(PARENT_ENTITY) to the Target Entity (PRIMARY_ENTITY) through
Association Role Name (PARENT_ROLENAME).

PARENT_ENTITY : String and
PARENT_ROLENAME : String
(optional)

Suppresses or allows the CORTICON_ADC_READ_DEFS to execute. If this
value is null or any value other than false, the default value is true.

ENABLE : String (true or
false)

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

How to configure ADC writes
The database schema that ADC writes use is illustrated in the following diagram.

A core operation that ADC performs is updating data using the CORTICON_ADC_WRITE table. Each
CORTICON_ADC_WRITE row instance can use a different Datasource.

Figure 45: Database Schema for Corticon ADC Write Service Callouts

Note: When the primary key of an inserted record is generated by the connected database, Corticon retrieves
this generated value and adds it to working memory for that Entity. This will allow follow-up database updates
on that Entity to occur, and also allows associated Entities that are dependent on that primary key value to be
stored as a foreign key value in the associated Entity..

Note: The schema notes in the following tables are brief. For more details about a column name, see
Configuration details on page 164

Progress Corticon : Data Integration: Version 6.3162

Chapter 15: Advanced ADC Topics

Table 11: CORTICON_ADC_WRITE Table

NoteColumn Name : DataType

The Primary Key for the Table which then gets propagated down to each
CORTICON_ADC_WRITE_DEFS record.

ID : Integer

The logical name to associate with this CORTICON_ADC_WRITE. This is the
name that will be specified in a Ruleflow Service Call-out's Runtime
Properties tab as the Query Name.

NAME : String

Table 12: CORTICON_ADC_WRITE_DEFS Table
The CORTICON_ADC_READ_DEFS and CORTICON_ADC_WRITE_DEFS Tables are the key Tables for ADC.
These Tables contain the most pertinent information for the ADC to perform its duties.

NoteColumn Name : DataType

The Primary Key for the TableID : Integer

Foreign Key back to CORTICON_ADC_WRITE.ID column. There can be
many CORTICON_ADC_WRITE_DEFS associated with a
CORTICON_ADC_WRITE record.

WRITE_ID : Integer

The integer value that specifies the order of execution of each
CORTICON_ADC_WRITE_DEFS within a given CORTICON_ADC_WRITE_ID
when several CORTICON_ADC_WRITE_DEFS are associated with a
CORTICON_ADC_WRITE record.

SEQUENCE : Integer

SQL Statement used as a template for this CORTICON_ADC_WRITE_DEFS
operation.

SQL : String

The Entity name that will be used to look up all instances of this Entity type
from working memory in which variable substitution will be applied to the
SQL statement to create one INSERT or UPDATE statement per Entity
instance.

PRIMARY_ENTITY : String

Suppresses or allows the CORTICON_ADC_WRITE_DEFS to execute. If this
value is null or any value other than false, the default value is true.

ENABLE : String (true or
false)

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

163Progress Corticon : Data Integration: Version 6.3

How to configure ADC

How to configure batch
The database schema that Batch configurations uses is illustrated in the following diagram.
Figure 46: Database Schema for Corticon Batch Reads

Note: The schema notes in the following tables are brief. For more details about a column name, see
Configuration details on page 164

Table 13: CORTICON_BATCH_READ Table
The CORTICON_BATCH_READ table describes a batch query.

NoteColumn Name : DataType

The Primary Key for the Table.ID : Integer

The name of this batch read operation.NAME : String

The SQL statement that is a batch operation associated with this Decision
Service.

SQL : String

The Corticon Entity to which the SQL statement will map.PRIMARY_ENTITY : String
(required)

Suppresses or allows the BATCH_READ to execute. If this value is null or any
value other than false, the default value is true.

ENABLE : String (true or
false)

Note: For more about the format of Corticon's queries, see How Corticon is expressed in SQL on page 166.

Configuration details
Several schema details note that they use Variable Substitution, Corticon's technique for in-memory data to
dynamically create SQL statements using a template, as discussed in How Corticon is expressed in SQL on
page 166

Columns described in Corticon query schemas are detailed as follows:

• Sequence—Several CORTICON_ADC_READ_DEFS or CORTICON_ADC_WRITE_DEFSmight be associated
with a CORTICON_ADC_READ or CORTICON_ADC_WRITE record. The values are typically strictly sequenced
ascending values such as (1,4,6,7). If a value is not unique ,such as (1,4,4,7), the

Progress Corticon : Data Integration: Version 6.3164

Chapter 15: Advanced ADC Topics

CORTICON_ADC_READ_DEFS or CORTICON_ADC_WRITE_DEFS might not fire in the same way in the next
execution.

• SQL—In SQL READ Statements, you can incorporate a complex WHERE clause using Corticon’s Variable
Substitution, so that you can specify values in the SQL that will be replaced with corresponding values
based on what is currently in the working memory of the execution.

• SQL—In SQL WRITE Statements, you can use Variable Substitution to add Primary Entity values directly
into the SQL. Since the structure of an INSERT and UPDATE statement are different from a SELECT statement,
Variable Substitution does not aggregate all values to create one SQL statement – instead, it will use the
SQL as a template to create a SQL statement for each Primary Entity instance.

• PRIMARY_ENTITY—The results from the SQL Statement need to be converted to map to Corticon Entities.
ADC does not automatically create a new instance of the Entity in memory. First, it will determine if that
Entity is already in memory, and—if it is not already in memory—a new Entity instance of type
(PRIMARY_ENTITY) will be created, using
ICcDataObjectManager.createEntity(<PRIMARY_ENTITY>. Then, the Column Values for that
Row will be added into that new instance of the Entity. Duplication of Entity instances is prevented when
the rules engine checks to see whether that Entity instance is already in memory. This is done by comparing
each in-memory Entity instance’s “Entity Identity” values with the values retrieved for that row. If the instance
already exists, then it will use that instance, and then merge the Column Values into that Entity instance.

• PARENT_ENTITY and PARENT_ROLENAME—The Association’s Join Expression is critical to the mapping
of Associations between the PARENT_ENTITY and the PRIMARY_ENTITY. ADC parses the Join Expression
to determine which Attributes in the Parent Entity need to match which Attributes in the Primary Entity. For
each Primary Entity retrieved, an algorithm is used to match these values between two different Entities. If
there is a match, the Primary Entity is added to the Parent Entity’s Association as defined by the Parent
Role Name.

• Enable—For testing purposes, you may want to test some CORTICON_ADC_READ_DEFS or
CORTICON_ADC_WRITE_DEFS out of all the ones associated with the CORTICON_ADC_READ or
CORTICON_ADC_WRITE. You can add all your CORTICON_ADC_READ_DEFS and
CORTICON_ADC_WRITE_DEFS and then incrementally expand the retrieval, while testing each step.

Set additional ADC Datasource connection properties
There are additional properties you might want to set for an ADC Datasource connection.

Note: It is a good practice to test your connection before and after changing additional properties.

Connection Pooling

Corticon uses C3P0, an open source JDBC connection pooling product, for connection pooling. The following
properties let you tune connection pooling that will be used when connecting to a Database through ADC or
Batch Processing:

Table 14: C3PO properties for the Datasource Pool

CommentDefault
value

Property Name

Minimum number of Connections a pool will maintain
at any given time.

1com.corticon.server.database.c3p0.minpoolsize

Maximum number of Connections a pool will maintain
at any given time.

100com.corticon.server.database.c3p0.maxpoolsize

165Progress Corticon : Data Integration: Version 6.3

How to configure ADC

CommentDefault
value

Property Name

Seconds a Connection can remain pooled but
unused before being discarded. Zero means idle
connections

never expire.

1800com.corticon.server.database.c3p0.maxidletime

The size of c3p0's global PreparedStatement cache.
If both maxStatements and
maxStatementsPerConnection are zero,
statement caching will not be enabled. If
maxStatements is zero but
maxStatementsPerConnection is a non-zero
value, statement caching will be enabled, but no
global limit will be enforced, only the per-connection
maximum. maxStatements controls the total
number of Statements cached, for all Connections.

500com.corticon.server.database.c3p0.maxstatements

These properties are set for a connection in the brms.properties file of the project associated with the ADC
or batch connection. Be sure to migrate the settings to runtime servers.

How Corticon is expressed in SQL
SQL Queries provide tremendous power to the access, retrieval, and management of data records. If you have
done the ADC and Batch samples, you have used SQL queries and saw how using a different one causes
different processing.

Variable Substitution is Corticon's technique for in-memory data to dynamically create SQL statements with
the SQL value as a template in the tables CORTICON_ADC_READ_DEFS, CORTICON_ADC_WRITE_DEFS, and
CORTICON_BATCH_READ. This is expressed in statements as a value in curly braces, like this:
{Patient.patientId}.

For example, the sample batch queries are:

SELECT patientId from Patient
SELECT patientId from Patient WHERE region IN ({Patient.region})

The first SELECT query selects all patients. The second uses a parameter that will match on a specified region
value in a Patient record.

You might want to create a query that uses multiple parameters such as:

SELECT patientId FROM Patient WHERE region IN ({Patient.region}) AND gender IN
({Patient.gender})

Progress Corticon : Data Integration: Version 6.3166

Chapter 15: Advanced ADC Topics

that would be specified in the Web Console batch configuration like this:

The READ and WRITE queries allow for multiple statements by exposing values in the CORTICON_ADC_READ
and CORTICON_ADC_WRITE tables that link to a corresponding CORTICON_ADC_READ_DEFS and
CORTICON_ADC_WRITE_DEFS table for the sequence of steps for the SQL statements.

Here, the sample's Ruleflow property for the Service Call-out's chose the CorticonADC.read service and
the Query name IndicatedPatients. That referenced ID=2 in the CORTICON_ADC_READ table:

That called to CORTICON_ADC_READ_DEFS with READ_ID = 2 to perform its SEQUENCE of steps 1 and 2:

Tips and techniques in SQL data integration
The following sections provide insights into techniques and behaviors you might find useful:

• Entity identity on reads on page 167

• Use of an IN () instead of comparison operators in WHERE clause on page 168

• Inserting or updating multiple rows into specific database table(s) on page 168

• Multiple ADC instances can be added to one or many Ruleflows on page 169

• ADC limits which PRIMARY_ENTITY instances are used when the SQL Statement is an UPDATE instead
of an INSERT on page 169

• Each ADC task can use a different Datasource on page 169

• Information when execution fails on page 170

• Reloading revised query definitions on page 170

Entity identity on reads
Reads from a database table requires the Entity Identity Columns returned for each row so that Corticon's
in-memory tables uniquely identify each row returned from the Database.When the column value is not returned,

167Progress Corticon : Data Integration: Version 6.3

Tips and techniques in SQL data integration

ADC throws an error informing the user that Entity Identity has not been set in the Vocabulary Entity.primary
key on every read statement.

Views, as a composite of tables with primary keys, require for each read of a row that you provide uniqueness
with a composite of the primary keys of the underlying tables that form the view, or a composite key that is
every column identity in the view.

Use of an IN () instead of comparison operators in WHERE clause
Use an IN () clause instead of an = sign in your WHERE clause. They mean the same thing; however, the
IN () clause can handle multiple values, while the = sign can only handle one value.
Consider here are three A Entities in memory. That means there are three values for { A.id }. In the following
SQL note that the one with the IN () is valid while the = sign is not:

Select * from Patients where patientId IN (1, 2, 3) Valid
Select * from Patients where patientId = 1, 2, 3 Invalid

You cannot use an IN clause with <, <=, >, and =>. To prevent invalid SQL through variable substitution with
<, <=, >, and =>, there can only be one instance of the Entity in working memory.

Inserting or updating multiple rows into specific database table(s)
When a Ruleflow establishes an ADCService Call-out using the CorticonADC.write, ADC uses themetadata
inside CORTICON_ADC_WRITE, and CORTICON_ADC_WRITE_DEFS tables to determine which Entities in the
Vocabulary will be used to insert into which database table.

The core Table that contains the data about which Entity or Entities will be inserted or updated into the Database
is in the CORTICON_ADC_WRITE_DEFS table. This section describes how the SEQUENCE, SQL, PRIMARY_NAME
are used in one or multiple CORTICON_ADC_WRITE_DEFS to insert multiple records into the intended table.

Much like the CORTICON_ADC_READ_DEFS’ SEQUENCE field, the CORTICON_ADC_WRITE_DEFS’ SEQUENCE
field determines in which order the CORTICON_ADC_WRITE_DEFS will fire. For each
CORTICON_ADC_WRITE_DEFS’ SQL, there is a PRIMARY_ENTITY, which is used to create individual Insert
Statements to be used by the database.

Using database Identity Strategies to populate Primary Key values is highly recommended. If Primary Key
values are set within Rules, there are potential problems inserting or updating database records because of
constraint violations.

Variable substitution is used to substitute the PRIMARY_ENTITY values into the SQL Statement.

Example:

SQL = UPDATE Treatment SET approved={Treatment.approved}
WHERE treatmentId={Treatment.treatmentId}

PRIMARY_ENTITY = Treatment

For every instance of Treatment in memory a new SQL Statement will get created using those values inside
the Treatment instance.

The user controls the SQL statement, and can customize an INSERT SQL to match the Identity Strategy
appropriate for a particular Database:

• In Oracle, Database Sequences are used to set the Primary Keys. You need to create your own Database
Sequence and add that Sequence Name to the SQL statement.

• In SQL Server, you can just set your Table to use Identity strategy to populate the Primary Key.

Note: Because you have control over the SQL, you can inject Database Functions directly in the SQL that are
unrelated to Corticon, such as a sysdate function.

Progress Corticon : Data Integration: Version 6.3168

Chapter 15: Advanced ADC Topics

Multiple ADC instances can be added to one or many Ruleflows
There is no restriction on how many ADC instances you can have in a Ruleflow. Its position on the Ruleflow
canvas is based on your use case. When retrieving extra data that is only needed in certain cases, you can
put an ADC instance inside a Branch that will only fire under certain conditions. Similarly, you can control
whether a Ruleflow execution writes and where it writes..

Each instance of the ADC works independently to do what it is assigned to do.

ADC limits which PRIMARY_ENTITY instances are used when the SQL Statement is
an UPDATE instead of an INSERT
ADC will inspect each PRIMARY_ENTITY instance to determine if its Entity Identity attributes already have a
value. Depending on whether these attributes are set, the PRIMARY_ENTITY will be classified as a UPDATE
or INSERT candidate.

If all the Entity Identity attributes are set inside the instance, it is assumed that this instance already has a
matching database record. In this case, you only want to use this instance in an UPDATE Statement rather than
an INSERT Statement. If this instance were used in an INSERT Statement, a duplicate row would be created
or the new row would fail because of a Primary Key Constraint Violation, since the record already exists in the
Table.

If not all the Entity Identity attributes are set inside the instance, it is assumed that this instance does not have
a matching database record. This instance should only be used in an INSERT Statement and not in an UPDATE
Statement.

For example:

Patient
patientId = 1
patientName = "John"
gender = "M"

Patient
patientId = <null>
patientName = "Jennifer"
gender = "F"

CORTICON_ADC_WRITE_DEF
SQL = INSERT INTO Patient (patientName, gender)

VALUES ({Patient.patientName}, {Patient.gender})

Only the Jennifer Patient will be used with this SQL.

CORTICON_ADC_WRITE_DEF
SQL = UPDATE Patient

SET (patientName = {Patient.patientName}, gender = {Patient.gender})
WHERE id = {Patient.patientId}

Only the John Patient will be used with this SQL.

Each ADC task can use a different Datasource
Each instance of an ADC can call any CORTICON_ADC_READ or CORTICON_ADC_WRITE operation, and, for
each CORTICON_ADC_READ and CORTICON_ADC_WRITE, there is a Datasource configuration.

In the following illustration, the root level of the Vocabulary shows tabs for the connections to four datasources:

The Query Datasource is shared by all ADC Datasources.

169Progress Corticon : Data Integration: Version 6.3

Tips and techniques in SQL data integration

Information when execution fails
Various errors can occur during the execution of the ADC. Some common issues are:

• CORTICON_ADC_READName or CORTICON_ADC_WRITEName does not exist.

• Bad SQL statement, possibly due to variable substitution issues.

• Bad Join Statement definition for an association.

• Failed to connect to the Datasource.

Whatever the type of error, execution will not only stop on the service callout, but for the entire execution. If
there is an issue in the service callout, then current working memory could be incomplete or corrupted. Either
way, the safest play is to stop all execution.

An entry is made in the Corticon Log with the Exception, and a CcRuleMessage -> Violation message
added to the Response.

Reloading revised query definitions
Corticon ADC and Batch processing rely on query definitions stored in a database. These definitions are loaded
when a decision service is deployed to Corticon Server. If these query definitions change, you must either
redeploy the decision service or notify Corticon to reload the query definitions.

• When deployed as a web service, the Corticon REST management API provides end points to force reload
of query definitions. See /decisionService/reloadQueryService in the Corticon 6.3 REST API
documentation.

• When deployed in-process, the Corticon API provides methods to force reload of query definitions. See
reloadDecisionServiceQueryService and reloadAllDecisionServicesQueryService in the
Progress Corticon 6.3 Server API JavaDocs.

• When running in Corticon Studio Tester, you can redeploy the decision service by closing and reopening
the Tester, or choose Ruletest > Testsheet > Deploy, which will reload the decision service’s query
information by calling into the Corticon Server’s reloadDecisionServiceQueryService.

Progress Corticon : Data Integration: Version 6.3170

Chapter 15: Advanced ADC Topics

https://documentation.progress.com/output/Corticon/6.3/RESTDoc/index.html
https://documentation.progress.com/output/Corticon/6.3/RESTDoc/index.html
https://documentation.progress.com/output/Corticon/6.3/javadoc/Server/

16
Advanced REST Datasource Topics

This section describes advanced information on connection requirements, and mapping a REST data source,
and then filtering what will return to the Corticon rules engine.

The open style of REST data sources can present daunting and cryptic information. The authors of a well-formed
REST API provide guidance to their users that:

• Describe its authentication and, if needed, where to get credentials.

• Documentation in HTML that describe usage, access, and constraints

• A schema of the data types, columns with unique data appropriate as keys, and relations between columns

A good example of a well-formed and presented REST API, see Open Weather Map

Note: For more information about the Progress DataDirect Autonomous RESTConnector for JDBC, see topics
in its online help at
https://docs.progress.com/bundle/datadirect-autonomous-rest-connector-jdbc-60/page/Welcome-to-the-Progress-DataDirect-Autonomous-REST-Connector-for-JDBC.html.

For details, see the following topics:

• Authentication on REST Service connections

• Parameters on REST Service connections

• Import REST Datasource metadata into a Vocabulary

• Mapping REST Service metadata

171Progress Corticon : Data Integration: Version 6.3

https://openweathermap.org/api
https://docs.progress.com/bundle/datadirect-autonomous-rest-connector-jdbc-60/page/Welcome-to-the-Progress-DataDirect-Autonomous-REST-Connector-for-JDBC.html

Authentication on REST Service connections
When you choose to create a REST Datasource, a new REST Service tab is created that has authentication
set to none. You need to adjust theAuthentication parameter if you are provided credentials for authentication
for security on a REST Service connection, for example OAuth2:

Descriptions and configurations for these parameters are as follows:

• Basic Authentication—Credentials are used to access the REST service as a configured user associated
with the REST Datasource, and then these credentials are used for all calls to the REST endpoint.
Figure 47: REST Connectivity sample using Basic authentication

The Username identifies a user value in the REST Datasource, and its Password. The sample Datasource
has pwd1 for user1. The credentials are encrypted when they are exported for deployment. When you

Progress Corticon : Data Integration: Version 6.3172

Chapter 16: Advanced REST Datasource Topics

connect to a URL of a REST API that requires basic authentication, you then add the credentials to the
connection definition, as illustrated:

Figure 48: Datasource Configuration file of REST Connectivity sample using Basic authentication

• Token Authentication—A static string Token value can be associated with a Corticon REST Datasource.
The user obtains an appropriate token from the REST service, and then saves it in the datasource.xml
file. It is then used for all calls to the REST endpoint. A Token can be passed inside an HTTP Header or as
a parameter on a URL. The REST Service must declare which token authentication mechanism it will use.

• HTTP Header Token—Set the property that specifies the name of the HTTP header used for
authentication. Input as Field Name, typically defaulted to Authorization in the Datasource and its
Token (in this example Bearer 12345678901234567890), as shown:

Figure 49: REST Connectivity sample using Token authentication by header

173Progress Corticon : Data Integration: Version 6.3

Authentication on REST Service connections

The credentials are encrypted when they are exported for deployment, as illustrated:
Figure 50: Datasource Configuration file of REST Connectivity sample using HTTP Header Token
authentication

• URL Parameter Token—Set the property that specifies the URL parameter that will pass the security
token. Requires a Field Name, typically defaulted to Authorization in the Datasource and its Token (in
this example Bearer 12345678901234567890), as shown:

Figure 51: REST Connectivity sample using URL ParameterToken authentication

Progress Corticon : Data Integration: Version 6.3174

Chapter 16: Advanced REST Datasource Topics

The credentials are encrypted when they are exported for deployment, as illustrated:
Figure 52: Datasource Configuration file of REST Connectivity sample using URL Parameter Token
authentication

• OAuth2 Authentication—Uses authorization tokens to prove an identity without giving away your password.
You must specify the Client ID, Token URI, Client Secret, and Refresh Token for the connection.
Figure 53: REST Connectivity sample using OAuth2 authentication

175Progress Corticon : Data Integration: Version 6.3

Authentication on REST Service connections

The credentials are encrypted when they are exported for deployment. When you connect to a URL of a
REST API that requires OAuth2 authentication, you then add the credentials to the connection definition,
as illustrated:

Figure 54: Datasource Configuration file of REST Connectivity sample using OAuth2 authentication

Parameters on REST Service connections
You can add parameters to each REST Service Datasource connection. The types are:

• URL

• Path

• Post

You can specify as many of these parameters on a connection in no particular order. Each requires a name
and should have a default value.

Note: The following examples use the test URL
https://qknpo561c0.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate/.

URL type
A URL parameter can specify the procedure code in the REST URL:

https://TestURL?procedureCode=B5120ZZ

with the results:

{"results":[{"procedureCode":"B5120ZZ","rates":
[{"startDate":"2017-1-1","endDate":"2017-6-1","rate":0.85},

{"startDate":"2017-6-2","endDate":"2017-12-31","rate":0.83}]}]}

The API Gateway entry point is: ReimbursementRate-API You can manually add more URL types.

Path type
A path parameter can specify the procedure code in the REST URL:

https://TestURL/0313090

Progress Corticon : Data Integration: Version 6.3176

Chapter 16: Advanced REST Datasource Topics

https://qknpo561c0.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate/

with the results:

{"results":[{"procedureCode":"0313090","rates":
You can manually add more Path types.
[{"startDate":"2017-1-1","endDate":"2017-12-31","rate":0.82

Note: Parameters that have default values are in the Ruleflow. Parameters that do not have default values
are taken to be static parameter options that are not intended to take values; therefore, you cannot override
their values.

Post type
A Post request does not include parameters as part of the URL, instead the parameters are passed in the
request body in the format:

{
"name1" : value1,
"name2" : value2

}

The POST service called must accept parameters in this format, there is no means to choose an alternate
format. Many existing POST services require the parameters to passed in a format specific to the service such
as

{
"order": {

"name1" : value1,
"name2" : value2
}

}

Corticon does not provide support for using an alternate format for passing POST parameters. As such, the
POST service must comply with format passed by Corticon.

Selecting POST parameter type changes how the REST connector makes its requests to the endpoint, so it
is possible that any specified URL parameters will be ignored.

Import REST Datasource metadata into a Vocabulary
Where relational databases have formal schemas, keys, and datatypes, REST datasources havemany variations.
In a REST data source, JSON-formatted data might have a JSONmap that describes the structure of the data,
but often mapping the columns in a REST datasources requires manual intervention to define primary keys
and relationships of nested objects and arrays. Those variations are discussed in the topic Mapping REST
Service metadata on page 179.

Note: Using the sample: To load the REST Connectivity sample, choose the menu item Help > Samples.
Select REST Connectivity, and then click Done. Follow the Import dialog to bring the sample into your
workspace. The REST Datasource is predefined in the sample to specify the data types, table and column
names, and the join.

177Progress Corticon : Data Integration: Version 6.3

Import REST Datasource metadata into a Vocabulary

Let's get one set of rates from our sample REST Datasource by entering its URL with one parameter in a
browser:

https://bj36i9ki66.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate?procedureCode=B5120ZZ

That returns:

The URL connected to the REST server that enables query filtering such that the connection returned only the
results that matched the parameter value.

The sample has some complexity. You can see that the REST source data has two rates for a procedureCode.
You have to consider then that there could be many rates for one code, differentiated by applicable dates. The
transformation to a relational way of thinking looks like this:

This pattern shows that the REST data was interpreted as two tables related through the procedureCode.
To ensure uniqueness for the primary key an incrementing integer value is added to key. Now it will be easier
to define the RESTDatasource in a Corticon Vocabulary. For more information, see Advanced RESTDatasource
Topics on page 171.

When a REST Service exposes a schema, its metadata can be imported into Corticon Studio to refine and
complete the mappings between the Vocabulary and the metadata. The REST Service connection will make
best-efforts to discover the REST schema. You can edit the schema definitions and tune the mapping of the
REST data structure to the Vocabulary.

In the Vocabulary editor with a REST Service connection established, select the Vocabulary root, and then
select the tab of the Datasource connection metadata you want to import.

Progress Corticon : Data Integration: Version 6.3178

Chapter 16: Advanced REST Datasource Topics

https://bj36i9ki66.execute-api.us-east-2.amazonaws.com/prod/ReimbursementRate?procedureCode=B5120ZZ

As REST data sources are not as strictly defined as relational databases, the mapping of REST Datasources
will likely require manual intervention to establish the primary keys and associations in the REST metadata.
For more information, see the advanced topics Mapping REST Service metadata on page 179 and How to define
associations in REST Service metadata on page 182

Mapping REST Service metadata
Introduction
A REST Datasource can present very straightforward data, such as a one-dimensional table and an obvious
primary key. Then again, it might have implicit structure of data and types that need to be clearly defined to
support SQL queries.

The mapping of the sample JSON document produced one parent table and one child table. In the parent table,
the object procedureCode is viewed as a relational column. Nested objects are also flattened into relational
columns; however, column names are formed by concatenating the name of the parent and nested objects,
which are joined by an underscore character. For example, the PROCEDURECODE_RATE column contains the
values of the rate objects that are nested in the rates object. The primary key is determined by the first field
detected in the document, procedureCode.

The following snippet is the results String with a request URL that is filtering for just the procedureCode
B5120ZZ:

When JSON formatting is applied, it is easier to see the data structure. Note that the results table corresponds
to the top-level entities in the JSON and the rates table to the individual rates for procedures. The
procedureCode is evaluated by the Autonomous REST Connector and discovered as unique, so it is set as
the key. The JSON data is mapped into this schema:

179Progress Corticon : Data Integration: Version 6.3

Mapping REST Service metadata

But there are two effective date ranges and rates. There is an implicit association of 0 to n rates for each
procedureCode. The Autonomous REST Connector creates synthetic key fields that are added to the rates
table. When JSON is viewed as nodes, the two rates are distinguished by the integer incrementor that becomes
the synthetic key field, as illustrated:

You are ensured a unique primary key (PK) by melding the incremental value with procedureCode for a rate
– it links a row in the rate table to a row in the results table.

Note: The URL that is the target for the import of REST metadata must return JSON representing unique keys
that will be mapped to your vocabulary. If it does not, the position field will be added to the generated schema
to uniquely identify instances.

When JSON is viewed from a database point of view, the ability to distinguish the two rates is done with a
synthetic integer incrementor, as illustrated:

Progress Corticon : Data Integration: Version 6.3180

Chapter 16: Advanced REST Datasource Topics

Export a discovered schema
The Autonomous REST Connector schema discovery mechanism generates a schema for a REST service.
You can make changes or add your preferred schema. Once you have fully defined a REST connection, it will
be saved in the Vocabulary so it does not need to be recreated on each use. If you want to manually edit a
REST schema to, for example, tweak a data type, click SCHEMA Export to export it to a text file. In that
circumstance, you must specify the schema file when configuring a REST Datasource. Here is the exported
schema from the REST sample:

Here is the subtly different exported schema from REST in the Mixed Connectivity sample:

Corticon does not provide any instructions on manipulation of schema files. See topics in DataDirect's
Autonomous REST Connector online help at
https://docs.progress.com/bundle/datadirect-autonomous-rest-connector-jdbc-60/page/Welcome-to-the-Progress-DataDirect-Autonomous-REST-Connector-for-JDBC.html.

Once you have saved your updated schema file, click SCHEMA Import to apply it.

181Progress Corticon : Data Integration: Version 6.3

Mapping REST Service metadata

https://docs.progress.com/bundle/datadirect-autonomous-rest-connector-jdbc-60/page/Welcome-to-the-Progress-DataDirect-Autonomous-REST-Connector-for-JDBC.html

Define your preferred schema
The REST SCO currently depends on the Autonomous REST Connector schema discovery mechanism to
generate the schema for a REST service. The Autonomous REST Connector design accounts for this by
allowing users to supply a REST schema file. This is an alternative to the schema discovery approach. Corticon
needs to allow users to specify the schema file when configuring a REST Datasource. When specified, the
schema file would be supplied to Autonomous REST Connector and schema discovery not performed.

The schema files are text files but they can be complex. Corticon will not provide any mechanisms to simplify
the creation of schema files - this is the purview of the Autonomous REST Connector, whose roadmap includes
provisions for tooling to aid in the creation of schema files. Users are referred to Autonomous REST Connector
documentation and tooling for creation of schema files - Corticon will just provide for the import of the files.
Requirements

When configuring a REST Datasource, you have the option of supplying the schema file.

The schema is imported and stored as part of the vocabulary, similar to how it is done when schema discovery
is performed. Because of its close relationship with the vocabulary, the schema is not stored as a separate file.

How to define associations in REST Service metadata
The JSON data returned from a REST datasource can be, and often is, hierarchical. There are some special
concerns when mapping this hierarchical data in Studio.

In order to properly map associations (which are essentially joins between 2 tables), the Entity Identity must
be set for the Entity to specify which attributes are part of the primary key. Additionally, the join expression for
the association must be set to define which attributes are used to create the join.

The REST Services driver automatically creates the primary key for the tables. In most cases the primary key
is the first field in the JSON for that object, unless there is some reason that it cannot be used as a primary
key, or a different field was determined to be a better fit. When the data contains arrays of objects, the
Autonomous REST Connector creates additional fields named "POSITION", and then adds them to the primary
key. This field indicates where the object was found in the array.

If parameters are also mapped, then the parameter column is also added to the primary key, so these columns
must also have corresponding attributes in the Entity.

In summary, the primary key or Entity Identity for an Entity will consist of:

• At least one attribute that was determined to be unique across all of the elements of the array

• For arrays, a position field to specify the location in the array, if a unique field could not be identified.

• Any URL parameter columns

For associated Entities there will be additional elements in the primary key or Entity Identity :

• The ID of the root element that this element has as a parent

• The position field of the parent object (if it was determined to be in an array

• The position field of the parent's parent recursively back up to the root table (REST_DATA).

For example, if we have the following structure:

Vehicle

Id

→Devices

Id

Progress Corticon : Data Integration: Version 6.3182

Chapter 16: Advanced REST Datasource Topics

→ Radios

Id

The structure that the Autonomous REST Connector would create would be this:

Vehicle

*Id

→Devices

*position

*VehicleID

Id

→ Radios

*DevicesPosition

*position

*VehiclePosition

Id

As you can see, the more nested the structure, the more complex the primary keys get for the lower levels, as
the keys from the previous levels all have to be maintained at each level.

The potentially confusing point is that the position columns are added by the Autonomous REST Connector
and will have to have corresponding attributes in the vocabulary. These attributes do not exist in the JSON
document and will need to be manually added during modeling (they may be set to transient if desired).

When there is a name conflict, or a conflict with a reserved word, Autonomous REST Connector will post-pend
a "_" to the name, or a "_<number>". This may make mapping difficult, as it may be hard to tell which is which.

183Progress Corticon : Data Integration: Version 6.3

Mapping REST Service metadata

Progress Corticon : Data Integration: Version 6.3184

Chapter 16: Advanced REST Datasource Topics

17
Data type mappings from database fields

Corticon relies on static definitions of database access mechanisms to map the types of database fields to
Corticon vocabulary attributes. These static mappings are defined within Corticon based on the selected
database connection.

Oracle Database Field Mappings

Supported Database TypesCorticon Type

NUMBER, CHAR, VARCHAR2Boolean

DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME
ZONE

DateTime

DATE, TIMESTAMPDate

DATE, TIMESTAMPTime

NUMBER, DECIMAL, FLOATDecimal

NUMBER, DECIMAL, FLOATInteger

CHAR, VARCHAR2, LONG, NVARCHAR2, CLOBString

185Progress Corticon : Data Integration: Version 6.3

MySQL Database Field Mappings

Supported Database TypesCorticon Type

BIT, INTEGER, TINYINT, SMALLINT, CHARBoolean

DATETIME, TIMESTAMPDateTime

DATE, DATETIME, TIMESTAMPDate

TIME, DATETIME, TIMESTAMPTime

DECIMAL, NUMERIC, FLOAT, DOUBLEDecimal

INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT, YEARInteger

CHAR, VARCHAR, TINYTEXT, LONGTEXT, TEXT, MEDIUMTEXTString

Microsoft SQL Server Database Field Mappings

Supported Database TypesCorticon Type

bit, tinyint, smallint, charBoolean

smalldatetime, datetime2, datetimeDateTime

date, datetime2, datetimeDate

smalldatetime, datetime2, datetimeTime

numeric, decimal, float, real, money, smallmoneyDecimal

int, smallint, tinyint, bigint, bigint identity, int identity, numeric, decimal, money, smallmoneyInteger

ntext, xml, nchar, char, varchar, text, nvarchar, nvarchar(max), uniqueidentifierString

Progress Corticon : Data Integration: Version 6.3186

Chapter 17: Data type mappings from database fields

PostgreSQL Database Field Mappings

Supported Database TypesCorticon Type

BIT, SMALLINT, CHARACTER, CHAR, BOOLEANBoolean

TIMESTAMP WITH TIME ZONE, TIMESTAMPDateTime

DATE, TIMESTAMP WITH TIME ZONE, TIMESTAMPDate

TIME, TIME WITH TIME ZONE, TIMESTAMP WITH TIME ZONE, TIMESTAMPTime

DOUBLE PRECISION, NUMERIC, REALDecimal

BIGINT, BIGSERIAL, INTEGER, SERIAL, SMALLINT, NUMERICInteger

CHARACTER, CHAR, TEXT, VARCHAR, CHARACTER VARYINGString

IBM Db2 Database Field Mappings

Supported Database TypesCorticon Type

CHAR, SMALLINTBoolean

TIMESTAMPDateTime

DATE, TIMESTAMPDate

TIME, TIMESTAMPTime

DECIMAL, REAL, DOUBLEDecimal

BIGINT, INTEGER, SMALLINT, DECIMALInteger

LONG VARCHAR, CHAR, VARCHAR, CLOBString

187Progress Corticon : Data Integration: Version 6.3

Microsoft Dynamics 365 Database Field Mappings

Supported Database TypesCorticon Type

BOOLEANBoolean

DATETIME, TIMESTAMP, DATETIMEOFFSETDateTime

DATE, DATETIME, TIMESTAMP, DATETIMEOFFSETDate

TIME, DATETIME, TIMESTAMP, DATETIMEOFFSETTime

DECIMAL, DOUBLEDecimal

INTEGER, BIGINT, INT, SMALLINT, TINYINT, INT32, INT64Integer

CHAR, VARCHAR, STRING, GUIDString

Progress OpenEdge Database Field Mappings

Supported Database TypesCorticon Type

BIT, CHAR, SMALLINTBoolean

TIMESTAMPDateTime

DATE, TIMESTAMP, DATETIMEDate

TIME, TIMESTAMPTime

NUMERIC, DECIMAL, REAL, DOUBLEDecimal

NUMERIC, BIGINT, INTEGER, SMALLINT, DECIMALInteger

VARCHAR, LONG VARCHAR, CHARString

Progress Corticon : Data Integration: Version 6.3188

Chapter 17: Data type mappings from database fields

	Copyright
	Table of Contents
	Why your rules might want to access external data
	Corticon alternatives for data integration
	How Corticon concepts apply to Datasources
	About the sample projects referenced in this guide
	How Datasource information is viewed in the Vocabulary
	Getting Started with EDC
	Define a table namespace in the database
	Define the database connection for EDC
	Set the entities to store in the database
	Load the schema and data in the database
	Import EDC database metadata into a Vocabulary
	Test the rules when reading from the database
	Test the rules when writing to the database

	Getting Started with ADC
	Overview of the Advanced Data Connector
	Define a table namespace in the database for ADC
	Create and map the ADC schema and queries
	Define a database connection for ADC
	Define and import queries for ADC
	Import ADC Datasource metadata into a Vocabulary
	Use an ADC connection as a Ruleflow service callout
	Test the rules when reading from the ADC database
	Test the rules when writing to the ADC database

	Getting Started with Multiple Database Connectivity
	Define multiple table namespaces
	Create and map the multiple database schemas
	Define multiple database connections
	Define and import queries for multiple databases
	Import multiple Datasource metadata into a Vocabulary
	A closer look at MDB metadata

	Use multiple database connections as Ruleflow service callouts
	Test the rules when reading from multiple databases
	Test the rules when writing to multiple databases

	Getting Started with REST
	Overview of the Autonomous REST Connector
	Define a Datasource connection for REST
	Create and map the REST schema
	Use REST data sources in a Ruleflow
	Test rules when importing from the REST Datasource
	Revise Connection and Service Call-out to retrieve data

	Mixing REST and database access
	Deploying projects that use data integration
	Export the Datasource Configuration file
	Package a project in Corticon Studio for Corticon Server

	Getting Started with Batch
	A closer look at how Corticon relates to Datasources
	Add your own database driver
	Supported databases
	Authentication on EDC and ADC connections
	SmartMatching of Vocabularies to databases
	Validation of names against SQL keywords and database restrictions
	Support for catalogs and schemas
	How to filter catalogs and schemas
	Fully-qualified table names
	Support for database views
	Associations as join expressions

	Advanced EDC Topics
	How to set EDC Vocabulary properties
	Edit Entity EDC properties
	Edit Attribute EDC properties
	Import possible values of an attribute from database tables
	Enumerated values

	Edit Association EDC properties

	Mapping and validating EDC database metadata
	Mapping EDC database tables to Vocabulary Entities
	Mapping EDC database fields (columns) to Vocabulary Attributes
	Mapping EDC database relationships to Vocabulary Associations
	Validate EDC database mappings
	Types of mapping validation and validation errors

	Set additional EDC Datasource connection properties
	How data from an EDC Datasource integrates into rule output
	When Datasource access is Read Only
	When Datasource access is Read/Update

	EDC data caching
	How to specify caching on Vocabularies and Rulesheets
	Settings for EDC caching
	How to work with database caches

	Metadata for Datastore Identity in XML and JSON Payloads
	Relational database concepts in the Enterprise Data Connector
	Identity strategies
	Advantages of using Identity Strategy rather than Sequence Strategy
	Key assignments
	Conditional entities
	Dependent tables

	How EDC handles transactions and exceptions

	Advanced ADC Topics
	Mapping ADC database metadata
	Mapping ADC database tables to Vocabulary Entities
	Mapping ADC database fields to Vocabulary Attributes
	Mapping ADC database relationships to Vocabulary Associations

	How to configure ADC
	How to configure ADC reads
	How to configure ADC writes
	How to configure batch
	Configuration details
	Set additional ADC Datasource connection properties

	How Corticon is expressed in SQL
	Tips and techniques in SQL data integration

	Advanced REST Datasource Topics
	Authentication on REST Service connections
	Parameters on REST Service connections
	Import REST Datasource metadata into a Vocabulary
	Mapping REST Service metadata
	Define your preferred schema
	How to define associations in REST Service metadata

	Data type mappings from database fields

