
Corticon Server:
Deploying Web Services with

.NET

Notices

Copyright agreement

© 2015 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved
by Progress Software Corporation.The information in these materials is subject to change without
notice, and Progress Software Corporation assumes no responsibility for any errors that may
appear therein. The references in these materials to specific platforms supported are subject to
change.

Business Making Progress, Corticon, DataDirect (and design), DataDirect Cloud, DataDirect
Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect XQuery, Deliver More
Than Expected, Easyl, Fathom, Icenium, Kendo UI, Making Software Work Together, OpenEdge,
Powered by Progress, Progress, Progress Control Tower, Progress RPM, Progress Software
Business Making Progress, Progress Software Developers Network, Rollbase, RulesCloud,
RulesWorld, SequeLink, SpeedScript, Stylus Studio, TeamPulse, Telerik, Test Studio, and
WebSpeed are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, AppsAlive, AppServer, BravePoint,
BusinessEdge, DataDirect Spy, DataDirect SupportLink, , Future Proof, High Performance
Integration, Modulus, NativeScript, OpenAccess, Pacific, ProDataSet, Progress Arcade, Progress
Pacific, Progress Profiles, Progress Results, Progress RFID, Progress Progress Software, ProVision,
PSE Pro, SectorAlliance, Sitefinity, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects,
SmartPanel, SmartQuery, SmartViewer, SmartWindow, WebClient, and Who Makes Progress are
trademarks or service marks of Progress Software Corporation and/or its subsidiaries or affiliates
in the U.S. and other countries. Java is a registered trademark of Oracle and/or its affiliates. Any
other marks contained herein may be trademarks of their respective owners.

Please refer to the Release Notes applicable to the particular Progress product release for any
third-party acknowledgements required to be provided in the documentation associated with the
Progress product.

3Progress Corticon: Deploying Web Services with .NET: Version 5.5

Progress Corticon: Deploying Web Services with .NET: Version 5.54

Notices

Table of Contents

Preface...7
Progress Corticon documentation - Where and What...7

Overview of Progress Corticon...10

Chapter 1: Conceptual overview of the .NET server.................................13
What is a web service on .NET server?..13

What is a Decision Service on .NET server?..14

What is the Corticon Server for .NET?..14

What is a .NET web services consumer?...14

Chapter 2: Getting started with Corticon Server for .NET........................15
Testing the configuration...15

Testing the installed Corticon .NET Server...16

Using a .NET Server installation to set up an in-process server..16

Testing as in-process ...17

Testing a remote server on IIS..19

Chapter 3: Corticon .NET Server files and API tools................................23
Setting up Corticon .NET Server use cases..24

The Corticon .NET Server home and work directories..24

The Corticon .NET Server Sandbox..25

Chapter 4: Deploying a Ruleflow to the Corticon Server for .NET...........27
Creating a Ruleflow for .NET server..28

Creating and installing a .NET server Deployment Descriptor file..28

Using the .NET Server's Deployment Console Decision Services...28

Installing the Deployment Descriptor file on .NET server...31

Hot re-deploying .NET server Deployment Descriptor files and Ruleflows.................................32

Chapter 5: Consuming a Decision Service on .NET server......................33
Integrating and testing a Decision Service on .NET server...34

Path 1: Using Corticon Studio as a SOAP client to consume a Decision Service.................................35

Configuring Studio to send a SOAP Message to IIS..35

Creating a new .NET server test in Corticon Studio ..35

Executing the remote .NET server test...37

Path 2: Using bundled C# sample code to consume a Decision Service..38

5Progress Corticon: Deploying Web Services with .NET: Version 5.5

Creating the WSDL and proxy files...38

Path 3: Using SOAP client to consume a Decision Service..40

Web services messaging styles...40

Creating a service contract using the Deployment Console...40

Creating a request message for a decision service..41

Sending a request message to the server..42

Path 4: Using JSON/RESTful client to consume a Decision Service on .NET server...........................42

Running the sample JSON Request on .NET server...42

Path 5: Using bundled JSON sample code to consume a Decision Service...45

Limits of the .NET server default evaluation license..45

Troubleshooting .NET server...46

Chapter 6: Using .NET Business Objects as payload for Decision

Services...47

Chapter 7: Compiling a Decision Service into an Assembly DLL............59

Chapter 8: Support for Windows Communication Framework (WCF).....61
Creating WSDL and proxy files...61

Appendix A: Updating your Corticon license JAR for .NET.....................65

Progress Corticon: Deploying Web Services with .NET: Version 5.56

Preface

For details, see the following topics:

• Progress Corticon documentation - Where and What

• Overview of Progress Corticon

Progress Corticon documentation - Where and What
Corticon provides its documentation in various online and installed components.

Access to Corticon tutorials and documentation

Corticon Online Tutorials

Online only. Uses samples packaged in the
Corticon Studio.

Tutorial: Basic Rule Modeling in Corticon Studio

Online only.Tutorial: Advanced Rule Modeling in Corticon
Studio

Corticon Online Documentation

Updated online help for the current release.Progress Corticon User Assistance

Included in User Assistance. Not available in
Studio help.

Corticon Server: Web Console Guide

Individual PDFs (including Web Console guide)
and JavaDocs

Progress Corticon Documentation site

7Progress Corticon: Deploying Web Services with .NET: Version 5.5

http://wbt.progress.com/progress/nd/fresco/content/public/tutorials/corticon/basic/
http://wbt.progress.com/progress/nd/fresco/content/public/tutorials/corticon/adv/
http://wbt.progress.com/progress/nd/fresco/content/public/tutorials/corticon/adv/
https://documentation.progress.com/output/ua/Corticon/
http://documentation.progress.com/output/ua/Corticon/corticon/corticon-server-3a-web-console-guide.html
https://documentation.progress.com/output/Corticon/5.5.0

Corticon Documentation on the Progress download site

Package of all guides in PDF format.Documentation

PDF format.What's New Guide

PDF format.Installation Guide

Include Eclipse help for all guides except Web
Console.

Corticon Studio Installers

Components of the Corticon tutorials and documentation set

The components of the Progress Corticon documentation set are the following tutorials and guides:

Corticon Online Tutorials

An introduction to the Corticon Business Rules
Modeling Studio. Learn how to capture rules from
business specifications, model the rules, analyze
them for logical errors, and test the execution of
your rules -- all without any programming.

Tutorial: Basic Rule Modeling in Corticon Studio

An introduction to complex and powerful functions
in Corticon Business Rules Modeling Studio.
Learn the concepts underlying some of Studio's
more complex and powerful functions such as
ruleflows, scope and defining aliases in rules,
understanding collections, using
String/DateTime/Collection operators, modeling
formulas and equations in rules, and using filters.

Tutorial: Advanced Rule Modeling in Corticon
Studio

Release and Installation Information

Describes the enhancements and changes to the
product since its last point release.

What's New in Corticon

Step-by-step procedures for installing all Corticon
products in this release.

Corticon Installation Guide

Corticon Studio Documentation: Defining and Modeling Business Rules

Presents the concepts and purposes the Corticon
Vocabulary, then shows how to work with it in
Rulesheets by using scope, filters, conditions,
collections, and calculations. Discusses chaining,
looping, dependencies, filters and preconditions
in rules. Presents the Enterprise Data Connector
from a rules viewpoint, and then shows how
database queries work. Provides information on
versioning, natural language, reporting, and
localizing. Provides troubleshooting of Rulesheets
and Ruleflows. Includes Test Yourself exercises
and answers.

Corticon Studio: Rule Modeling Guide

Progress Corticon: Deploying Web Services with .NET: Version 5.58

Preface

https://www.progress.com/support-and-services/evaluation-support/download-resources/download-center
http://wbt.progress.com/progress/nd/fresco/content/public/tutorials/corticon/basic/
http://wbt.progress.com/progress/nd/fresco/content/public/tutorials/corticon/adv/
http://wbt.progress.com/progress/nd/fresco/content/public/tutorials/corticon/adv/

Reference guide to the Corticon Studio user
interface and its mechanics, including descriptions
of all menu options, buttons, and actions.

Corticon Studio: Quick Reference Guide

Reference information for all operators available
in the Corticon Studio Vocabulary. Rulesheet and
Ruletest examples are provided for many of the
operators.

Corticon Studio: Rule Language Guide

Detailed technical information about the Corticon
extension framework for extended operators and
service call-outs. Describes several types of
operator extensions, and how to create a custom
extension plug-in.

Corticon Studio: Extensions Guide

Corticon Enterprise Data Connector (EDC)

Introduces Corticon's direct database access with
a detailed walkthrough from development in
Studio to deployment on Server. Uses Microsoft
SQL Server to demonstrate database read-only
and read-update functions.

Corticon Tutorial: Using Enterprise Data
Connector (EDC)

Corticon Server Documentation: Deploying Rules as Decision Services

An in-depth, technical description of Corticon
Server deployment methods, including
preparation and deployment of Decision Services
and Service Contracts through the Deployment
Console tool. Describes JSON request syntax
and REST calls. Discusses relational database
concepts and implementation of the Enterprise
Data Connector. Goes deep into the server to
discuss state, persistence, and invocations by
version or effective date. Includes troubleshooting
servers though logs, server monitoring
techniques, performance diagnostics, and
recommendations for performance tuning.

Corticon Server: Integration and Deployment
Guide

Details setting up an installed Corticon Server as
a Web Services Server, and then deploying and
exposing Decision Services as Web Services on
the Pacific Application Server (PAS) and other
Java-based servers. Includes samples of XML
and JSON requests.

Corticon Server: Deploying Web Services with
Java

Details setting up an installed Corticon Server as
a Web Services Server, and then deploying and
exposing decisions as Web Services with .NET.
Includes samples of XML and JSON requests.

Corticon Server: Deploying Web Services with
.NET

9Progress Corticon: Deploying Web Services with .NET: Version 5.5

Preface

Presents the features and functions of remote
connection to a Web Console installation to
enable manage Java and .NET servers in groups,
manage Decision Services as applications, and
monitor performance metrics of managed servers.

Corticon Server: Web Console Guide

Provides reference information about TCMAN,
the command-line utility for managing and
administering the Pacific Application Server.

Pacific™ Application Server for Corticon®:
TCMAN Reference Guide

Overview of Progress Corticon
Progress® Corticon® is the Business Rules Management System with the patented "no-coding"
rules engine that automates sophisticated decision processes.

Progress Corticon products
Progress Corticon distinguishes its development toolsets from its server deployment environments.

• Corticon Studio is the Windows-based development environment for creating and testing
business rules:

• When installed as a standalone application, Corticon Studio provides the complete Eclipse
development environment for Corticon as the Corticon Designer perspective.You can use
this fresh Eclipse installation as the basis for adding other Eclipse toolsets.

• When installed into an existing Eclipse such as the Progress Developer Studio (PDS), our
industry-standard Eclipse and Java development environment, the PDS enables development
of Corticon applications in the Corticon Designer perspective that integrate with other
products, such as Progress OpenEdge.

Note: Corticon Studio installers are available for 64-bit and 32-bit platforms. Typically, you use
the 64-bit installer on a 64-bit machine, where that installer is not valid on a 32-bit machine.
The 64-bit Studio is recommended because it provides better performance when working on
large projects. When adding Corticon to an existing Eclipse, the target Eclipse must be an
installation of the same bit width. Refer to the Corticon Installation Guide to access, prepare,
and install Corticon Studio.

• Corticon Servers implement web services for deploying business rules defined in Corticon
Studios:

• Corticon Server for Java is supported on various application servers, and client web
browsers. After installation on a supported Windows platform, that server installation's
deployment artifacts can be redeployed on various UNIX and Linux web service platforms
as Corticon Decision Services.

• Corticon Server for .NET facilitates deployment of Corticon Decision Services on Windows
.NET Framework and Microsoft Internet Information Services (IIS).

Use with other Progress Software products
Corticon releases coordinate with other Progress Software releases:

Progress Corticon: Deploying Web Services with .NET: Version 5.510

Preface

http://documentation.progress.com/output/ua/Corticon/corticon/corticon-server-3a-web-console-guide.html

• Progress OpenEdge is available as a database connection.You can read from and write to an
OpenEdge database from Corticon Decision Services. When Progress Developer Studio for
OpenEdge and Progress Corticon Studio are integrated into a single Eclipse instance, you can
use the capabilities of integrated business rules in Progress OpenEdge. See the OpenEdge
document OpenEdge Business Rules for more information. OpenEdge is a separately licensed
Progress Software product.

• Progress DataDirect Cloud (DDC) enables simple, fast connections to cloud data regardless
of source. DataDirect Cloud is a separately licensed Progress Software product.

• Progress RollBase enables Corticon rules to be called from Progress Rollbase. Rollbase is a
separately licensed Progress Software product.

11Progress Corticon: Deploying Web Services with .NET: Version 5.5

Preface

http://www.progress.com/openedge
https://documentation.progress.com/output/OpenEdge114/pdfs/businessrules/businessrules.pdf
http://www.datadirectcloud.com
http://www.progress.com/rollbase

Progress Corticon: Deploying Web Services with .NET: Version 5.512

Preface

1
Conceptual overview of the .NET server

This tutorial steps through the procedure necessary for running the Corticon Server for .NET as a
web services server, deploying Ruleflows to the Server, exposing the Ruleflows as Decision
Services and testing them with document-style SOAP requests. There are other installation,
deployment and integration options available beyond the SOAP/Web Services method described
here, including Java-centric options using Java objects and APIs. More detailed information on all
available methods is contained in the Server Integration & Deployment Guide.

For details, see the following topics:

• What is a web service on .NET server?

• What is a Decision Service on .NET server?

• What is the Corticon Server for .NET?

• What is a .NET web services consumer?

What is a web service on .NET server?
From the business perspective: A Web Service is a software asset that automates a task and
can be shared, combined, used, and reused by different people or systems within or among
organizations.

13Progress Corticon: Deploying Web Services with .NET: Version 5.5

From the information systems perspective: A Web service is a software system designed to
support interoperable machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact with the Web Service
in a manner prescribed by its description using SOAP-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards. [From
http://www.w3c.org.]

What is a Decision Service on .NET server?
A Decision Service automates a discrete decision-making task. It is implemented as a set of
business rules and exposed as a web service (or Java component or .NET library). By definition,
the rules within a Decision Service are complete and unambiguous; for a given set of inputs, the
Decision Service addresses every logical possibility uniquely, ensuring "decision integrity".

A Ruleflow is built in Corticon Studio. Once deployed to the Corticon Server for .NET, it becomes
a Decision Service.

What is the Corticon Server for .NET?
Corticon Servers implement web services for business rules defined in Corticon Studios.

The Corticon Server for .NET is a high-performance, scalable and reliable system resource that
manages pools of Decision Services and executes their rules against incoming requests. The
Corticon Server for .NET can be easily configured as a web services server, which exposes the
Decision Services as true web services.

Corticon Server is provided in two installation sets: Corticon Server for Java, and Corticon Server
for .NET.

• The Corticon Server for deploying web services with .NET -- the product documented here
-- facilitates deployment on Windows .NET framework and Microsoft Internet Information Services
(IIS) that are packaged in the supported operating systems.The .NET server has its own installer
and documentation. See Deploying Web Service with .NET for more information.

• The Corticon Server for deploying web services with Java is supported on various application
servers, databases, and client web browsers. After installation on a supported Windows platform,
that server installation's deployment artifacts can be redeployed on various UNIX and Linux
web service platforms. See the Progress Software web page Progress Corticon 5.5 - Supported
Platforms Matrix for more information.

What is a .NET web services consumer?
A Web Services Consumer is a software application that makes a request to, and receives a
response from, a web service. Most modern application development environments provide native
capabilities to consume web services, as do most modern Business Process Management Systems.

Progress Corticon: Deploying Web Services with .NET: Version 5.514

Chapter 1: Conceptual overview of the .NET server

http://www.w3c.org
https://community.progress.com/community_groups/corticon/w/brms/2447.progress-corticon-5-5-supported-platforms-matrix.aspx
https://community.progress.com/community_groups/corticon/w/brms/2447.progress-corticon-5-5-supported-platforms-matrix.aspx

2
Getting started with Corticon Server for .NET

Installing Corticon Server for .NET
First, you must download and install Corticon Server for .NET on your designated Windows server
machine. See the Corticon Installation Guide for details.

The Installation Guide's "System Requirements" topic describes the access to supported platforms
and access to the procedures for optimal setup of the appropriate .NET Framework and Internet
Information Services (IIS) on the target machine.

Refer to the Progress Software web page Progress Corticon 5.5 - Supported Platforms Matrix for
information on supported .NET Framework and IIS versions, and the Corticon Knowledgebase
articles Steps to set up IIS 7.5 on Windows Server 2008 or Windows 7 for Corticon .NET Server
5.x and Steps to set up IIS 8.0 and 8.5 on Windows Server 2012 R1 and R2 for Corticon .NET
Server 5.x for detailed setup instructions.

For details, see the following topics:

• Testing the configuration

• Testing the installed Corticon .NET Server

Testing the configuration
With Corticon Server for .NET installed in IIS, it is a good practice to test the remote server setup
to ensure it is running and listening. At this point, no Decision Services have been deployed, so
Corticon Server for .NET is not yet ready to process transactions.

In a browser, access the following URLs (assuming that IIS is running on its default port 80):

15Progress Corticon: Deploying Web Services with .NET: Version 5.5

https://community.progress.com/community_groups/corticon/w/brms/2447.progress-corticon-5-5-supported-platforms-matrix.aspx
http://knowledgebase.progress.com/articles/Article/Steps-to-set-up-IIS-7-5-on-Windows-Server-2008-or-Windows-7-for-Corticon-NET-Server-5-x
http://knowledgebase.progress.com/articles/Article/Steps-to-set-up-IIS-7-5-on-Windows-Server-2008-or-Windows-7-for-Corticon-NET-Server-5-x
http://knowledgebase.progress.com/articles/Article/Steps-to-set-up-IIS-8-0-and-8-5-on-Windows-Server-2012-R1-and-R2-for-Corticon-NET-Server-5-x
http://knowledgebase.progress.com/articles/Article/Steps-to-set-up-IIS-8-0-and-8-5-on-Windows-Server-2012-R1-and-R2-for-Corticon-NET-Server-5-x

• http://localhost/axis/services/CorticonAdmin.asmx

• http://localhost/axis/services/Corticon.asmx

• http://localhost/axis/services/CorticonExecute.asmx

Selecting any of these URLs displays a web page in the following format:

Figure 1:Testing the Corticon Web Service

Note: If you do not see appropriate test info, choose Refresh in your browser to clear any cached
references.

Testing the installed Corticon .NET Server
With Corticon Server installed in the .NET environment, it is useful to test the installation to ensure
Corticon Server is running and listening. At this point, no Decision Services have been deployed,
so Corticon Server is not ready to process transactions. However, the Corticon Server API set
contains administrative methods that interrogate it and return status information. Several tools are
provided to help you perform this test.

Using a .NET Server installation to set up an in-process
server

If you choose to manage Corticon .NET Server in-process via your client application or via a custom
container, you are taking responsibility for many of the tasks that are normally performed by a web
or application server. But by doing it in your own code, you can optimize your environment and
eliminate unneeded overhead. This can result in much smaller footprint installations and faster
performance.

Because Corticon Server is a set of classes, it can easily be deployed in-process in an application.
When deployed in-process, the following tasks are the responsibility of the client application:

• Management of application settings, ensuring the base set of Corticon Server classes is properly
referenced.

• Lifecycle management, including server startup/shutdown

• Security (if needed)

Progress Corticon: Deploying Web Services with .NET: Version 5.516

Chapter 2: Getting started with Corticon Server for .NET

Corticon Server can also be installed into a custom container within any application. It has a small
footprint and thus can be installed into client applications including browser-based applications,
laptops and mobile devices.

For step-by-step instructions on using the Installer to gain access to Corticon Server's core files,
see “Running the Server and Web Console installer wizard” in the Corticon Installation Guide.

Installation in-process or in a custom container involves these basic steps:

1. Place the following Corticon Server directories and their contents in a directory that is accessible
by the application container.

• /bin

• /lib

• /conf

2. Configure the application to reference all DLL files located in the /bin directory.

3. Write code that:

• Initializes Corticon Server

• Sets the following three environment variables:

• CORTICON_HOME - The explicit path that is the root for /bin, /lib, and /conf.

• CORTICON_WORK_DIR - The explicit path to the working directory

• CORTICON_LICENSE - The explicit path to the CcLicense.jar file.

• Deploys the Decision Services into the Corticon Server

• Requests a decision by marshaling the data payload and then invoking the relevant Corticon
Decision Service

• Processes the response from the Decision Service.

Sample code is provided that demonstrates an in-process deployment of Corticon .NET Server.
This code is packaged as the executable Corticon-Api-Inprocess-Test.exe in the
[CORTICON_HOME]\Server .NET\samples\bin directory.

Testing as in-process
Sample code is provided that demonstrates an in-process deployment of Corticon .NET Server.
This code is packaged as the executable Corticon-Api-Inprocess-Test.exe in the
[CORTICON_HOME]\Server .NET\samples\bin directory.

The API in-process test opens a Windows console and displays the API menu, as shown below:

Figure 2:Top Portion of the .NET Server in-process API console

17Progress Corticon: Deploying Web Services with .NET: Version 5.5

Testing the installed Corticon .NET Server

The menu displayed in the Windows console is too large to fit on a single printed page, so it has
been divided into two screenshots here. In the upper portion of the Windows console, shown in
the figure above, the class loading process is visible. Once all classes are loaded, Corticon .NET
Server starts up in the IIS.

Figure 3: Lower Portion of the .NET Server in-process API console

In the lower portion of the Windows console, shown in the figure above, we see the available API
methods of the Common Functions (the 100 series) listed by number.You can list the commands
in the other series by entering their series number:

• Enter 200 to list the Decision Service Functions command set

• Enter 300 to list the Monitoring Functions command set

• Enter 400 to list the CcServer Functions command set

• Enter 100 to again list the Common Functions command set

Note: After you enter a transaction, the result is displayed followed a restating of the current
command set.You might need to scroll back a bit to see your results.

Since we have not deployed any Ruleflows yet, we will need to use an administrative method to
test if Corticon Server is loaded in-process correctly. A good administrative method to call is option
#121, Get CcServer Info. This choice corresponds directly to the corresponding API method
getCcServerInfo().

Progress Corticon: Deploying Web Services with .NET: Version 5.518

Chapter 2: Getting started with Corticon Server for .NET

To try this, enter 121 in the command window. The CcServerApiTest class makes a call to the
Corticon Server running in-process. It asks for a list of configuration parameters and returns them
to the Windows console. The results of the call are shown in the following figure:

Figure 4: .NET Server in-process API console response to command 121

We haven't loaded any Decision Services, so Corticon Server is basically replying with an empty
status message. But the important thing is that we have verified that Corticon .NET Server is
running correctly in-process and is listening for, and responding to, calls. At this stage in the
deployment, this is all we want to verify.

There is also a sample application test for the in-process Corticon Server. This code is packaged
as the executable Corticon-Api-Example.exe in the [CORTICON_HOME]\Server
.NET\samples\bin directory.

Testing a remote server on IIS
To test that Corticon Server deployed as a SOAP service is running correctly, all you need is a
SOAP client or the sample batch file provided and described below.

Testing the installation here assumes you have already installed and started Corticon Server as
a Web Service, according to the instructions in this guide. Be sure that you have created an
application from the axis directory, and that it is bound to application pools appropriately, as detailed
in Setting up Windows Internet Information Services.

Because a SOAP service is listening for SOAP calls, we need a way to invoke an API method via
a SOAP message then send that message to Corticon Server using a SOAP client. In the sample
code supplied in the default installation, Corticon provides an easy way to send API calls through
a SOAP message.

Sample code is provided that demonstrates a remote deployment of Corticon .NET Server on IIS.
This code is packaged as the executable Corticon-Api-Remote-Test.exe in the Server\bin
directory of your Corticon .NET Server installation directory.

19Progress Corticon: Deploying Web Services with .NET: Version 5.5

Testing the installed Corticon .NET Server

When executed, it opens a Windows console and displays the API menu, as shown below:

Figure 5:Top Portion of the .NET Server remote API console

The menu displayed in the Windows console is too large to fit on a single printed page, so it has
been divided into two screenshots here. In the upper portion of the Windows console, shown in
the figure above, the classpath definition process is visible. Once all classes are loaded, the Corticon
.NET Server starts up in the IIS, which is needed by our simple SOAP client class.

Figure 6: Lower Portion of the .NET Server remote API console

In the lower portion of the Windows console, shown in the figure above, we see the available API
methods of the Common Functions (the 100 series) listed by number.You can list the commands
in the other series by entering their series number:

• Enter 200 to list the Decision Service Functions command set

• Enter 300 to list the Monitoring Functions command set

• Enter 400 to list the CcServer Functions command set

Progress Corticon: Deploying Web Services with .NET: Version 5.520

Chapter 2: Getting started with Corticon Server for .NET

• Enter 100 to again list the Common Functions command set

Note: After you enter a transaction, the result is displayed followed a restating of the current
command set.You might need to scroll back a bit to see your results.

Since we have not deployed any Ruleflows yet, we will use an administrative method to test if
Corticon Server is correctly installed as a SOAP service inside our web server. A good administrative
method to call is transaction #121, Get CcServer current info. This choice corresponds directly
to the API method getCcServerInfo().

To try this, confirm that IIS is running, and then enter 121 in the command window. The
CcServerAxisTest class makes a call to the Corticon Server SOAP Servlet. It asks for a list of
configuration parameters and returns them to the Windows console. The results of the call are
shown in the following figure:

Figure 7: .NET Server remote API console response to command 121

The response verifies that our Corticon Server is running correctly as a SOAP Servlet and is
listening for, and responding to, calls. At this stage in the deployment, this is all we want to verify.

21Progress Corticon: Deploying Web Services with .NET: Version 5.5

Testing the installed Corticon .NET Server

Progress Corticon: Deploying Web Services with .NET: Version 5.522

Chapter 2: Getting started with Corticon Server for .NET

3
Corticon .NET Server files and API tools

Corticon Server for deploying web services with .NET facilitates deployment on Windows .NET
framework 4.0 and Microsoft Internet Information Services (IIS) that are packaged in the supported
operating systems. This guide points out features that enable a walkthrough tutorial experience of
various deployment technologies and strategies.

First we'll deploy a Ruleflow to the .NET server as a Decision Service, then we'll try out consuming
that Decision Service with various manual, SOAP/XML, and JSON/RESTful techniques.

After that we'll explore some advanced topics that enable you to:

• Use Java Object Messaging (JOM) for payloads

• Compile a Decision Service into an Assembly.dll to icrease performance

• Take a look at Windows Communication Framework (WCF)

But before exploring these features, you should be aware of some of the .NET server files and API
tools.

For details, see the following topics:

• Setting up Corticon .NET Server use cases

• The Corticon .NET Server home and work directories

• The Corticon .NET Server Sandbox

23Progress Corticon: Deploying Web Services with .NET: Version 5.5

Setting up Corticon .NET Server use cases
In most production deployments, Corticon Server JARs are bundled and given an interface class
or classes. The interface class is often called a "helper" or "wrapper" class because its purpose is
to receive the client application's invocation, translate it (if necessary) into a call which uses Corticon
Server's native API, and then forwards the call to Corticon Server's classes. The type of interface
class depends on the container where you intend to deploy the Corticon Server.

Corticon Studio makes in-process calls to the same Corticon Server classes (although packaged
differently-- see the following topic) when Ruletests are executed. This ensures that Ruleflows
behave exactly the same way when executed in Studio Ruletests as they do when executed by
Corticon Server, no matter how Corticon Server is installed.

The Corticon .NET Server home and work directories
As a Corticon installation completes, it tailors two properties that define its global environment.
These variables are used throughout the product to determine the relative location of other files.

Corticon environment
The installer establishes a common environment configuration file, \bin\corticon_env.bat,
at the program installation location. That file defines the Progress Corticon runtime environment
so that most scripts simply call it to set common global environment settings, such as
CORTICON_HOME and CORTICON_WORK_DIR (and, in some cases, simply CORTICON_WORK.)

CORTICON_HOME
The explicit path of the installation home directory -- either the default location, C:\Program
Files\Progress\Corticon 5.5, or the preferred location you specified -- is assigned to
[CORTICON_HOME].

CORTICON_WORK_DIR
The explicit path of the work directory -- either the default location,
C:\Users\{username}\Progress\CorticonWork 5.5, or the preferred location you specified
-- is assigned to [CORTICON_WORK_DIR].

Note: The Corticon Start menu provides a Corticon Command Prompt command that calls
corticon_env.bat, adds several [CORTICON_HOME] script paths to the PATH so that you can
launch scripts by name from several locations -- \bin, \Server\bin, \Server\pas\bin,
\Studio\bin, and, \Studio\eclipse -- and then relocates the prompt to the root of the
Corticon work directory.

It is a good practice to use global environment settings
Many file paths and locations are determined by the CORTICON_HOME and CORTICON_WORK_DIR
variables. Be sure to call corticon_env.bat, and then use these variables in your scripts and
wrapper classes so that they are portable to deployments that might have different install paths.

Progress Corticon: Deploying Web Services with .NET: Version 5.524

Chapter 3: Corticon .NET Server files and API tools

Note: While you could change these locations with the assurance that well-behaved scripts will
follow your renamed path or location, you might also encounter unexpected behaviors from any
that do not. Also, issues might arise when running update, upgrade, and uninstall utilities.

The Corticon .NET Server Sandbox
When Corticon Server starts up, it checks for the existence of a "sandbox" directory.This Sandbox
is a directory structure used by Corticon Server to manage its state and deployment code.

The location of the Sandbox is controlled by com.corticon.ccserver.sandboxDir settings
in your brms.properties file located at the root of [CORTICON_WORK_DIR]. For more
information, see Server properties described in the Integration and Deployment Guide.

This configuration setting is defined by the CORTICON_WORK_DIR variable, in this case:

com.corticon.ccserver.sandboxDir=%CORTICON_WORK_DIR%/%CORTICON_SETTING%/CcServerSandbox

In a default Windows installation, the result for this is
C:\Users\{username}\Progress\CorticonWork_5.5\SER\CcServerSandbox. In other
words, in the SER subdirectory of the CORTICON_WORK_DIR. This directory is created (as well as
peer directories, logs and output) during the first launch of Corticon Server.

Note: If the location specified by com.corticon.ccserver.sandboxDir cannot be found or
is not available, the Sandbox location defaults to the current working directory as it is typically the
location that initiated the call.

25Progress Corticon: Deploying Web Services with .NET: Version 5.5

The Corticon .NET Server Sandbox

Progress Corticon: Deploying Web Services with .NET: Version 5.526

Chapter 3: Corticon .NET Server files and API tools

4
Deploying a Ruleflow to the Corticon Server
for .NET

Just because Corticon Server for .NET has been installed does not mean it is ready to process
transactions. It must still be "loaded" with one or more Ruleflows. Once a Ruleflow has been loaded,
or deployed, to the Corticon Server we call it a Decision Service because it is a service ready and
able to make decisions for any external application or process ("client") that requests the service
properly.

Loading the Corticon Server with Ruleflows can be accomplished in two ways:

• Deployment Descriptor files - This is the easiest method and the one we will use in this
Tutorial because it is also the method typically used in production web service deployments.

• .NET APIs - This method requires more knowledge of the Server for .NET API set, and is not
discussed in this Tutorial.

Both methods are described more thoroughly in the Server Integration & Deployment Guide.

For details, see the following topics:

• Creating a Ruleflow for .NET server

• Creating and installing a .NET server Deployment Descriptor file

27Progress Corticon: Deploying Web Services with .NET: Version 5.5

Creating a Ruleflow for .NET server
For purposes of this Tutorial, we assume you have already created a Ruleflow suitable for
deployment. If you have completed the Corticon Tutorial: Basic Rule Modeling , then you have
indeed created a sample Ruleflow that is ready for deployment to the Server for .NET.

In the Corticon Tutorial: Basic Rule Modeling we built and tested a new Ruleflow from scratch.
We will use that Ruleflow here, but the same steps we outline must be followed regardless of the
Ruleflow we use.

If you no longer have your original Ruleflow, then use tutorial_example.erf located in the
server's [CORTICON_WORK_DIR]\Samples\Rule Projects\Tutorial\Tutorial-Done
as a substitute. The rules inside are essentially the same as those built in the first part of the
Corticon Tutorial: Basic Rule Modeling .

Creating and installing a .NET server Deployment
Descriptor file

A Deployment Descriptor file tells the Corticon Server for .NET which Ruleflows to load and how
to handle transaction requests for those Ruleflows. A Deployment Descriptor file has the suffix
.cdd, and we will often simply refer to it as a .cdd file.

Important: The.cdd file "points" at the Ruleflow via a path name – it is important that this path
not contain space characters. For example, a Ruleflow stored in My Documents cannot be
referenced by a Deployment Descriptor file because its path contains a space. Even though the
default storage location for your Ruleflow files is inside a Corticon Studio installation's
[CORTICON_WORK_DIR]\Samples\Rule Projects\Tutorial\Tutorial-Done (which
contains a space), we avoid the problem by substituting ../../ as a relative reference to the
directory structure.

Deployment Descriptors are easily created using the Deployment Console, which is installed by
the Server installer.

Using the .NET Server's Deployment Console Decision
Services

To start the Corticon Deployment Console for .NET, choose the Windows Start menu command
All Programs > Progress > Corticon 5.5 > Corticon .NET Deployment Console to launch
the executable file Server .NET\samples\bin\DeploymentConsole.exe.

The Deployment Console is divided into two sections. Because the Deployment Console is a rather
wide window, its columns are shown as two screen captures in the following figures. The red
identifiers are the topics listed below.

Progress Corticon: Deploying Web Services with .NET: Version 5.528

Chapter 4: Deploying a Ruleflow to the Corticon Server for .NET

Figure 8: Left Portion of Deployment Console, with Deployment Descriptor File Settings
Numbered

Figure 9: Right Portion of Deployment Console, with Deployment Descriptor File Settings
Numbered

The name of the open Deployment Descriptor file is displayed in the Deployment Console's title
bar.

The File menu, circled in the top figure, enables management of Deployment Descriptor files:

• To save the current file, choose (File > Save).

• To open an existing .cdd, choose (File > Open).

• To save a .cdd under a different name, choose (File > Save As).

The marked steps below correspond to the Deployment Console columns for each line in the
Deployment Descriptor.

1. Decision Service Name - A unique identifier or label for the Decision Service. It is used when
invoking the Decision Service, either via an API call or a SOAP request message. See Invoking
Corticon Server for usage details.

2. Ruleflow - All Ruleflows listed in this section are part of this Deployment Descriptor file.
Deployment properties are specified on each Ruleflow. Each row represents one Ruleflow. Use

the button to navigate to a Ruleflow file and select it for inclusion in this Deployment
Descriptor file. Note that Ruleflow absolute pathnames are shown in this section, but relative
pathnames are included in the actual .cdd file.

29Progress Corticon: Deploying Web Services with .NET: Version 5.5

Creating and installing a .NET server Deployment Descriptor file

The term "deploy", as we use it here, means to "inform" the Corticon Server that you intend to
load the Ruleflow and make it available as a Decision Service. It does not require actual physical
movement of the .erf file from a design-time location to a runtime location, although you may
do that if you choose – just be sure the file's path is up-to-date in the Deployment Descriptor
file. But movement isn't required – you can save your .erf file to any location in a file system,
and also deploy it from the same place as long as the running Corticon Server can access the
path.

3. Version - the version number assigned to the Ruleflow in the Ruleflow > Properties window
of Corticon Studio. Note that this entry is editable only in Corticon Studio and not in the
Deployment Console. A discussion of how Corticon Server processes this information is found
in the topics "Decision Service Versioning and Effective Dating" of the Integration and
Deployment Guide. Also see the Quick Reference Guide for a brief description of the Ruleflow
Properties window and the Rule Modeling Guide for details on using the Ruleflow versioning
feature. It is displayed in the Deployment Console simply as a convenience to the Ruleflow
deployer.

4. Version Label - the version label assigned to the Ruleflow in the Ruleflow > Properties window
of Corticon Studio. Note that this entry is editable only in Corticon Studio and not in the
Deployment Console. See the Quick Reference Guide for a brief description of the Ruleflow
Properties window and the purpose of the Ruleflow versioning feature.

5. Effective Date - The effective date assigned to the Ruleflow in the Ruleflow > Properties
window of Corticon Studio. Note that this entry is editable only in Corticon Studio and not in the
Deployment Console. A discussion of how Corticon Server processes this information is found
in the topics "Decision Service Versioning and Effective Dating" of the Integration and
Deployment Guide. Also see the Quick Reference Guide for a brief description of the Ruleflow
Properties window and the purpose of the Ruleflow effective dating feature.

6. Expiration Date - The expiration date assigned to the Ruleflow in the Ruleflow > Properties
window of Corticon Studio . Note that this entry is editable only in Corticon Studio and not in
the Deployment Console. A discussion of how Corticon Server processes this information is
found in the topics "Decision Service Versioning and Effective Dating" of the Integration and
Deployment Guide. Also see the Quick Reference Guide for a brief description of the Ruleflow
Properties window and the purpose of the Ruleflow expiration dating feature.

7. Maximum Pool Size - Specifies how many execution threads for this Decision Service will be
added to the Execution Queue. This parameter is an issue only when Allocation is turned on.
If you are evaluating Corticon, your license requires that you set the parameter to 1.See
'Multi-threading, concurrency reactors, and server pools' in "Inside Corticon Server" section of
the Integration and Deployment Guide for more information.

Note: Minimum Pool Size, previously associated with this property, is deprecated as of version
5.5.

If you are evaluating Corticon, your license requires that you set the parameter to 1.

8. Database Access - Active if your Corticon license enables EDC - Controls whether the deployed
Rule Set has direct access to a database, and if so, whether it will be read-only or read-write
access.

9. Entities Returned - Active if your Corticon license enables EDC - Determines whether the
Corticon Server response message should include all data used by the rules including data
retrieved from a database (All Instances), or only data provided in the request and created by
the rules themselves (Incoming/New Instances).

10. Database Access Properties File - Active if your Corticon license enables EDC - The path
and filename of the database access properties file (that was typically created in Corticon
Studio) to be used by Corticon Server during runtime database access. Use the adjacent

Progress Corticon: Deploying Web Services with .NET: Version 5.530

Chapter 4: Deploying a Ruleflow to the Corticon Server for .NET

button to navigate to a database access properties file.

11. Dynamic Reload - When Yes, the ServerMaintenanceThread will detect if the Ruleflow
or .eds file has been updated; if so, the Decision Service will be updated into memory and --
for any subsequent calls to that Decision Service -- that execution Thread will execute against
the newly updated Rules. When No, the CcServerMaintenanceThread will ignore any
changes to the Ruleflow or .eds file.The changes will not be read into memory, and all execution
Threads will execute against the existing Rules that are in memory for that Decision Service.

12. XML Messaging Style - Determines whether request messages for this Decision Service
should contain a flat (Flat) or hierarchical (Hier) payload structure.The Decision Service Contract
Structures section of the Integration chapter provides samples of each. If set to Auto Detect,
then Corticon Server will accept either style and respond in the same way.

The indicated buttons at the bottom of the Decision Service Deployment Properties section provide
the following functions:

• (A) Add Ruleflow - Creates a new line in the Decision Service Deployment Properties list.
There is no limit to the number of Ruleflows that can be included in a single Deployment
Descriptor file.

• (B) Remove Ruleflow - Removes the selected row in the Decision Service Deployment
Properties list.

• (C) Pre-compile Decision Services - Compiles the Decision Service before deployment, and
then puts the .eds file (which contains the compiled executable code) at the location you
specify. (By default, Corticon Server does not compile Ruleflows until they are deployed to
Corticon Server. Here, you choose to pre-compile Ruleflows in advance of deployment.) The
.cdd file will contain reference to the .eds instead of the usual .erf file. Be aware that setting
the EDC properties will optimize the Decision Service for EDC.

• (D) Save Deployment File - Saves the .cdd file. (Same as the menu File > Save command.)

Installing the Deployment Descriptor file on .NET server
Once Corticon Server for .NET has been installed and deployed on IIS, the following sequence
occurs:

1. IIS server starts.

2. Corticon Server for .NET starts as a web service in IIS.

3. Corticon Server looks for Deployment Descriptor files in the <IISRoot>\axis\cdd directory.

4. Corticon Server for .NET loads into memory the Ruleflow(s) referenced by the Deployment
Descriptor files, and creates Reactors for each according to their minimum pool size settings.
At this stage, we say that the Ruleflows have become Decision Services because they are now
callable by external applications and clients.

In order for the Corticon Server for .NET to find Deployment Descriptor files when it looks in step
3, we must ensure that the .cdd files are stored in the default location, the
[CORTICON_WORK_DIR]\cdd directory. When creating .cdd files, save them to this directory
so they become accessible to the deployed Corticon Server for .NET.

Note: This location is configurable, but be aware that Deployment Descriptor files usually contain
paths relative to where they were created; as such, copying or moving them to a different location
can make the file behave incorrectly. See the Deploying Corticon Ruleflows chapter of the Server
Integration & Deployment Guide for details.

31Progress Corticon: Deploying Web Services with .NET: Version 5.5

Creating and installing a .NET server Deployment Descriptor file

Now, when the startup sequence reaches step 3 above, the server knows where all Ruleflows are
located because .cdd files contain their pathnames.

Hot re-deploying .NET server Deployment Descriptor
files and Ruleflows

Changes to a Deployment Descriptor file or any of the Ruleflows it references do not require
restarting IIS. A maintenance thread in the Corticon Server for .NET watches for additions, deletions,
and changes and updates appropriately. A Ruleflow can be modified in Studio even while it is also
simultaneously deployed as a Decision Service and involved in a transaction - Server can be
configured to update the Decision Service dynamically for the very next transaction.

Having selected No for the Dynamic Reload setting earlier, our tutorial_example Decision
Service will not update automatically when the .erf file is changed. To enable this automatic
refresh, choose Yes for the Dynamic Reload setting.

Note: When using .NET Server on IIS 7.5 and EDC-enabled Decision Services, redeploying a
Decision Service to use a different database is not supported.To change the database or a deployed
Decision Service you need to; undeploy the Decision Service, restart the .NET server (or server
host), and then redeploy the Decision Service with the preferred database.

Progress Corticon: Deploying Web Services with .NET: Version 5.532

Chapter 4: Deploying a Ruleflow to the Corticon Server for .NET

5
Consuming a Decision Service on .NET
server

So far:

1. We have installed Corticon Server for .NET files onto a workstation or server .

2. We have configured Corticon Server for .NET as a web service onto IIS.

3. We have used the Deployment Console to generate a Deployment Descriptor file for our
sample Ruleflow.

4. We have installed the Deployment Descriptor file in the location where Corticon Server for .NET
looks when it starts.

Now we are ready to consume this Decision Service by sending a real XML/SOAP "request"
message and inspecting the "response" message it returns.

For details, see the following topics:

• Integrating and testing a Decision Service on .NET server

• Path 1: Using Corticon Studio as a SOAP client to consume a Decision Service

• Path 2: Using bundled C# sample code to consume a Decision Service

• Path 3: Using SOAP client to consume a Decision Service

• Path 4: Using JSON/RESTful client to consume a Decision Service on .NET server

• Path 5: Using bundled JSON sample code to consume a Decision Service

• Limits of the .NET server default evaluation license

• Troubleshooting .NET server

33Progress Corticon: Deploying Web Services with .NET: Version 5.5

Integrating and testing a Decision Service on .NET
server

In order to use a Decision Service in a process or application, it is necessary to understand the
Decision Service's service contract, also known as its interface. A service contract describes in
precise terms the kind of input a Decision Service is expecting, and the kind of output it returns
following processing. In other words, a service contract describes how to integrate with a Decision
Service.

When an external process or application sends a request message to a Decision Service that
complies with its service contract, the Decision Service receives the request, processes the included
data, and sends a response message. When a Decision Service is used in this manner, we say
that the external application or process has successfully "consumed" the Decision Service.

This Tutorial describes four paths for consuming a Decision Service:

• Path 1

Use Progress Corticon as a SOAP client to send and receive SOAP messages to a
Decision Service running on a remote Corticon Server - This is different from testing
Ruleflows in Corticon "locally." This path is the easiest method to use and requires the least
amount of technical knowledge to successfully complete. If you have already installed Corticon
Studio, then you have all necessary components to complete this path. If not but want to follow
this path, we recommend completing the Corticon Installation Guide and the Corticon Studio
Tutorial: Basic Rule Modeling before continuing on this path.

• Path 2

Manually integrate and test a Decision Service - In this path, we will use bundled sample
code (a command file) to send a request message built in Corticon Studio's Tester, and display
the results. This path requires more technical knowledge and confidence to complete, but
illustrates some aspects of the software which may be interesting to a more technical audience. If
you have already installed Studio, then you have all necessary components to complete this
path. If not but want to follow this path, we recommend completing the Corticon Installation
Guide and the Corticon Studio Tutorial: Basic Rule Modeling before continuing on this path.

• Path 3

Use a commercially available SOAP client to integrate with and test a Decision Service
- This SOAP client will read a web-services-standard service contract, generate a request
message from it, send it to the Corticon Server and display the response message.

• Path 4

Use JSON/RESTful client to consume a Decision Service on .NET server - This RESTful
client will read a web-services-standard service contract (discussed below), generate a request
message from it, send it to the Corticon Server and display the response message.

• Path 5

Use bundled JSON/REST sample code to consume a Decision Service - A sample of .NET
code is provided that you can tailor to execute Decision Services with REST/JSON.

Progress Corticon: Deploying Web Services with .NET: Version 5.534

Chapter 5: Consuming a Decision Service on .NET server

Path 1: Using Corticon Studio as a SOAP client to
consume a Decision Service

In this path, we will use Corticon Studio as a SOAP client to execute Decision Services running
on a remote Corticon Server.

Configuring Studio to send a SOAP Message to IIS
Corticon Studio is configured by default to query a localhost web server on port 8850. Because
we are using IIS, we’ll change the port used by Studio to send Test messages.

Note: Instead of localhost, you can use the static IP or DNS-resolvable name of the host -- a
good idea as it emulates actual deployment.

To configure the port:

1. Navigate to the directory [CORTICON_WORK_DIR].

2. Edit the file brms.properties in that location.

Note: If you specified a preferred name and location of the override properties file in Studio
preferences, edit that file as it the one that will be the last loaded.

3. Add the following line to the file so that your IIS points to its server port:

com.corticon.deployment.soapbindingurl_2=http://localhost:80/axis

4. Save the edited file.

5. Restart Corticon Studio.

The edited value is added to the list of Remote Servers.

Creating a new .NET server test in Corticon Studio
Return to Corticon Studio, or reopen it if closed. Open Cargo.ecore and then, without opening
any Ruleflows, open a new Test by selecting File>New>Ruletest from the Corticon Studio menubar.

For the Ruletest creation process outlined below, see also Requesting List of Remote Decision
Services:

1. You will be asked to Select Test Subject. Be sure to select the http://localhost:80/axis in the
Remote Servers box.

2. Select Update List. Corticon Studio will attempt to contact a Corticon Server instance at the
location specified above. If a Corticon Server instance is running, it will respond with a list of
available Decision Services, and display that list in the Remote Decision Services window.

3. Choose the Decision Service to invoke. In this Tutorial, we want tutorial_example.

4. Click Next>

5. Select the Vocabulary to use, as per normal Ruletest creation procedure.

35Progress Corticon: Deploying Web Services with .NET: Version 5.5

Path 1: Using Corticon Studio as a SOAP client to consume a Decision Service

http://localhost:80/axis

Important: Remember, even though we are using Corticon Studio to test, we are using its remote
testing feature, which executes a Decision Service running on Corticon Server ("remotely"), not a
Ruleflow open in Corticon Studio ("locally").

To keep this distinction clear, we are not going to open tutorial_example.erf in Corticon
Studio – it is not necessary since we're really testing the Decision Service running on Corticon
Server.

In step 1, you selected the default URL: Corticon Server running on localhost. If you want to
change the URL to another address, see "Designer properties & settings" in Server Integration &
Deployment Guide for more information about configuring Corticon Studio properties.

Figure 10: Requesting List of Remote Decision Services

Now, drag a Cargo entity from the Vocabulary to the Input pane. Enter sample data as shown:

Progress Corticon: Deploying Web Services with .NET: Version 5.536

Chapter 5: Consuming a Decision Service on .NET server

Figure 11: Sample Data in a Studio Remote Ruletest

Executing the remote .NET server test
Execute the Test by selecting Ruletest > Testsheet > Run Test from the Corticon Studio menubar

or from the toolbar.

We should see an Output pane similar to the following:

Figure 12: Response from Remote Decision Service

The Output pane of the Testsheet shown above displays the response message returned by the
Corticon Server. This confirms that our Decision Service has processed the data contained in the
request and sent back a response containing new data (the container attribute and the message).

37Progress Corticon: Deploying Web Services with .NET: Version 5.5

Path 1: Using Corticon Studio as a SOAP client to consume a Decision Service

Path 2: Using bundled C# sample code to consume a
Decision Service

To use this path, you should have solid .NET programming skills and familiarity with the .NET
Framework SDK environment. This portion of the Tutorial does not provide in-depth explanations
of working within the .NET environment.

Sample web service client code is provided in [CORTICON_HOME]Server
.NET\samples\webservice-client. This sample includes the following files:

• Cargo_FlightPlan.wsdl - WSDL generated by the Deployment Console

• CargoDecisionProxy_ASPNET.cs - C# web service proxy generated by wsdl.exe

• CallCargoService.cs - C# code demonstrating how to call the web service

• GenProxy.bat - Code to generate the decision service proxy from the WSDL

Creating the WSDL and proxy files
The WSDL and the proxy files are created as follows:

1. If your .NET Server and Studio are colocated, you have the Tutorial Ruleflow in the server's
[CORTICON_WORK_DIR]\Samples\Rule Projects\Tutorial\Tutorial-Done.

If your .NET Server and Studio are on separate machines, copy and stage that file so that it
can be accessed on the .NET server machine.

2. Launch the Deployment Console on the Corticon Server .NET machine by choosing the Start
menu command All Programs > Progress > Corticon 5.5 > Corticon .NET Deployment
Console

3. Click the ... button to the right of the Ruleflow on the one empty line listed, and the locate the
tutorial_example.erf file.

4. In the lower section, click the Type dropdown, and then choose WSDL.

The window should now look like this:

Progress Corticon: Deploying Web Services with .NET: Version 5.538

Chapter 5: Consuming a Decision Service on .NET server

Figure 13: Creating a new WSDL using the Deployment Console

5. Click Generate Service Contracts to save the service contract file, which is named
Cargo_Cargo.wsdl. It may be convenient to generate this file into a separate directory. Here,
we use directory [CORTICON_WORK_DIR].

Note: To generate a web service proxy, you need wsdl.exe. When you run wsdl.exe
Cargo_Cargo.wsdl, the file CargoDecisionService.cs is created. Place that file in the
.NET Server's [CORTICON_HOME]. Refer to the GenProxy.bat file located at
[CORTICON_HOME_\Server .NET\samples\wcf-client for the WSDL options, typically
/namespace: and /out:.

6. Write C# client code to call the web service.We provide a sample in CallCargoService.cs,
which sets values of attributes used in the rules.

7. Compile CargoDecisionService.cs and CallCargoService.cs using the csc *.cs
command. Generally, the compile process needs to occur in your .NET Framework root directory,
so you may need to move both C# files to that directory prior to compilation. In our case, the
.NET Framework is installed at C:\WINDOWS\Microsoft.NET\Framework\v4.0.30319

This generates an executable file named CallCargoService-webservice.exe. Store the
file in your [CORTICON_WORK_DIR].

8. If you have not already done so, deploy the tutorial_example Decision Service to Corticon
Server for .NET on IIS. Follow the instructions for Creating and Installing a Deployment Descriptor
File.

39Progress Corticon: Deploying Web Services with .NET: Version 5.5

Path 2: Using bundled C# sample code to consume a Decision Service

9. Run CallCargoService-webservice.exe to execute the call to Corticon Server.You will
see the following output:

Figure 14: Invoking Corticon Server for .NET via C# Sample Code

Path 3: Using SOAP client to consume a Decision
Service

Web Services Service Contracts
Many commercial SOAP and web services development tools have the ability to import an XSD
or WSDL service contract and generate a compliant request message directly from it. This path
assumes you have access to such a tool and want to use it to consume a Decision Service.

The Corticon Deployment Console can produce both XSD and WSDL documents. The Server
Integration & Deployment Guide contains much more information about these documents, including
detailed descriptions of their structure and elements. However, if you have chosen this path, we
assume you are already familiar enough with service contracts to be able to use them correctly
once generated.

Web services messaging styles
There are also two types of messaging styles commonly used in web services:

1. RPC-style, which is a simpler, less-capable messaging style generally used to send smaller
messages and receive single variable answers. Some of the administrative methods in Corticon
Server's SOAP API use RPC-style messaging.

2. Document-style, which is more complex, but allows for richer content, both in request and
response messages. Corticon Server for .NET’s execute method is most commonly invoked
through document-style messaging because of its ability to work with a complex data payload.

Important: Any SOAP client or SOAP-capable application used to consume a Decision Service
deployed to the Corticon Server must use document-style messaging. See the Integration &
Deployment Guide for complete details on proper structure of a compliant request message.

Creating a service contract using the Deployment
Console

Launch the Deployment Console as before and follow the instructions below to generate a service
contract. All Deployment Console options below are also described in more detail in the Server
Integration & Deployment Guide.

Progress Corticon: Deploying Web Services with .NET: Version 5.540

Chapter 5: Consuming a Decision Service on .NET server

1. Decision Service Level / Vocabulary Level. These radio buttons determine whether one
service contract is generated per listed Ruleflow, or if a single "master" service contract is
generated from the entire Vocabulary. A Decision Service-level service contract is usable only
for a specific Decision Service, whereas a Vocabulary-level service contract can be used for
all Decision Services that were built using that Vocabulary. Choose the option that is most
compatible with your SOAP tool.

2. Vocabulary File. If generating a Vocabulary-level service contract, enter the Vocabulary file
name (.ecore) here. If generating a Decision Service-level contract, this field is read-only and
shows the Vocabulary associated with the currently highlighted Ruleflow row above.

3. Type. This is the service contract type: WSDL, XML Schema, or Java classes. Note, no output
is produced when Java classes is selected because there is no standard method for describing
service contracts in the Java world.

4. Output directory. The location where you want the Deployment Console to save this service
contract.

5. XML Messaging Style. Enabled only for Vocabulary-level service contracts. Describes the
message style, flat or hierarchical, in which the WSDL will be structured.

6. SOAP Server URL. URL for the SOAP node that is bound to the Corticon Server. Enabled for
WSDL service contracts only. The default URLs http://localhost:8850/axis/services/Corticon
and https://localhost:8851/axis/services/Corticon make a Decision Service available to the
default Corticon Server installation performed earlier. Note: These URLs can be changed and
additional URLs can be added to the drop-down list.

7. Generate Service Contracts. Use this button to generate either the WSDL or XML Schema
service contracts into the output directory. If you select Decision Service-level contracts, one
service contract per Ruleflow listed at top will be created. If you select Vocabulary-level, only
one contract is created per Vocabulary file.

Creating a request message for a decision service
Once your SOAP development tool has imported the WSDL or XSD service contract, it should be
able to generate an instance of a request message that complies with the service contract. It should
also provide you with a way of entering sample data to be included in the request message when
it is sent to the Decision Service.

Important:

Most commercial SOAP development tools accurately read service contracts generated by the
Deployment Console, ensuring well-formed request messages are composed.

One occasional problem, however, involves the Decision Service Name, which was entered in
field 3 of the Deployment Console's Deployment Descriptor section. Even though all service
contracts list decisionServiceName as a mandatory element, many SOAP tools do not
automatically insert the Decision Service Name attribute into the request message's
decisionServiceName element. Be sure to check this before sending the request message. If
the request message is sent without a decisionServiceName, the Corticon Server will not know
which Decision Service is being requested, and will return an error message.

Enter all required data into the request message.The tutorial_example.erf example requires
the following data:

41Progress Corticon: Deploying Web Services with .NET: Version 5.5

Path 3: Using SOAP client to consume a Decision Service

http://localhost:8850/axis/services/Corticon
https://localhost:8851/axis/services/Corticon

Possible ValuesVocabulary Term

A number less than or equal to 200,000Cargo.weight

Any real numberCargo.volume

Sending a request message to the server
Make sure IIS is running and your Deployment Descriptor file is installed in the correct location as
described earlier. Now, use your SOAP tool to send the request message to the Server for .NET.

Your SOAP tool should display the response from the Server for .NET. Are the results what you
expected? If not, or if the response contains an error, proceed to the Troubleshooting section of
this tutorial.

Path 4: Using JSON/RESTful client to consume a
Decision Service on .NET server

You can create Corticon requests in JavaScript Object Notation (JSON), a text format that you can
use as an alternative to XML. A JSON RESTful interface is one that follows the REST architectural
style and uses JSON as its data representation format. Specifically, a standardized JSONObject
with name-value pairs of “Objects”:<JSONArray>can be passed in to Corticon Server's
ICcServer.execute(…)to process the request and return a JSON-formatted reply.

Running the sample JSON Request on .NET server
A Corticon Server installation provides a JSON sample (similar to the SOAP .xml sample) and a
test script that runs the sample.

The sample, located at [CORTICON_WORK_DIR]\Samples\Rule
Projects\OrderProcessing\OrderProcessingPayload.json, is as follows:

{"Objects": [{
"total": "#null",
"myItems": [

{
"product": "Ball",
"price": "10.000000",
"quantity": "20",
"subtotal": "#null",
"__metadata": {

"#id": "Item_id_1",
"#type": "Item"

}
},
{

"product": "Racket",
"price": "20.000000",
"quantity": "1",
"subtotal": "#null",
"__metadata": {

Progress Corticon: Deploying Web Services with .NET: Version 5.542

Chapter 5: Consuming a Decision Service on .NET server

"#id": "Item_id_2",
"#type": "Item"

}
},
{

"product": "Wrist Band",
"price": "5.250000",
"quantity": "2",
"subtotal": "#null",
"__metadata": {

"#id": "Item_id_3",
"#type": "Item"

}
}

],
"shipped": "#null",
"shippedOn": "#null",
"__metadata": {

"#id": "Order_id_1",
"#type": "Order"

},
"dueDate": "1/1/2008 12:00:00 AM",
"note": "#null"

}]}

To run the JSON sample:

1. Start Corticon Server .NET.

2. Open a command prompt window at [CORTICON_HOME]\Server .NET\samples\bin.

3. Launch Corticon-Api-Rest_Test.exe. The command transaction list is displayed:

--- Current Apache Axis Location: http://localhost:8850/axis

Transactions:
-1 - Exit REST API Test
--

0 - Change Connection Parameters
--
142 - Execute JSON REST request
143 - Execute JSON REST request (by specific Decision Service Major Version)
144 - Execute JSON REST request (by specific Decision Service Major and Minor
Version)
145 - Execute JSON REST request (by specific execution Date)
146 - Execute JSON REST request (by specific execution Date and Decision
Service Major Version)
--
Enter transaction number

4. Enter 142.

5. When prompted for Input JSON File Path, enter the path to the sample:

C:\Users\{user}\Progress\CorticonWork_5.5\Samples\Rule
Projects\OrderProcessing\OrderProcessingPayload.json

6. When prompted for Input Decision Service Name, enter (or copy) the name of the Decision
Service that is the sample's target:

ProcessOrder

43Progress Corticon: Deploying Web Services with .NET: Version 5.5

Path 4: Using JSON/RESTful client to consume a Decision Service on .NET server

The request is processed, and its output is placed at [CORTICON_WORK_DIR]\output with a
name formatted as OutputCRString_{epochTime}.json where {epochTime} is the number
of seconds that have elapsed since 1/1/1970. The input file is also placed there. The output for
the sample is as follows:

{
"Messages": {

"Message": [
{

"entityReference": "Item_id_3",
"text": "The subtotal of line item for Wrist Band is

10.500000.",
"severity": "Info",
"__metadata": {"#type": "#RuleMessage"}

},
{

"entityReference": "Item_id_2",
"text": "The subtotal of line item for Racket is 20.000000.",

"severity": "Info",
"__metadata": {"#type": "#RuleMessage"}

},
{

"entityReference": "Item_id_1",
"text": "The subtotal of line item for Ball is 200.000000.",
"severity": "Info",
"__metadata": {"#type": "#RuleMessage"}

},
{

"entityReference": "Order_id_1",
"text": "The total for the Order is 230.500000.",
"severity": "Info",
"__metadata": {"#type": "#RuleMessage"}

},
{

"entityReference": "Order_id_1",
"text": "This Order was shipped late. Ship date 12/1/2008

12:00:00 AM",
"severity": "Warning",
"__metadata": {"#type": "#RuleMessage"}

}
],
"__metadata": {"#type": "#RuleMessages"},
"version": "0.0"

},
"Objects": [{

"total": 230.5,
"myItems": [

{
"product": "Ball",
"price": "10.000000",
"quantity": "20",
"subtotal": 200,
"__metadata": {

"#id": "Item_id_1",
"#type": "Item"

}
},
{

"product": "Racket",
"price": "20.000000",
"quantity": "1",
"subtotal": 20,
"__metadata": {

"#id": "Item_id_2",
"#type": "Item"

}
},
{

Progress Corticon: Deploying Web Services with .NET: Version 5.544

Chapter 5: Consuming a Decision Service on .NET server

"product": "Wrist Band",
"price": "5.250000",
"quantity": "2",
"subtotal": 10.5,
"__metadata": {

"#id": "Item_id_3",
"#type": "Item"

}
}

],
"shipped": true,
"shippedOn": "12/1/2008 12:00:00 AM",
"__metadata": {

"#id": "Order_id_1",
"#type": "Order"

},
"dueDate": "1/1/2008 12:00:00 AM",
"note": "This Order was shipped late"

}]
}

Path 5: Using bundled JSON sample code to consume
a Decision Service

Sample C# code that you can use to create a C# project, or create your own sample client to
execute a JSON request using the REST API supported by Corticon .NET.

Note: To use this path, you should have solid .NET and C# programming skill, as well as familiarity
with the .NET Framework SDK environment.

This sample includes the following files:

• CorticonServerRestTest.cs - Commented C# code to help you create a .NET REST
client to execute against the REST Service in Corticon .NET Server running in IIS 7.5.

• Json60 - Reference DLL for JSON used in CorticonserverRestTest.cs for .Net framework.

• app.config - Application configuration file to load assembly files for a C# project.

Limits of the .NET server default evaluation license
The license included in the default Corticon Server for .NET installation has preset limits on some
Corticon Server and Decision Service parameters. These limits are:

45Progress Corticon: Deploying Web Services with .NET: Version 5.5

Path 5: Using bundled JSON sample code to consume a Decision Service

• Number of Decision Services – Up to five Decision Services may be deployed at any given
time. This means the sum total of all Decision Services loaded via .cdd files, Web Console,
or APIs cannot exceed five.

• Pool Size – No Decision Service may have a maximum pool size setting of greater than five. Pool
size is measured on a Decision Service-by-Decision Service basis, so you may have up to 5
Decision Services deployed (compliant with the Decision Service limitation above), each with
up to five Reactors in its pool, without violating the default license restrictions.

• Number of Rules – All rules in all deployed Ruleflows (in other words, all deployed Decision
Services) must not exceed 200. A rule generally consists of a single Condition/Action Column
or a single Action row in Column 0. Filter expressions do not count because they only modify
other rules.

The Corticon Server log can capture errors and exceptions caused by expired or "under-strength"
licenses. These log messages are detailed in the Using Corticon Server logs section of the
Integration and Deployment Guide.

If you are a Progress Corticon customer, you should have access to an unlimited license that will
lift these restrictions. If you are an evaluator, and discover that these limitations are preventing or
inhibiting your evaluation, contact Progress Corticon support or your Progress representative for
a license with expanded capabilities.

Troubleshooting .NET server
When you have problems on the .NET Server, refer to "Using Corticon Server logs" and
"Troubleshooting" topics in the Integration and Deployment Guide.

Progress Corticon: Deploying Web Services with .NET: Version 5.546

Chapter 5: Consuming a Decision Service on .NET server

6
Using .NET Business Objects as payload for
Decision Services

Introduction
Microsoft .NET Classes provide applications with reusable, portable code. Classes are logical
sections of an application. For instance, the call to a database and retrieval of table data is part of
a data class. These classes can be used in other sections of the application, or can be used it in
an entirely different software design.

Class properties that allow other areas of code to interface with the class are usually created with
"get" and "set" keywords.

Corticon Server for .NET can communicate with .NET classes through a Java Object Messaging
(JOM) interface. This document illustrates how a client program can instantiate a .NET class and
then use that object instance to communicate with Corticon for .NET Server. In other words, this
enables Corticon Server for .NET to natively bind to the application’s .NET class definitions during
rules execution.

To use the JOM interface from any C# client application, it is necessary to create Java stubs that
match the C# object model. These stubs will enable Corticon Studio Vocabulary Editor to import
the class metadata for mapping purposes; in other words, to pull in the names of the get and set
methods needed. The stubs are also used to generate import statements in the compiled rules.

At deployment time, the Corticon for .NET Server will dynamically transform the Rule asset from
Java byte code into .NET Common Intermediate Language (CIL), the object-oriented assembly
language for .NET runtime environments. When this is done, the Java code stub references inside
the stub library (a .jar file) are translated into references to the actual C# class file library (a .dll
file). Finally, the translated Rule asset (CIL) will directly call get/set methods on the C# object
during Rule asset execution.

47Progress Corticon: Deploying Web Services with .NET: Version 5.5

IKVM.NET
To create Java Stubs from .NET class files, Corticon supplies an open source utility, IKVM.NET,
which is an essential component of the Corticon Server for .NET runtime architecture enabling it
to seamlessly operate in .NET environments. IKVM.NET is included in your Corticon .NET Server
installation.

Note: For more information about IKVM.NET, see their web site, http://www.ikvm.net.

IKVM.NET is an implementation of Java for Mono and the Microsoft .NET Framework. It includes
the following components:

• A Java Virtual Machine implemented in .NET

• A .NET implementation of the Java class libraries

• Tools that enable Java and .NET interoperability

Running the sample Java Object Messaging (JOM) client application
The sample JOM Client uses C# objects to communicate with Corticon Server for .NET (in- process)
via the object messaging interface.

Run this sample program by launching [CORTICON_HOME]\Server
.NET\samples\bin\JomClient.exe)

When the application launches, the window lets you enter parameter values for executing this
decision service:

• Name

• Age

• Is this person a skydiver?

Enter values, and the click Execute to see the decision.

You might wonder how this application was created and how it works. Let’s examine its building
blocks.When you understand the solution architecture, it will be easy to create your own examples
and solutions.

Examining the sample
The sample JomClient.exe uses a Rulesheet. Open
[CORTICON_NET_WORK_DIR]\Samples\Rule Projects\JOM\Rules\jom.RiskRating.ers:

Progress Corticon: Deploying Web Services with .NET: Version 5.548

Chapter 6: Using .NET Business Objects as payload for Decision Services

http://www.ikvm.net

Open the Vocabulary [CORTICON_NET_WORK_DIR]\Samples\Rule
Projects\JOM\Vocab\jom.ecore. When your Preferences are set to Integration and
Deployment, the Applicant Entity shows that it is bound to the Java Package
cli.CorticonLibrary, and its Java Class name refers to the C_Applicant class.

Each Attribute within the Entity refers to a Java Object Get Method and a Java Object Set Method
method, as shown:

So how do we get the CorticonLibrary that contains these Java classes exposed in the Corticon
Vocabulary editor? Let's see.

49Progress Corticon: Deploying Web Services with .NET: Version 5.5

Invoking Corticon Server for .NET
JomClient.exe is written in C#. Logic that invokes the in-process server is located for the sample
at [CORTICON_NET_HOME]\samples\api-client\jom\JomClientForm.cs, as shown:

Running the sample JOM application
Now when you launch JOMClient.exe, Corticon.NET Server will try to deploy the JOM Decision
Service. As described above, the JOM .ecore has already imported the Java Stub Class Metadata.
That's important for the next step. The JOM Client will first compile the
[CORTICON_NET_WORK_DIR]\samples\Rule Projects\JOM\jom.erf into a deployable
.eds file. For the compilation to be successful, the CorticonLibrary.jar must be in the \lib
directory. During deployment of the .eds file, the IKVM loader will convert the Java byte code into
CLI and also load the C# class definitions in CorticonLibrary.dll, effectively allowing
JomClent.exe to use C# object instances to communicate with Corticon Server for .NET.

Preparing the C# Class files
We want the client program to instantiate C_Applicant, and then use that object instance to
communicate with Corticon for .NET Server. First we’ll need a class file we are using in our
application to expose all data objects. For that, we will use
[CORTICON_NET_HOME]\samples\api-client\jom\CorticonLibrary.cs, as shown:

Progress Corticon: Deploying Web Services with .NET: Version 5.550

Chapter 6: Using .NET Business Objects as payload for Decision Services

Note: Having a namespace in the CorticonLibrary.cs file is mandatory.

Compile the CorticonLibrary.cs to create the CorticonLibrary.dll. To use the JOM
interface from any C# client, it is necessary to create Java stubs that match your C# object model.
For the JOM Client example, we used Visual Studio to compile the C# class C_Applicant into
CorticonLibrary.dll.

Save CorticonLibrary.dll to both [CORTICON_NET_HOME]\samples\gen stubs\ and
[CORTICON_NET_HOME]\samples\bin\

Generating the Java Stubs
We can generate the Java stub file from CorticonLibrary.dll using the utility script
[CORTICON_NET_HOME]\samples\gen stubs\GenStubs.bat:

@echo off
SET IKVM_HOME=..\bin
SET INPUT_DLL_NAME=CorticonLibrary.dll
SET OUTPUT_JAR_NAME=CorticonLibrary.jar
ATTRIB -R %OUTPUT_JAR_NAME%
"%IKVM_HOME%\ikvmstub.exe" %INPUT_DLL_NAME%
ECHO Successfully completed: C# types in %INPUT_DLL_NAME% were converted into
stubs in %OUTPUT_JAR_NAME%.
Pause

The GenStubs.bat utility will generate the JAR CorticonLibrary.jar.

Add CorticonLibrary.dll to [CORTICON_NET_HOME]\samples\bin\

Add CorticonLibrary.jar to [CORTICON_NET_HOME]\samples\lib\.

51Progress Corticon: Deploying Web Services with .NET: Version 5.5

Note:

About putting the CorticonLibrary.jar in the samples\lib directory - It is important to
understand where to locate the JAR file, especially when you are outside of Corticon installation
directories.The JAR that the Corticon .NET Configuration (inside CorticonShared.dll) directs
IKVM to load all JAR files that are located in the [CORTICON_NET_HOME]\lib directory. In the
case of the JomClient.exe, the JomClient.exe defines [CORTICON_NET_HOME] equal to
[CORTICON_NET_HOME]\samples. Where is this done? Each .NET Application has a
.exe.config file where the user defines their Corticon Home and Work directories. For example
bin\JomClient.exe has a JomClient.exe.config. Within that file is the following section:

<configuration>
<appSettings>
<add key="CORTICON_HOME" value=".." />
<add key="CORTICON_WORK_DIR"

value="C:\Users\{user}\Progress\CorticonWork_5.5 .Net"/>
</appSettings>
</configuration>

That defines CORTICON_HOME as located up one directory level from where the .exe is currently
located.Typically, the result is C:\Program Files\Progress\Corticon 5.5 .Net\Server
.NET\samples. Then the CorticonConfiguration changes CORTICON_HOME by adding
“\lib” which locates it in that directory where it loads all the JARs.

Supported .NET datatypes for Attributes

Corticon Attributes support .NET Business Objects with nullable datatypes. Using a trailing ?
character converts the Datatype into a Nullable Datatype of the same type.

Boolean
bool
Boolean?
bool?

Byte
byte
Byte?
byte?

Char
char
Char?
char?

DateTime
DateTime?

Decimal
decimal
Decimal?
decimal?

Double
double
Double?
double?

float
float?

Int16

Progress Corticon: Deploying Web Services with .NET: Version 5.552

Chapter 6: Using .NET Business Objects as payload for Decision Services

Int16?

Int32
Int32?

Int64
Int64?

int
int?

long
long?

short
short?

String
String?

Supported .NET datatypes for Associations

Corticon Associations support .NET Business Objects.

C# Association Datatypes:

System.Collections.ArrayList
System.Collections.IList
<Business Object Name>[] (Array of Business Objects)

IKVM Open JDK Datatypes:

java.util.ArrayList
java.util.Vector
java.util.HashSet
java.util.Collection
java.util.List
java.util.Set

All datatypes that are supported are demonstrated in the CorticonLibrary.cs file under the
ObjectA and ObjectB objects.

Using GenStubs.bat for your .NET Business Objects
To generate stubs:

1. Compile the .NET Business Objects in .cs or .vb to create a .dll file. For example, use
myDotNetBo.cs or myDotNetBo.vb. to compile myDotNetBo.dll.

2. Copy the .NET Business Object .dll to the [CORTICON_NET_HOME]\samples\gen stubs\
directory.

3. Locate a text editor at [CORTICON_NET_HOME]\samples\gen stubs\ to edit
GenStubs.bat.

4. Modify the following two properties to match the .dll name and the .jar name, as shown
here for myDotNetBo:

SET INPUT_DLL_NAME= myDotNetBo.dll
SET OUTPUT_JAR_NAME= myDotNetBo.jar

5. Save the file under an appropriate name(such as GenStubs_MyBo.bat).

53Progress Corticon: Deploying Web Services with .NET: Version 5.5

6. Run your GenStubs script file to generate the Java stub JAR file.

Note: The first time you do this, you get a warning message about not finding
myDotNetBo.jar:

Ignore this -- it is trying to delete it first, but it isn’t there.

The Java stub JAR file you created is saved at [CORTICON_NET_HOME]\samples\gen
stubs\.

7. Copy your JAR (for example, myDotNetBo.jar) to [CORTICON_NET_HOME]\samples\lib.

8. Verify the creation of the JAR file. The following example illustrates a stub class in the
CorticonLibrary.jar through a Java Decompiler:

9. Open the Vocabulary in Corticon Studio, and then chose the menu command Vocabulary >
Java Object Messaging > Import Java Class Metadata, as shown:

Progress Corticon: Deploying Web Services with .NET: Version 5.554

Chapter 6: Using .NET Business Objects as payload for Decision Services

10. Browse to [CORTICON_NET_HOME]\samples\gen stubs\:

11. Select the JAR that you want imported into Corticon Studio, as well as mscorlib.jar that is
also in the gen stubs directory. The mscorlib.jar needs to also be selected because the
.jar file that was created through the gen stubs process depends on the classes inside the
mscorlib.jar.

55Progress Corticon: Deploying Web Services with .NET: Version 5.5

12. Select the packages that are associated with the Java Stub Classes that were created in the
gen stubs process. In our example, the CorticonLibrary.jar contains classes under
the cli.CorticonLibrary package.

Note: As noted earlier, Business Objects require a defined Namespace. If there is no defined
Namespace, the Java Stub Classes will have a default package of only cli. That would force
you to choose the cli checkbox, and import ALL the Java Class Metadata in the
CorticonLibrary.jar and the mscorlib.jar, an unwarranted scope.

Progress Corticon: Deploying Web Services with .NET: Version 5.556

Chapter 6: Using .NET Business Objects as payload for Decision Services

13. After import is complete, verify that the Java Object Getter/Setter Methods have been assigned
to each of the Attributes and Associations.

The Vocabulary tries to SmartMatch the Vocabulary Attribute and Association Names to match
a Getter/Setter name in the imported Java Metadata.The SmartMatch looks for an appropriate
Getter/Setter Method that begins with get or set as in get<AttributeName> or
get_<AttributeName>. If this occurs, the Getter/Setter value inside the Vocabulary is colored
light grey, indicating that it was determined through a SmartMatch lookup.

However, in the example above, SmartMatch is unable to match the Getter/Setter with Attribute
riskRating because the appropriate Java Class Method does not conform to the SmartMatch
algorithm:

• Vocabulary Attribute: riskRating

• Smart Match looks for: getRiskRating() or get_RiskRating()

• Actual Java Method: get_StrRiskRating()

57Progress Corticon: Deploying Web Services with .NET: Version 5.5

14. Since the SmartMatch failed to locate an appropriate Getter/Setter, you need to select the
appropriate Getter/Setter Method from the drop-down for that Attribute or Association. Since
the user defined their own mappings, the Getter/Setter method value is colored black (as
illustrated).

15. After deploying the rules to IIS server, ensure that the Business Objects are picked up by
copying:

• myDotNetBo.jar to C:\inetpub\wwwroot\axis\lib

• myDotNetBo.dll to C:\inetpub\wwwroot\axis\bin

16. When the package has been created, it will look something like this:

Testing outside IIS
If you are testing your work outside of IIS, such as in a Visual Studio Environment, you to perform
some extra tasks:

1. Copy the myDotNetBO.dll to a location where it can be referenced. If running in IIS and the
axis application has been deployed, the .dll needs to be moved to the
c:\inetpub\wwwroot\axis\bin directory.

2. Copy the myDotNetBo.jar into the running application's [CORTICON_NET_HOME]\lib
directory.

The JAR is needed during compilation of the Ruleflow (.erf) into an Enterprise Decision Service
(.eds) file. The compilation step depends on the .jar file being in the
[CORTICON_NET_HOME]\lib directory.

Note: About putting the JAR in the \lib directory when Business Objects are used in IIS

The CorticonConfiguration looks for CORTICON_HOME\lib. With IIS, CORTICON_HOME
could be defined or overridden in the web.config file under [IIS]\axis.

Parameters can be set in Corticon in the <appSettings> section. Note there are no
CORTICON_HOME or CORTICON_WORK_DIR settings. That means that the “current directory” is
the CORTICON_HOME and CORTICON_WORK_DIR. For IIS, put the JAR file in
C:\inetpub\wwwroot\axis\lib.

Progress Corticon: Deploying Web Services with .NET: Version 5.558

Chapter 6: Using .NET Business Objects as payload for Decision Services

7
Compiling a Decision Service into an
Assembly DLL

Compiling a Decision Service's .eds file into an Assembly.dll file provides a marked
improvement in performance over IKVM dynamically converting .class files during deployment
by compiling the .class files inside the .eds file into an Assembly.dll that contains Corticon
Data Objects (CDOs), listeners and Rules. The resulting Assembly.dll is added to the .eds
file. When the .eds file is deployed, the Corticon Server looks for an Assembly.dll, and when
it finds one, it gets the information it needs from the Assembly.dll instead of from the .class
files inside the .eds file.

Creating an Assembly.dll
A Corticon .NET Server installation includes a script, CompileAssembly.bat, located in the
.NET Server's home directory that creates an Assembly.dll. The script's inputs require the
location of the .eds file you want to compile, and -- if you have Business Objects -- the name of
the reference .jar to create for the Business Objects.

To compile a Decision Service into an Assembly.dll:

1. Generate an .eds file. (You could use Transaction Id; 150/151 to Precompile a RuleFlow into
an .eds file.)

2. If you have Business Objects, you need to generate stubs (as described in Using .NET Business
Objects as payload for Decision Services on page 47) into a .jar file that will be incorporated
into your .dll.

3. Edit the script CompileAssembly.bat located at [CORTICON_HOME]\samples\compile
assembly as follows:

• SET INPUT_EDS_FILE_NAME="<path of the input .eds file>"

59Progress Corticon: Deploying Web Services with .NET: Version 5.5

• SET REFERENCE_JAR_FILE_NAME="<path of the reference .jar created by
GenStubs>" (or empty)

4. Save the edited file.

5. Open a Command Prompt to the location [CORTICON_HOME]\samples\compile assembly

6. Run the CompileAssembly script.

When the script successfully completes, the .eds file has embedded its Assembly.dll .

Progress Corticon: Deploying Web Services with .NET: Version 5.560

Chapter 7: Compiling a Decision Service into an Assembly DLL

8
Support for Windows Communication
Framework (WCF)

To use this approach, you should have solid .NET programming skills and familiarity with the .NET
WCF Framework. This guide does not provide in-depth explanations of working within the .NET
WCF environment.

Sample web service client code is provided in [CORTICON_HOME]Server
.NET\samples\wcf-client. This sample includes the following files:

• Cargo_FlightPlan.wsdl - WSDL generated by the Deployment Console

• CargoDecisionProxy_WCF.cs - C# web service proxy generated by svcutil.exe

• CallCargoService.cs - C# code demonstrating how to call the web service

• GenProxy.bat - Code to generate the decision service proxy from the WSDL

• App.config - The configuration file for the decision service endpoint

For details, see the following topics:

• Creating WSDL and proxy files

Creating WSDL and proxy files
The WSDL and the proxy files are created as follows:

61Progress Corticon: Deploying Web Services with .NET: Version 5.5

1. If your .NET Server and Studio are colocated, you have the Tutorial Ruleflow in the server's
[CORTICON_WORK_DIR]\Samples\Rule Projects\Tutorial\Tutorial-Done.

If your .NET Server and Studio are on separate machines, copy and stage that file so that it
can be accessed on the .NET server machine.

2. Launch the Deployment Console on the Corticon Server .NET machine by choosing the Start
menu command All Programs > Progress > Corticon 5.5> Corticon .NET Deployment
Console

3. Click the ... button to the right of the Ruleflow on the one empty line listed, and the locate the
tutorial_example.erf file.

4. In the lower section, click the Type dropdown, and then choose WSDL.

The window should now look like this:

Figure 15: Creating a new WSDL using the Deployment Console

5. Click Generate Service Contracts to save the service contract file, which is named
Cargo_Cargo.wsdl. It may be convenient to generate this file into a separate directory. Here,
we use directory [CORTICON_WORK_DIR].

Note: To generate a web service proxy, you need wsdl.exe. When you run wsdl.exe
Cargo_Cargo.wsdl, the file CargoDecisionService.cs is created. Place that file in the
.NET Server's [CORTICON_HOME]. Refer to the GenProxy.bat file located at
[CORTICON_HOME_\Server .NET\samples\wcf-client for the WSDL options, typically
/namespace: and /out:.

6. Write C# client code to call the web service.We provide a sample in CallCargoService.cs,
which sets values of attributes used in the rules.

Progress Corticon: Deploying Web Services with .NET: Version 5.562

Chapter 8: Support for Windows Communication Framework (WCF)

7. Compile CargoDecisionService.cs and CallCargoService.cs using the csc *.cs
command. Generally, the compile process needs to occur in your .NET Framework root directory,
so you may need to move both C# files to that directory prior to compilation. In our case, the
.NET Framework is installed at C:\WINDOWS\Microsoft.NET\Framework\v4.0.30319

This generates an executable file named CallCargoService-webservice.exe. Store the
file in your [CORTICON_WORK_DIR].

8. If you have not already done so, deploy the tutorial_example Decision Service to Corticon
Server for .NET on IIS. Follow the instructions for Creating and Installing a Deployment Descriptor
File.

9. Run CallCargoService-webservice.exe to execute the call to Corticon Server.You will
see the following output:

Figure 16: Invoking Corticon Server for .NET via C# Sample Code

63Progress Corticon: Deploying Web Services with .NET: Version 5.5

Creating WSDL and proxy files

Progress Corticon: Deploying Web Services with .NET: Version 5.564

Chapter 8: Support for Windows Communication Framework (WCF)

A
Updating your Corticon license JAR for .NET

Progress Corticon embeds an evaluation license in its products to help you get started.

• Corticon Studio evaluation licenses let you use database access (Enterprise Data Connector
or "EDC"), and are timed to expire on a preset date.

• Corticon Server evaluation licenses do not enable use of Enterprise Data Connector, and limit
the number of decision services, rules, and pools in use. They too are timed to expire on a
preset date.

When you obtain a license file, it applies to Studios as well as Servers.You must perform
configuration tasks to record it for each Corticon Studio, each Corticon Server, and each Deployment
Console. If you intend to use EDC on your Corticon Servers, your Corticon license must allow it.
Contact Progress Corticon technical support if you need to acquire a license.

The Corticon Server license is placed at two locations in the installation to enable use and -- when
specified in the license -- enable EDC functions for:

• Corticon Server

• Corticon Deployment Console

To configure Corticon .NET Server to access its license file:

1. Copy the license JAR with its default name, CcLicense.jar.

2. Navigate to the .NET Server installation's [CORTICON_HOME]\samples\lib directory to
paste the file and overwrite the existing file in that location.

3. Navigate to the .NET Server installation's [CORTICON_HOME]\webservice\lib directory
to paste the file and overwrite the existing file in that location.

When you launch the Corticon Deployment Console, your license with its registration information
is registered for the Corticon Deployment Console.When your license enables EDC, the Database
Access fields and functions are enabled.

65Progress Corticon: Deploying Web Services with .NET: Version 5.5

Note:

You can choose to locate the license by another JAR name at a preferred location, and then
expressly identify it to the server.

To custom configure Corticon .NET Server's license location:

1. Navigate in the file system to the Corticon .NET Server installation's,
[CORTICON_HOME]\Server .NET\samples\bin subdirectory.

2. Double-click on Corticon-Api-Inprocess-Test.exe, then do the following:

a. Type 416 and then press Enter.

b. Enter (or copy/paste) the complete path to the location of the license JAR file, as in this
example, C:\licenses\myCorticonEDC_CcLicense.jar.The command echoes back
Transaction completed.

c. To confirm the setting, type 415 and then press Enter. The path is echoed back (you might
need to scroll up to the command line.)

3. Once the .NET Server is running in remote mode, you can double-click on
Corticon-Api-Remote-Test.exe in that same directory to perform the same 416 and 415
tasks as in Step 2 above

Progress Corticon: Deploying Web Services with .NET: Version 5.566

Appendix A: Updating your Corticon license JAR for .NET

	Notices
	Table of Contents
	Preface
	Progress Corticon documentation - Where and What
	Overview of Progress Corticon

	Conceptual overview of the .NET server
	What is a web service on .NET server?
	What is a Decision Service on .NET server?
	What is the Corticon Server for .NET?
	What is a .NET web services consumer?

	Getting started with Corticon Server for .NET
	Testing the configuration
	Testing the installed Corticon .NET Server
	Using a .NET Server installation to set up an in-process server
	Testing as in-process
	Testing a remote server on IIS

	Corticon .NET Server files and API tools
	Setting up Corticon .NET Server use cases
	The Corticon .NET Server home and work directories
	The Corticon .NET Server Sandbox

	Deploying a Ruleflow to the Corticon Server for .NET
	Creating a Ruleflow for .NET server
	Creating and installing a .NET server Deployment Descriptor file
	Using the .NET Server's Deployment Console Decision Services
	Installing the Deployment Descriptor file on .NET server
	Hot re-deploying .NET server Deployment Descriptor files and Ruleflows

	Consuming a Decision Service on .NET server
	Integrating and testing a Decision Service on .NET server
	Path 1: Using Corticon Studio as a SOAP client to consume a Decision Service
	Configuring Studio to send a SOAP Message to IIS
	Creating a new .NET server test in Corticon Studio
	Executing the remote .NET server test

	Path 2: Using bundled C# sample code to consume a Decision Service
	Creating the WSDL and proxy files

	Path 3: Using SOAP client to consume a Decision Service
	Web services messaging styles
	Creating a service contract using the Deployment Console
	Creating a request message for a decision service
	Sending a request message to the server

	Path 4: Using JSON/RESTful client to consume a Decision Service on .NET server
	Running the sample JSON Request on .NET server

	Path 5: Using bundled JSON sample code to consume a Decision Service
	Limits of the .NET server default evaluation license
	Troubleshooting .NET server

	Using .NET Business Objects as payload for Decision Services
	Compiling a Decision Service into an Assembly DLL
	Support for Windows Communication Framework (WCF)
	Creating WSDL and proxy files

	Updating your Corticon license JAR for .NET

